
HAL Id: inria-00563678
https://inria.hal.science/inria-00563678

Submitted on 31 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The DigiHome Service-Oriented Platform
Daniel Romero, Gabriel Hermosillo, Amirhosein Taherkordi, Russel Nzekwa,

Romain Rouvoy, Frank Eliassen

To cite this version:
Daniel Romero, Gabriel Hermosillo, Amirhosein Taherkordi, Russel Nzekwa, Romain Rouvoy, et
al.. The DigiHome Service-Oriented Platform. Software: Practice and Experience, 2013, Special
Issue: Distributed Applications and Interoperable Systems (Extended Papers from DAIS’10), 43 (10),
pp.1143-1239. �10.1002/spe.1125�. �inria-00563678�

https://inria.hal.science/inria-00563678
https://hal.archives-ouvertes.fr


SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2010; 00:1–27 Prepared using speauth.cls [Version: 2002/09/23 v2.2]

The DigiHome

Service-Oriented Platform

Daniel Romero1, Gabriel Hermosillo1, Amirhosein Taherkordi2, Russel Nzekwa1,
Romain Rouvoy1, Frank Eliassen2

1 ADAM Project-team, University Lille 1, LIFL UMR CNRS 8022, INRIA Lille – Nord
Europe, F-59650 Villeneuve d’Ascq
2 Department of Informatics, University of Oslo, N-0316 Oslo

SUMMARY

Nowadays, the computational devices are everywhere. In malls, offices, streets, cars
and even in homes we can find devices providing and consuming functionality in
order to improve the user satisfaction. These devices include sensors that provide
information about the environment state (e.g., temperature, occupancy, light levels),
service providers (e.g., Internet TVs, GPS), smartphones (that contain user preferences),
and actuators that act on the environment (e.g., closing the blinds, activating the alarm,
changing the temperature). Although these devices exhibit communication capabilities,
their integration into a larger monitoring system remains a challenging task, partly
due to the strong heterogeneity of technologies and protocols. Therefore, in this
article we focus on home environments and propose a middleware solution, called
DigiHome, which applies the SCA (Service Component Architecture) component model
in order to integrate data and events generated by heterogeneous devices in this kind
of environments. DigiHome exploits the SCA extensibility to incorporate the REST
(REpresentational State Transfer) architectural style, and in this way leverages on the
integration of multi-scale systems-of-systems (from Wireless Sensor Networks to the
Internet). Additionally, the platform applies CEP (Complex Event Processing) technology
that detects application-specific situations. We claim that the modularization of concerns
fostered by DigiHome and materialized in a service-oriented architecture, makes it easier
to incorporate new services and devices in smart home environments. The benefits
of the DigiHome platform are demonstrated on smart home scenarios covering home
automation, emergency detection, and energy saving situations.

1. Introduction

Pervasive environments support context-aware applications that adapt their behavior by
reasoning dynamically about the user and the surrounding information. This contextual
information generally comes from diverse and heterogeneous entities, such as physical devices,
Wireless Sensors Networks (WSNs), and smartphones. In order to exploit the information
provided by these entities, a middleware solution is required to collect, process, and distribute
the contextual information efficiently. However, the heterogeneity of systems in terms of

Received received-date
Copyright © 2010 John Wiley & Sons, Ltd. Revised revised-date



2 D. ROMERO ET AL

technology capabilities and communication protocols, the mobility of the different interacting
entities, and the identification of adaptation situations make this integration difficult. Thus,
this challenge requires a flexible solution in terms of communication support and context
processing to leverage context-aware applications on the integration of heterogeneous context
providers.
In particular, a solution dealing with context information and control environments must

be able to connect with a wide range of device types. However, the resource scarcity in WSNs
and mobile devices makes the development of such a solution very challenging. In this article,
we propose the DigiHome platform, an improved version of our work introduced in [1].
With this platform we provide a simple but efficient service-oriented middleware solution to
facilitate context-awareness in pervasive environments. Specifically, DigiHome supports the
integration, processing and adaptation of the context-aware applications. Our solution enables
the integration of heterogeneous computational entities by relying on the Service Component
Architecture (SCA) model [2], the REST (REpresentational State Transfer) principles [3],
standard discovery and communication protocols, and resource representation formats. We
combined SCA and REST in our solution in order to foster reuse and loose coupling between
the different services that compose the platform. Furthermore, while our solution also benefits
from WSNs to operate simple event reasoning on the sensor nodes, we rely on Complex Event
Processing [4] for analyzing in real-time the relationships between the different collected events
and trigger rule-based adaptations.
The remainder of this article is organized as follows. We start by describing a smart home

scenario in which we identify the key challenges in pervasive environments that motivate this
work (cf. section 2). Then, we present some of the background concepts that we use in our
project (cf. section 3). We continue by the description of DigiHome, our middleware platform
to support the integration of systems-of-systems in pervasive environments (cf. section 4).
Then, we discuss the benefits of our approach (cf. section 5) before presenting the related
work (cf. section 6). Finally, we conclude by presenting some promising perspectives for this
work (cf. section 7).

2. Motivating Scenario

In this paper, we use a smart home scenario to show the motivation of our work. A smart home
generally refers to a house environment equipped with several types of computing entities,
such as sensors, which collect physical information (temperature, movement detection, noise
level, light, etc.), and actuators, which change the state of the environment. Sensor nodes are
mostly embedded in home appliances and may be powered by batteries with limited capacity.
In this scenario, we consider a smart home equipped with occupancy, smoke detection, and
temperature sensors. These tiny devices have the ability to collect context information and
to communicate wirelessly with each other, in order to identify the context situation of the
environment. In addition to that, we can also use actuators to physically control lights, TV,
and air conditioning. Figure 1 illustrates the integration of these sensors and actuators in
our scenario. As observed in this figure, the different entities use heterogeneous protocols to
interact. In the scenario, the smartphones provide information about the user preferences for

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 00:1–27
Prepared using speauth.cls



THE DIGIHOME SERVICE-ORIENTED PLATFORM 3

!"#$%&#$'(

)(*)++,-./&((01,-
2'1340

!"#$%&"&#''

!()(*
!5637#-

80490:&#3:0

;70:<7-
=:0+0:0("07

!"#$%"&&'%

()*%$+,-"#'

./%+!"#0/$/"#'%

12&3

45

>?>,-
@88=

.3::0(#-
80490:&#3:0

4')6'%*$2%'+('#7"%

()"8'+('#7"%

>4'A0-
B0#0"#05

9::26*#:;+('#7"%

=0'910-$(-#/0-
C''4-

!.D

E%0(#-
=:'"077$(F

GHI

@E>

J$FK00

;=(=

<9=>

(6%/#8&'%

J$FK00

J$FK00

8.=*L=

C''4-
$4&F0

5/0'"+!*)'%*

J$FK00

->)!=

?'@'#0 +&,-./0%"-&'1-2.3(43%20%-.

Figure 1. Interactions between the smart home devices.

the home configuration. When several people share the same room, the configuration decision
is based on merged preferences. Conflicts between the user preferences are resolved by giving,
e.g., priority to the person who arrived first to the room. The mobile devices also have an
application that enables the control of the actuators present in the different rooms. This
application can be adapted when there are changes in the actuator’s configuration. Finally,
there is a Controller device, which is able to gather information, and interact with the other
co-located devices.
To show how the different elements of our scenario interact, we present three different

situations:

Situation 1: Alice arrives to the living room. The occupancy sensor detects her presence
and triggers the temperature sensors to increase the sampling rate of data. It also notifies the
Controller that the room is occupied by somebody, which in turn tries to identify the occupant
by looking for a profile in her mobile device. When Alice’s profile is found, the Controller loads
it and adjusts the temperature and lightening level of the room according to Alice’s preferences.

Situation 2: The sensors detect smoke and notify the Controller, which using the occupancy
sensor, detects that the house is empty. The Controller therefore sends an SMS to Alice,
including a picture of the room captured using the surveillance camera. After checking the
picture, Alice decides to remotely trigger the sprinklers using her mobile device. She also tells
the system to alert the fire department about the problem. If Alice does not reply to the
Controller within 5 minutes, the system activates automatically the sprinklers and alerts the
fire department.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 00:1–27
Prepared using speauth.cls



4 D. ROMERO ET AL

Situation 3: Alice installs a new TV in the bedroom. The Controller detects the presence
of the new device, identifies it, and downloads the corresponding control software from an
Internet repository. The platform tries to locate the available mobile devices, using a discovery
protocol, and finds Alice’s mobile device. The Controller proposes to update the mobile device
with the components for controlling the new TV.

2.1. Key Challenges.

The various situations we described above allow us to identify several key challenges in terms
of:

1. Integration of multi-scale entities : The mobile devices and sensors have different hardware
and software capabilities, which make some devices more powerful than others. Therefore,
the integration of these entities requires a flexible and simple solution that supports
multiple interaction mechanisms and considers the restricted capabilities of some devices.
In particular, regarding sensor nodes, the immaturity of high-level communication
protocols, as well as the inherent resource scarcity, bring two critical challenges to our
work: 1) how sensor nodes should be connected to mobile devices and actuators through
a standard high-level communication protocol, and 2) the framework which runs over
sensor nodes for supporting context-awareness and adaptation should not impose high
resource demands.

2. Entities mobility: In our scenario, computational entities appear and disappear
constantly. In particular, mobile devices providing user profiles are not always accessible
(they can be turned off or the owner can leave the house with them). In a similar way,
the actuators can be replaced or new ones can be added. Thus, we need to discover new
entities dynamically as well as to support device disconnections.

3. Information processing and adaptation: In order to support adaptation, we first need to
identify the situations, in which the adaptation is required. We have a lot of information
that is generated by the different devices in the environment. Therefore, we need to
define which part of this information is useful to identify relevant situations and react
accordingly. In our scenario, those situations include the load of Alice’s profile and the
adjustment of the temperature, the sending of alerts via SMS in case of an emergency,
and the adaptation of Alice’s mobile device to control the new TV in her bedroom.

3. Background
In this section we present a brief introduction to the main elements employed in the DigiHome

conception: The Service Component Architecture Model (SCA), the FraSCAti platform and
Complex Event Processing technology.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 00:1–27
Prepared using speauth.cls



THE DIGIHOME SERVICE-ORIENTED PLATFORM 5

3.1. Service Component Architecture (SCA) Model

SCA is a set of specifications for building distributed applications based on Service-oriented
architecture (SOA) and Component-Based Software Engineering (CBSE) principles [2]. In
SCA, the basic construction blocks are the software components, which have services (or
provided interfaces), references (or required interfaces) and exposed properties. The references
and services are connected by means of wires. SCA specifies a hierarchical component model,
which means that components can be implemented either by primitive language entities or by
subcomponents. In the latter case the components are called composites.

SCA is designed to be independent from programming languages, Interface Definition
Languages (IDL), communication protocols and non-functional properties. In this way, an
SCA-based application can be built, for example, using components in Java, PHP, and
COBOL. Furthermore, several IDLs are supported, such as WSDL and Java Interfaces. In
order to support interaction via different communication protocols, SCA provides the concept
of binding. For SCA references, bindings describe the access mechanism used to call a service.
In the case of services, the bindings describe the access mechanism that clients have to use to
call the service.

3.2. The FRASCATI platform

The FraSCAti platform [5, 6] allows the development and execution of SCA-based
applications. The platform itself is built as an SCA application—i.e., its different subsystems
are implemented as SCA components. FraSCAti provides an homogeneous view of a
middleware software stack where the platform, the non-functional services, and the applications
are uniformly designed and implemented with the same component-based and service-oriented
paradigm. To achieve this, the platform is composed of four layers: i) the Kernel Level based
on Fractal [7], a lightweight and open component framework with basic dependency injection,
introspection and reconfiguration capabilities; ii) the Personality Level, which customizes the
component kernel by providing the components with execution semantics and implementing
the SCA API and principles based on the Fractal component model; iii) the Runtime Level
that instantiates SCA assemblies and components and defines a flexible configuration process,
which is inspired by the extender and whiteboard [8] design patterns of OSGi; and iv) the Non-
Functional Level that supports the SCA Policy Framework specification in order to provide
non-functional services implemented as regular SCA components.

3.3. Complex Event Processing

CEP is an emerging technology for finding relationships between series of simple and
independent events from different sources, using previously defined rules [4]. It employs
different techniques such as detection of complex patterns, event correlation and abstraction,
event hierarchies and relationships between events using causality, membership, and timing.
It is used in a variety of domains such as logistics, transport and finance. In our scenario, we
consider a lot of heterogeneous devices (sensors, mobile devices, etc.) that generate isolated
events, which can be used to obtain valuable information and to make decisions accordingly.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 00:1–27
Prepared using speauth.cls



6 D. ROMERO ET AL

To understand the concept, let us consider the examples in the scenario of section 2. For
instance, CEP can be used for simple events, like detecting the presence of a person in the
house and triggering the discovery service to identify that person. However, whenever a person
moves in the room, the presence event will be received. In order to prevent the triggering of
the discovery service every time a person moves in the room, with CEP we can use windows
of time. Using them, we can specify that we are only interested in those events every number
of seconds or minutes.

Moreover, CEP can be used to find relationships between isolated events. For example, if
the smoke detectors send an event and the temperature is above 40℃, then we can assume
that there is fire in the room and alert the user. Using again the windows of time, we could
specify that if within 5 minutes the user has not responded to the alert, then it should trigger
the sprinklers and send an alert to the fire department.

Finally, using CEP we can also configure some comfort rules according to user preferences.
For example, if the user turns on the TV in a room with a window, and there is too much
light outside, then it could close the blinds to improve the user’s experience.

4. The DigiHome Service-Oriented Platform
The integration, mobility and adaptation issues impose several requirements for the
development of smart homes environments. To deal with these issues, in this section we propose
a comprehensive and simple solution called DigiHome, which enables the integration of events
and context information as well as the dynamic configuration of applications. In particular, we
propose a flexible architecture that modularizes the different concerns associated with event
processing in ubiquitous environments by applying existing standards and approaches. In our
solution, we support the integration of events sources (e.g., sensors in our scenario), context
providers (e.g., mobile devices) and other kind of services (e.g., actuators and reconfiguration
services) implemented with a variety of technologies and interacting via different protocols by
means of the SCA component model. Indeed, DigiHome deals with protocol heterogeneity,
by enabling the incorporation at runtime of different communication mechanisms if required
thanks to the SCA feature isolation of non-functional concerns.

In DigiHome, we follow the REST principles [3] to reduce the coupling between entities by
focusing the interaction in the exchanged data, which can have multiple representations (e.g.,
XML and JSON). In a similar way, for supporting the integration of devices with restricted
capabilities, DigiHome promotes the usage of a lightweight API and simple communication
protocols as stated by REST. In particular, our solution benefits fromWSNs in order to process
simple events and make local decisions when possible, by means of the Remora component
model [9], which is a component model for WSNs based on SCA. Finally, the platform uses a
CEP engine for the adaptation of applications and room configuration. Figure 2 depicts the
general architecture of the platform. In the rest of the section we provide a detailed description
of the different elements of the platform.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 00:1–27
Prepared using speauth.cls



THE DIGIHOME SERVICE-ORIENTED PLATFORM 7

!"#$%"&&'%

!"#$%&'($)*+,-*.

!"#$/&01&02$)'(3+4(.

!"#$5('6&,(

!"#$'(7('(0,(

!

!"#$,+38+0(04

(

!"#$,+38+5&4(-,49-4+'

)*#$+,'

"#!
$%&'()*+

,-.)/012*&'3)/
4/13/-:; !"#!"#

<==>?@AB

-+.+/",'0!"%'

45-/'6
#)%%-.')*

#4$6
4/13/-

7-.383)/6
49-.2'3)/

!"#

:; !"#!"# !"#

1"2+&'0
-'3+4'

)*#$+,'

"#!
$%&'()*+

,-.)/012*&'3)/
4/13/-:; !"#!"#

-+.+/",'0526'4$

:8-*6$*-(-*-/.-86
#)%%-.')*

:;

";*3/<%-*6
!.'2&')*

CD!= @EF

/",'0
788&+9#4':00
!"#$%"&

788&+49$+"#

@EF

#"G

CD!=

=31>'6
!.'2&')*

CD!= #"G

?)+-6#)/'*)%6
,-.)/012*&')*

CD!= :;

";*3/<%-*
=31>'3/16
=-5-%

CD!=

<==>?@AB

#2**-/'6
@-+;-*&'2*-

4/53*)/+-/'&%6
A/()*+&'3)/
B,4CD,!6
$%&'()*+E

H&2;((

<==>?@AB

"'&F3%3G&'3)/

(6(04$5+9',(

!"# !"#

:;

=">

=">

:8-*6
C&/&1-*!"#

!"#

CD!=

Figure 2. Description of the DigiHome architecture.

4.1. DigiHome Core

The core of the platform modularizes the main responsibilities for home monitoring. This
means that the core contains the functionality required for event collecting, event processing,
and deciding and executing the required adaptations of the applications deployed on
DigiHome objects (cf. section 4.2) as well as the room configurations. In DigiHome, the Event
Collector retrieves and stores the recent information produced by event and context sources,
such as sensors and mobile devices. The CEP Engine is responsible for event processing and uses
the Decision Executor to perform actions specified by the Adaptation Rules (defined in the CEP
Engine). The CEP Engine also employes a User Manager service for determining if inhabitants
have rights for executing specific system operations (e.g., the activation of sprinklers or the
alert of the fire department in situation 2) and who must to be notified in case of requiring
human intervention. Furthermore the User Manager service is used by the Event Collector for
deciding if the information from a mobile device has to be processed by the system or not.

On the other hand, the core contains different Actuator components that grant access to
the available actuator services in the environment. Following a plug-in mechanism, these
components can be installed or uninstalled at runtime. This means that the different actuators
are optional, deployed according to the current service configuration and installed on different
devices.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 00:1–27
Prepared using speauth.cls



8 D. ROMERO ET AL

To enable the communication between different clients and to support the mobility of services
and mobile devices, we incorporate ubiquitous bindings in SCA [10]. These bindings bring into
SCA existing discovery protocols, such as UPnP [11] and SLP [12], providing the possibility
to establish spontaneous communication. Furthermore, the ubiquitous bindings improve the
context information advertisements with Quality of Context (QoC) [13] attributes for provider
selection. Once the services are discovered, the ubiquitous bindings are flexible enough to allow
the interaction via standard bindings, such as REST. The use of these ubiquitous bindings, as
well as the modularization of the different concerns, makes it easy to distribute the different
responsibilities in DigiHome.

4.2. DigiHome Objects

A DigiHome Object is an SCA component providing and/or consuming events to/from other
DigiHome Objects. In our scenario, the mobile device executes a DigiHome Object that offers
the user preferences as context information and hosts an adaptive application enabling the
control of home appliances (that also consumes events indirectly in order to be adapted). The
DigiHome Core can also be considered as a DigiHome Object. Because our solution is based
on standards, and in hiding the service implementation with SCA, we can easily integrate
other services in the smart home that are not part of the infrastructure (in particular, the
actuators). In a similar way, we are exposing the DigiHome Objects via ubiquitous bindings so
that other applications (that are not part of DigiHome) can benefit from the services offered
by the platform.
The exchange of events between DigiHome Objects is done following a REST-based approach.

This means that we exploit the simple REST interfaces (i.e., PUT, POST, DELETE and GET)
and unique identifiers (i.e., URLs). In particular, the objects subscribe and unsubscribe via the
POST and DELETE interfaces respectively. The subscription request includes the URL that
is used for sending the events. The PUT operation is used in event notification. Because of the
environment dynamism, the subscriptions have a configurable expiration time. If a subscription
is not renewed, it will be discarded. Thus, this simple approach enables the usage of DigiHome

Objects in different kinds of devices.

4.3. CEP Engine

To manage the events in our scenario, we need a decision-making engine that can process them
and that can create relationships to identify special situations, using predefined rules. In order
to identify the desired events, the CEP Engine requires to communicate with an Event Collector,
which is in charge of dealing with the subscriptions to the event sources. If an adaptation
situation is detected, a corresponding action is triggered, which can go from an instruction
to an actuator, to the adaptation of the system by adding or removing functionality. These
actions are received by the Decision Executor, which has the responsibility of communicating
with the different actuators in the environment.
Because connections problems with the event sources are possible, the CEP Engine is

configured with a set of rules and actions that are applied by default. For example, if the
sensor movement detects the presence of someone in the room but the DigiHome core can

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 00:1–27
Prepared using speauth.cls



THE DIGIHOME SERVICE-ORIENTED PLATFORM 9

not detect her or his mobile phone, the system will apply a default rule for inhabitant presence
and the associated actions according to the year season. These actions and rules can be modified
at deployment and runtime (thanks to the frascati reconfiguration capabilities).

In DigiHome, for the event processing in the Controller, we use Esper [14], a Java open
source stream event processing engine, to deal with the event management and decision making
process. We chose Esper for our platform because it is the most supported open source project
for CEP and is very stable, efficient, and fairly easy to use. The following code excerpt shows
an example of an Esper rule used in our scenario, in section 2:

se lect sum(movement)
from MovementSensorEvent . win : time (60 s e c )

This demonstrates the use of a time window, which is a moving interval of time. The rule
collects all the events from the movement sensor from the last 60 seconds. By doing this, we
can know if a user is still in the room or has already left, and adapt the room accordingly.

4.4. Support for Wireless Sensor Networks

In order to consume events from WSNs, we use the Remora Component Framework [9].
This framework is an extension of SCA that brings component-based development into WSNs.
The main motivation behind proposing Remora is to facilitate high-level and event-driven
programming in WSNs through a component-based abstraction. The primary feature of
Remora is provisioning a high-level abstraction allowing a wide range of embedded systems
to exploit it at different software levels from operating systems to applications. Remora

achieves this goal by: i) deploying components within a lightweight framework executable on
any system software written in the C language, and ii) reifying the concept of event as a first-
class architectural element simplifying the development of event-oriented scenarios. Remora

meets efficiently the heterogeneity concerns related to WSN programming in the DigiHome

platform as this model is SCA-compliant and portable to different operating systems used in
the home sensor nodes.

Remora proposes a TCP/IP mechanism to exchange events, which is encapsulated in an
SCA component. We reuse this mechanism in order to define DigiHome objects for WSNs (so
called Remora Objects), which are able to produce and consume simple events in theDigiHome

platform. With these objects, we improve the efficiency of the system because the WSN is able
to process simple events instead of going through the DigiHome Core for making local decisions
(e.g. energy saving properties).

In particular, WSNs are equipped with a set of rules to monitor basic events, aggregate them,
and emit the inferred events as global events to the CEP engine. The local rules are essentially
elicited from the global rules identified based on the requirements of home owner, avoiding
any potential conflicts between global and local rules. In addition to the use of local rules for
node-level decisions, the core of our framework enables in-WSN decisions, whenever an event
is required to be processed with other relevant events generated by other sensor nodes. For
example, if a temperature sensor detects a high temperature, it needs to become aware of the
smoke density in the room to know if there is a fire—i.e., communicate with the smoke detecting

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 00:1–27
Prepared using speauth.cls



10 D. ROMERO ET AL

sensors. Furthermore, benefiting from the DigiHome modularization of concerns, as well as
the transparent communication promoted by SCA, DigiHome objects can consume/notify
events from/to Remora Objects with a small effort. Finally, Remora enables DigiHome to
dynamically deploy and adapt the objects running on the WSN nodes at runtime.

5. Empirical Validation

Although the contribution of this article lies in the adoption of a versatile architecture style for
integrating the diversity of device appliances available in the pervasive environments, we have
also made a performance evaluation of a prototype, implementing the proposed platform. This
experimentation demonstrates the reasonable overhead imposed by the DigiHome platform.

5.1. Implementation Details

We built a prototype of the DigiHome platform based on FraSCAti (cf. section 3.2).
The selection of this platform is motivated by two main reasons: i) The platform brings
reflection and reconfiguration capabilities at runtime into SOA systems and, ii) The FraSCAti

customization capabilities according to the developer needs. The former is necessary in order to
enable the dynamic adaptation of DigiHome applications. The latter allows us to easily have
lightweight versions of DigiHome for executing them on devices with restricted capabilities,
such as the mobile devices in the smart home scenario. In order to implement the ubiquitous
bindings, we have used Cyberlink for Java∗ version 1.7 for UPnP and the jSLP library† for SLP.
More detail about the ubiquitous bindings architecture and implementation can be consulted
in [10]. Once the services are discovered, the DigiHome platform uses the data bindings for
interacting with them. These data bindings follow a RESTful approach in order to exchange
information [15].

5.2. Discovery and Communication Overhead

5.2.1. Test Bed Configuration

In order to test DigiHome, we have employed two MacBook Pro laptops, with the following
software and hardware configuration: 2.4 GHz processor, 2 GB of RAM, AirPort Extreme
card, Mac OS X 10.5.6 (kernel Darwin 9.6.0), Java Virtual Machine 1.6.0, and Julia 2.5.2.
The mobile client used in the tests is a Nokia N800 Internet Table with 400 Mhz, 128 MB of
RAM, interface WLAN 802.11 b/e/g, Linux Maemo (kernel 2.6.21), CACAOVM Java Virtual
Machine 0.99.4, and Julia 2.5.2.

∗Cyberlink for Java: http://cgupnpjava.sourceforge.net/
†jSLP: http://jslp.sourceforge.net/

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 00:1–27
Prepared using speauth.cls

http://cgupnpjava.sourceforge.net/
http://jslp.sourceforge.net/


THE DIGIHOME SERVICE-ORIENTED PLATFORM 11

5.2.2. Evaluation Results

We have implemented the situation 1 of the motivating scenario (cf. section 2) in order to
measure the media latency for discovery (of preferences provider) and context dissemination
in the DigiHome platform.
Table I reports these measures. We have executed 10000 successful tests, of which the first

100 were considered as part of the warm-up. In this setup, we retrieve the user preferences from
multiple local and distributed providers and use multiple formats for the context information
(i.e., XML, JSON, and Java Object Serialization). In the local tests we executed the DigiHome

core and the DigiHome objects in different virtual machines on the same laptop. In the
distributed measures we used one laptop as Controller, and the other laptop and the Nokia
device as information providers.
We also measured the delay for discovering the information provided by the sources. For

discovery, we selected the UPnP and SLP protocols. In the tests, the platform aggregates the
user’s preferences to reduce the number of messages exchanged between the provider and the
consumer. The measured time corresponds to the exchange of REST messages as well as the
marshalling/unmarshalling of the information. The cost of executing others protocols, such
as ACN and ZigBee was not considered in this article. The reader can find more information
about the overhead introduced by these protocols in [16].
As seen, there is a linear increase of the latency with the different formats. This is a good

characteristic of our solution, because we can integrate several entities with an acceptable
overhead. We also observe that there is not a big variation in the communication cost between
the different formats when the number of providers is low (until aprox. 10). As expected, when
the providers are increased, the context exchange with object serialization is more efficient than
the JSON and XML representations. Furthermore, the network usage introduces an overhead
of approximately 300%.
Regarding the discovery cost (that includes the discovery time as well as the cost associated

with the ubiquitous binding configuration), it is negligible compared to the context information
retrieval, if there are not many providers. Our tests show that the use of SLP or UPnP for
discovery does not have a big impact on the discovery time. In a similar way to the retrieval
case, the measures including the network are bigger. Finally, we tested our solution using a
Nokia Internet Table as a preference provider. As it can be seen, the use of this mobile device
introduces an additional but still acceptable overhead for discovery and information exchange.
This increase in cost is expected because of the limited resources of this kind of devices.

5.3. Event Processing Overhead

The latency for disseminating, as well as for discovering context, confirms that DigiHome

can integrate heterogeneous entities with a reasonable performance overhead. Furthermore,
according to the documentation provided by Esper[14], the efficiency of the engine to process
the events is such that it exceeds over 500,000 events per second on a workstation and between
70, 000 and 200, 000 events per second running on an average laptop. Thanks to the efficiency
of the engine, the use of event processing in our system can be done at a low cost and given the
modularity of our architecture, the Esper engine can be installed in the device that provides

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 00:1–27
Prepared using speauth.cls



12 D. ROMERO ET AL

Table I. Performance of the DigiHome Platform.

!"#$%&'()*'+ ,-!.()*'+ /01()*'+ !"#$%&'()*'+ ,-!.()*'+ /01()*'+ -12()*'+ 3242()*'+ -12()*'+ 3242()*'+

5 !" 65 67 #$# 589 55: 9 55 6; ;<

: %& ;< =: #&$ 5>; 5>7 5> :: <9 ><

< &' 78 76 !&# 6>> 698 67 <: 557 5;9

58 #%' 5;7 687 %#" ;:< ;;; >> 58: :69 65<

<8 '$% <<= =:: #('% 577> :867 6=5 ;95 58=8 5;58

588 (!! 5;;7 5<88 ))&( ::9= :68< >68 7>; :57; :75:

5().988+ .?@ .?@ .?@ !%$ 6>= .?@ .?@ .?@ 5:7 56=

*+,-./0120

3/1456./7

8.9/5.4:;0<:9.=>?0@<1>:;03/1456./7A 8.9/5.4:;0<:9.=>?0@8.,19.03/1456./7A0
B57>14./?0<:9.=>?00000000000000000

@<1>:;03/1456./7A0

B57>14./?0<:9.=>?0000000000000

@8.,19.03/1456./7A

the highest processing power. In the context of the DigiHome platform, we observed that
Esper took 1ms on average to process the adaptation rules.

6. Related Work

6.1. Smart Home Solutions

Thanks to the increasing popularity of smart homes in the last years, we can find several
solutions dealing with the integration of services in this kind of environments. For example,
in [17] the authors propose ZUMA, a middleware solution providing universality, multi-user
optimality, and adaptability. The authors claim that this solution based on clean abstractions
for users, content and devices makes the integration of heterogeneous entities in smart homes
easier. ZUMA defines a light-weight Device Control Protocol (DCP) that all the devices in the
environment have to implement in order to be used by the middleware. The discovery is done
by means of a registry that is part of the platform. In DigiHome, we do not impose a single
protocol for interaction or discovery. Whereas, we based our solution on standard protocols and
provide the flexibility to incorporate new protocols when required. These properties, combined
with the advantages from SCA, foster the building of a more versatile solution for dealing with
heterogeneity in smart environments.
Gaia [18] is a distributed middleware that provides similar functionality to an operating

system. Gaia defines the concept of active spaces as geographic regions with limited and well-
defined physical boundaries containing physical objects, heterogeneous networked devices, and
users performing a range of activities. Examples of active spaces include meeting rooms and
smart homes. The platform allows the coordination of software entities and heterogeneous
devices in these active spaces. To do it, Gaia provides services for event management and
distribution, context information query (for the context-based adaptation of applications),
detection of digital and physical entities, storage of the information associate with entities,
and file management. However, despite Gaia richness in terms of services, the solution is
complex and the incorporation of new entities remains difficult. The simplicity of DigiHome

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 00:1–27
Prepared using speauth.cls



THE DIGIHOME SERVICE-ORIENTED PLATFORM 13

makes this task easy. Furthermore, Gaia lacks support for restricted devices, such as the
mobile devices in our scenario, in contrast to DigiHome that uses SCA to do it. In [19],
the MAVHome (Managing an Intelligent Versatile Home) project is described. This project
aims to build a home as a rational agent that maximizes inhabitants comfort and reduces
operation costs. The project mainly focuses on prediction algorithms to guide decisions for
controlling devices throughout the home. These algorithms include the Smarthome Inhabitants
Prediction algorithm (that matches more recent sequences of events with stored sequences),
Active LeZi algorithm (that applies information theory principles to process historical actions
sequences) and a Task-Based Markov Model algorithm (for identifying high level tasks in
action sequences). Benefiting from the DigiHome extensibility and concern isolation, these
algorithms can be incorporated into the CEP engine in order to make our service-oriented
platform more intelligent and autonomous in respect to the adaptation decisions.

6.2. Context Dissemination

In literature, it is possible to find two kinds of solutions that deal with context integration:
centralized and decentralized. In the centralized category we can find middleware, such
as PACE [20] and Context Distribution and Reasoning (ConDoR) [21]. PACE proposes a
centralized context management system based on repositories. The context-aware clients can
interact with the repositories using protocols, such as Java RMI or HTTP. For its part, ConDoR
takes advantage of the object-oriented model and ontology-based models to deal with context
distribution and context reasoning, respectively. In ConDoR, the integration of the information
using different protocols is not considered as an important issue. The problem with this kind
of approach is the introduction of a single point of failure into the architecture, which limits
its applicability to ubiquitous computing environments.
On the other hand, in decentralized approaches we can find solutions like CORTEX [22]

and MUSIC [23, 24]. CORTEX defines sentient objects as autonomous entities that have
the capacity of retrieving, processing, and sharing context information using HTTP and
SOAP. MUSIC middleware is another decentralized solution that proposes a peer-to-peer
infrastructure dealing with context mediation. The decentralized approaches face the problem
of fault tolerance by distributing the information across several machines. However, as well
as some centralized solutions, the lack of flexibility in terms of the communication protocols
remains a key limitation for these approaches. In addition to that, peer-to-peer approaches have
performance and security problems. In DigiHome, we provide a solution, where the different
interacting devices can process the events retrieved from the environment. Furthermore, in
DigiHome we provide flexibility in terms of interaction by supporting different kinds of
communication protocols and we also allow spontaneous interoperability.

6.3. Complex Event Processing

Given the increasing interest to integrate the flow of data into the existing systems, CEP has
gained some attention as it can help to provide that integration transforming isolated data into
valuable information. In this context we can find some works similar to ours in [25] and [26]. In
[25], the authors integrate CEP into their existing project called SAPHE (Smart and Aware

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 00:1–27
Prepared using speauth.cls



14 D. ROMERO ET AL

Pervasive Healthcare), and also use Esper as their CEP engine. As the project name shows,
the project is applied to healthcare and uses sensors to monitor a patient’s activity and vital
signs. They use CEP to correlate and analyze the sensor data in order to calculate critical
factors of the patient locally in their set-top box, without having to send all the events to an
external server. In their approach they lack a way to discover new services and they never
mention how, if possible, would they interact with actuators in order to adapt to the context
and respond to a specific situation.

An Event-Driven Architecture (EDA) that combines the advantages of WSN with CEP is
presented in [26]. They use an extension of the RFID EPCglobal architecture which allows
the interaction of RFID and WSN events. Once the events are collected, they use CEP to
detect specific situations. They use a smart shelf application as their scenario to show how the
events from both sources can be combined. Even though both technologies seem to interact
in their project, their specification is somehow limited because they do not specify how the
information obtained could be used, other than generating a report that will be logged in the
EPCIS server.

6.4. Wireless Sensor Networks
In [27], the authors describe a WSN-specialized resource discovery protocol, called DRD. In
this approach, each node sends a binary XML description to another node that has the role of
Cluster Head (CH). The CH is selected among all the nodes based on their remaining energy.
Therefore, it is necessary to give all the nodes the capacity of being a CH. Consequently, all the
nodes need an SQLlite database, libxml2 and a binary XML parser in order to implement the
CH functionalities. In DigiHome, with our modular architecture, we consider the resource
constraint of sensors nodes and provide a lightweight version of the platform based on the
Remora Framework that delegates complex processing to more powerful devices. Therefore,
not all the nodes have to be CH. Furthermore, we benefit from the advertisement capacities
of the sensor nodes to identify adaptation situations.

In CoBIs [28], business applications are able to access functionalities provided by the sensor
nodes via web services. The major aim of the CoBIs middleware is to mediate service requests
between the application layer and the device layer. The focus lies thereby on deployment and
discovery of required services.

Agimone [29] is a middleware solution supporting the integration of WSNs and IP networks.
It focuses on the distribution and coordination of WSN applications across WSN boundaries.
Agimone integrates the Agilla [30] and Limone [31] middleware platforms. Agimone is
a general-purpose middleware with a uniform programming model for applications, that
integrates multiple WSNs and the IP network. In our approach, we also promote the integration
of sensor nodes via SCA bindings. Moreover, we enable spontaneous communications with some
sensor nodes that execute a lightweight version of DigiHome.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 00:1–27
Prepared using speauth.cls



THE DIGIHOME SERVICE-ORIENTED PLATFORM 15

7. Conclusions and Future Work

In this article, we have presentedDigiHome, a platform addressing the mobility, heterogeneity,
and adaptation of smart entities. In particular, DigiHome detects adaptation situations by
integrating context information using an SCA-based architecture. This architecture promotes
the modularization of concerns and fosters the application of the REST principles by exploiting
the SCA extensibility. The simplicity and data orientation of REST, combined with the
SCA independence of implementation technologies, make DigiHome an attractive solution to
deal with heterogeneity in terms of interactions. The definition and application of ubiquitous
bindings in the platform enable spontaneous communication by means of standard protocols
(e.g.,UPnP and SLP), and furnish context provider selection (based on QoC attributes). On
the other hand, the modularized architecture of DigiHome allows the definition of variants for
the platform, called DigiHome objects, that can be deployed on resource-constrained devices.
The functionality of these objects is exposed as services, accessible via several protocols, which
can be accessed by clients that do not have to be part of the platform. Furthermore, the clear
separation of concerns in the DigiHome architecture encourages the exploitation of WSNs
for simple processing and local decision making. The suitability of our platform for context
integration was evaluated with different discovery and context representations.
Future work includes further tests using some sensor nodes as context information providers,

which will execute Remora objects objects. Also, we are currently working on a distributed
CEP approach to diminish risk of failure, given the single instance of event processing in
our project. We will also define more complex scenarios including user preferences conflicts
and the absence of mobile devices when the presence of someone is detected in home. These
scenarios will allow a further illustration of the potential of the platform. Furthermore, we
plain to incorporate a replication mechanism of the DigiHome core by benefiting from the
different devices such as desktops, laptops and set-top-box available in home. This mechanism
will enable the platform to deal with possible failures of the device hosting the core. Finally,
we plan to exploit the FraSCAti’s reconfiguration capabilities in order to integrate new
communication and discovery protocols at runtime.

Acknowledgement. This work is partly funded by the EGIDE Aurora and INRIA SeaS
research initiatives.

REFERENCES

1. Romero D, Hermosillo G, Taherkordi A, Nzekwa R, Rouvoy R, Eliassen F. RESTful Integration of
Heterogeneous Devices in Pervasive Environments. Proceedings of the 10th IFIP International Conference
on Distributed Applications and Interoperable Systems (DAIS’10), LNCS, vol. 6115, Springer, 2010; 1–14.

2. Open SOA. Service Component Architecture Specifications Nov 2007.
3. Fielding RT. Architectural Styles and the Design of Network-based Software Architectures. PhD Thesis,

University of California, Irvine 2000.
4. Luckham DC. The Power of Events: An Introduction to Complex Event Processing in Distributed

Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 2001.
5. Seinturier L, Merle P, Fournier D, Dolet N, Schiavoni V, Stefani JB. Reconfigurable sca applications with

the frascati platform. SCC’09: Proceedings of the IEEE International Conference on Services Computing,
IEEE Computer Society: Washington, DC, USA, 2009; 268–275, doi:10.1109/SCC.2009.27.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 00:1–27
Prepared using speauth.cls



16 D. ROMERO ET AL

6. Mélisson R, Merle P, Romero D, Rouvoy R, Seinturier L. Reconfigurable run-time support for
distributed service component architectures. Automated Software Engineering, Tool Demonstration,
Antwerp Belgique, 2010. URL http://hal.inria.fr/inria-00499477/en/.

7. Bruneton E, Coupaye T, Leclercq M, Quéma V, Stefani JB. The Fractal Component Model and its
Support in Java. Soft. Pract. and Exp. 2006; 36(11-12):1257–1284.

8. OSGi Alliance. Listeners Considered Harmful: The Whiteboard Pattern Aug 2004.
9. Taherkordi A, Loiret F, Abdolrazaghi A, Rouvoy R, Le Trung Q, Eliassen F. Programming Sensor

Networks Using REMORA Component Model. Proceedings of the 6th IEEE International Conference on
Distributed Computing in Sensor Systems (DCOSS’10) 6th IEEE International Conference on Distributed
Computing in Sensor Systems (DCOSS’10), Santa Barbara, California, USA France, 2010; 15. URL
http://hal.archives-ouvertes.fr/hal-00471516/PDF/Remora_DCOSS10.pdf.

10. Romero D, Rouvoy R, Seinturier L, Carton P. Service Discovery in Ubiquitous Feedback Control Loops.
Proceedings of the 10th IFIP International Conference on Distributed Applications and Interoperable
Systems (DAIS’10), LNCS, vol. 6115, Springer, 2010; 113–126.

11. UPnP Forum. UPnP Device Architecture 1.0. http://www.upnp.org/resources/documents.asp Apr 2008.
12. Guttman E, Perkins C, Veizades J, Day M. Service Location Protocol, Version 2. RFC 2608 (Proposed

Standard). http://tools.ietf.org/html/rfc2608 Jun 1999.
13. Krause M, Hochstatter I. Challenges in Modelling and Using Quality of Context (QoC). Proceedings of

the 2nd International Workshop on Mobility Aware Technologies and Applications, Montreal, Canada,
2005; 324–333, doi:10.1007/11569510 31.

14. EsperTech. Esper. Http://esper.codehaus.org.
15. Romero D, Rouvoy R, Seinturier L, Loiret F. Integration of Heterogeneous Context Resources in

Ubiquitous Environments. Proceedings of the 36th EUROMICRO International Conference on Software
Engineering and Advanced Applications (SEAA’10) 36th EUROMICRO International Conference on
Software Engineering and Advanced Applications (SEAA’10), Michel Chaudron (ed.), ACM: Lille France,
2010; 4.

16. Zigbee Alliance. ZigBee and Wireless Radio Frequency Coexistence.
http://www.zigbee.org/imwp/download.asp?ContentID=11745 Jun 2007.

17. Baker C, Markovsky Y, Greunen J, Rabaey J, Wawrzynek J, Wolisz A. Zuma: A platform for smart-home
environmnents. Intelligent Environments, 2006. IE 06. 2nd IET International Conference on, vol. 1, 2006;
51 –60.

18. Román M, Hess C, Cerqueira R, Ranganathan A, Campbell RH, Nahrstedt K. A middleware infrastructure
for active spaces. IEEE Pervasive Computing 2002; 1(4):74–83, doi:http://dx.doi.org/10.1109/MPRV.
2002.1158281.

19. Cook DJ, Youngblood M, Heierman EO III, Gopalratnam K, Rao S, Litvin A, Khawaja F. Mavhome:
An agent-based smart home. PERCOM ’03: Proceedings of the First IEEE International Conference on
Pervasive Computing and Communications, IEEE Computer Society: Washington, DC, USA, 2003; 521.

20. Henricksen K, Indulska J, Mcfadden T. Middleware for Distributed Context-Aware Systems. DOA’05:
International Symposium on Distributed Objects and Applications, Springer, 2005; 846–863.

21. Paganelli F, Bianchi G, Giuli D. A Context Model for Context-Aware System Design Towards the Ambient
Intelligence Vision: Experiences in the eTourism Domain. Universal Access in Ambient Intelligence
Environments, 2006; 173–191, doi:10.1007/978-3-540-71025-7 12.

22. Sorensen CF, Wu M, Sivaharan T, Blair GS, Okanda P, Friday A, Duran-Limon H. A context-aware
middleware for applications in mobile Ad Hoc environments. MPAC’04: Proceedings of the 2nd Workshop
on Middleware for Pervasive and Ad-hoc Computing, ACM: Toronto, Ontario, Canada, 2004; 107–110,
doi:10.1145/1028509.1028510.

23. Hu X, Ding Y, Paspallis N, Bratskas P, Papadopoulos GA, Barone P, Mamelli A. A Peer-to-Peer based
infrastructure for Context Distribution in Mobile and Ubiquitous Environments. CAMS’07: Proceedings
of 3rd International Workshop on Context-Aware Mobile Systems, Vilamoura, Algarve, Portugal, 2007.

24. Kirsch-Pinheiro M, Vanrompay Y, Victor K, Berbers Y, Valla M, Frà C, Mamelli A, Barone P, Hu X,
Devlic A, et al.. Context Grouping Mechanism for Context Distribution in Ubiquitous Environments.
DOA’08: Proceedings of the OTM International Conferences on Distributed Objects and Applications,
LNCS, Springer: Monterrey, Mexico, 2008; 571–588, doi:10.1007/978-3-540-88871-0\ 41.

25. Churcher GE, Foley J. Applying and extending sensor web enablement to a telecare sensor network
architecture. COMSWARE’09: Proceedings of the 4th International ICST Conference on COMmunication
System softWAre and middlewaRE, ACM: New York, NY, USA, 2009; 1–6, doi:10.1145/1621890.1621898.

26. Wang W, Sung J, Kim D. Complex event processing in epc sensor network middleware for both rfid and
wsn. ISORC’08: Proceedings of the 11th IEEE Symposium on Object Oriented Real-Time Distributed

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 00:1–27
Prepared using speauth.cls

http://hal.inria.fr/inria-00499477/en/
http://hal.archives-ouvertes.fr/hal-00471516/PDF/Remora_DCOSS10.pdf


THE DIGIHOME SERVICE-ORIENTED PLATFORM 17

Computing, IEEE Computer Society: Washington, DC, USA, 2008; 165–169, doi:10.1109/ISORC.2008.59.
27. Tilak S, K Chiu NAG, Fountain T. Dynamic Resource Discovery for Wireless Sensor Networks 2005.
28. COBIS Consortium. Cobis. fp strep project ist 004270 2009. Http://www.cobis-online.de.
29. Hackmann G, Fok CL, Roman GC, Lu C. Agimone: Middleware support for seamless integration of sensor

and ip networks. DCOSS’06: International Conference on Distributed Computing in Sensor Systems,
Springer, 2006.

30. Fok L, Roman GC, Lu C. Mobile agent middleware for sensor networks: An application case study.
IPSN’05: Proceedings of the International Conference on Information Processing in Sensor Networks,
IEEE, 2006.

31. Fok CL, Roman GC, Hackmann G. A lightweight coordination middleware for mobile computing.
Coordination’04: Proceedings of the 6th International Conference on Coordination Models and Languages,
Springer, 2006; 135–151.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 00:1–27
Prepared using speauth.cls


	1 Introduction
	2 Motivating Scenario
	2.1 Key Challenges.

	3 Background
	3.1 Service Component Architecture (SCA) Model
	3.2 The FRASCATI platform
	3.3 Complex Event Processing

	4 The DigiHome Service-Oriented Platform
	4.1 DigiHome Core
	4.2 DigiHome Objects
	4.3 CEP Engine
	4.4 Support for Wireless Sensor Networks

	5 Empirical Validation
	5.1 Implementation Details
	5.2 Discovery and Communication Overhead
	5.2.1 Test Bed Configuration
	5.2.2 Evaluation Results

	5.3 Event Processing Overhead

	6 Related Work
	6.1 Smart Home Solutions
	6.2 Context Dissemination
	6.3 Complex Event Processing
	6.4 Wireless Sensor Networks

	7 Conclusions and Future Work

