
A Generic Component-based Approach for
Programming, Composing and Tuning Sensor Software

Amirhosein Taherkordi, Fr�ed�eric Loiret, Romain Rouvoy, Frank Eliassen

To cite this version:

Amirhosein Taherkordi, Fr�ed�eric Loiret, Romain Rouvoy, Frank Eliassen. A Generic
Component-based Approach for Programming, Composing and Tuning Sensor Software. The
Computer Journal, Oxford University Press (UK), 2011, 54 (2), pp.1-19. .

HAL Id: inria-00563687

https://hal.inria.fr/inria-00563687

Submitted on 17 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
enti�c research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL , est
destin�ee au d�epôt et �a la di�usion de documents
scienti�ques de niveau recherche, publi�es ou non,
�emanant des �etablissements d'enseignement et de
recherche fran�cais ou �etrangers, des laboratoires
publics ou priv�es.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00563687

For Review O
nly

����������	
��
��������������
�����
����
��������� �
	
��
��������������������
���
����� �

�������	 � ��������	
�����	��� �

�����������	 � ��
�������������������

�������������	 � �� ����!������

�����"�#$���%�#���&��
!��&��	 �

�'�(�)������

��$������*����+�!��&���	 � ��&��,��%-�!$�&����.�/�)�������+�����-���+��$� ����
����-�0��%���.��(��!�����1�(��%�2������
���)��-���$��.��(��!�*����1�(��%�2������
2������-�0���,.�/�)�������+�����-���+��$�����

3���4��%�	 �
4�������"������(��5��,�-�6 &���)������ ��$$� -�� �$�������

�%��-�2)����%�)���

For R
eview

 O
nly

A Generic Component-based
Approach for Programming,

Composing and Tuning Sensor
Software

Amirhosein Taherkordi „ , Fr �ed�eric Loiret …, Romain Rouvoy „…,
and Frank Eliassen „

„University of Oslo, Department of Informatics,
Oslo, Norway

…INRIA Lille { Nord Europe, ADAM Project-team,
University Lille 1, LIFL CNRS UMR 8022,

Villeneuve d'Ascq, France
Email: amirhost@i�.uio.no, frederic.loiret@inria.fr, rom ain.rouvoy@inria.fr, frank@i�.uio.no

Wireless Sensor Networks (WSNs) are being extensively deployed today in various
monitoring and control applications by enabling rapid depl oyments at low cost
and with high exibility. However, high-level software dev elopment is still one
of the major challenges to wide-spread WSN adoption. The suc cess of high-
level programming approaches in WSNs is heavily dependent o n factors like
ease of programming, code well-structuring, degree of code reusability, required
software development e�ort, and the ability to tune the sens or software for
a particular application. Component-based programming ha s been recognized
as an e�ective approach to satisfy such requirements. Howev er, most of the
componentization e�orts in WSNs were ine�ective due to vari ous reasons, such
as high resource demand or limited scope of use. In this artic le, we present
Remora, a novel component-based approach to overcome the hu rdles of WSN
software implementation and con�guration. Remora o�ers a w ell-structured
programming paradigm that �ts very well with resource limit ations of embedded
systems, including WSNs. Furthermore, the special attenti on to event handling
in Remora makes our proposal more practical for embedded app lications, which
are inherently event-driven. More importantly, the mutual ism between Remora
and underlying system software promises a new direction tow ards separation of
concerns in WSNs. This feature also o�ers a practical way to d evelop sensor
middleware services which should be generic and developed close to the operating
system. Additionally, it allows the customization of senso r software|deploying
only application-required system-level services on nodes , instead of installing a
�xed large system software image for any application. Our ev aluation results show
that the deployed Remora applications have an acceptable me mory overhead and

a negligible CPU cost compared to the state-of-the-art devel opment models.

Keywords: Wireless Sensor Networks; High-level Programming; Component Model;
Event-driven

Received 00 Month 2010; revised 00 Month 2010

1. INTRODUCTION

Wireless Sensor Networks (WSNs) are a rapidly
emerging research area because of their vast application
vistas in real-world environments. The advances
in wireless communications and miniaturization of
hardware components have enabled the development of
low-cost, low-power, and multifunctional sensor nodes.

These tiny devices can be easily embedded in the
environment, establish a wireless ad-hoc network, and
compose a distributed system to collaboratively sense
and process the surrounding physical phenomenons as
data. However, WSNs di�er from the conventional
distributed systems in many aspects. Resource
scarceness is the most important uniqueness of WSNs.

The Computer Journal , Vol. ??, No. ??, ????

Page 1 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For R
eview

 O
nly

2 A. Taherkordi et al.

Sensor nodes are often equipped with a limited energy
source and a processing unit with a small memory
capacity. Additionally, the network bandwidth is much
lower than for wired communications and radio-based
operations are the dominant energy consumer within
a sensor node. The sensor nodes and network are
less reliable than in conventional distributed systems.
Depending upon the con�guration of network and
environment circumstances, wireless links may become
degraded or unviable.

These factors make the way to develop WSN
applications quite critical and also di�erent from the
other existing network systems. However, this concept
is still immature in the context of WSNs for various
reasons. Firstly, the existing diversities in WSN
hardware and software platforms have brought the
same order of diversity to programming models for
such platforms [1]. Moreover, developers' expertise in
state-of-the-art programming models become useless in
WSN programming as the well-established discipline
of program speci�cation is largely missing in this
area. Secondly, the structure of programming models
for WSNs are usually sacri�ced for resource usage
e�ciency, thereby, the outcome of such models is
usually a piece of tangled code hardly maintainable
by its owner. Finally, application programming in
WSNs is mostly carried out very close to the operating
system, forcing developers to learn low-level system
programming models. This not only diverts the
programmer's focus from the application logic, but also
needs low-level programming techniques, which imposes
a signi�cant burden on the programmer.

From a software composition perspective, the way
to implement WSN applications is also becoming
increasingly important as today's sensor software not
only consists of application and system modules, but
also includes various o�-the-shelf, third-party software
products, such as middleware services. Ideally, such
integrations should be realized through a meta-level
abstraction with minimum programming e�ort. This,
in fact, indicates the capability of a WSN programming
model to facilitate the development of middleware
services and their integration to target application
software.

The ability to tune the sensor software for a particular
use-case or application domain is the other major
issue in this context. As sensor nodes are typically
equipped with a limited memory capacity, operating
system developers need to keep the size of system
modules as small as possible in order to preserve
enough memory space for application modules, and
they also have to ensure the portability of system
software to various sensor platforms. This mostly leads
to software artifacts with either degraded functionality
not satisfying all end-user expectations, or su�ering
from the lack of modularity and maintainability. One
solution to tackle this problem is to consider the
operating system as a collection of well-de�ned services

deployable on a minimized kernel image so that the
programmer has the ability to involve only application-
required system services in the process of software
installation. Therefore, this can bring a signi�cant
e�ciency to resource usage in sensor nodes by avoiding
installing a single monolithic operating system for any
application.

Software componentization has been recognized as
a well-structured programming model able to tackle
the above concerns. Component-based programming
provides an high-level programming abstraction by
enforcing interface-based interactions between system
modules and therefore avoiding any hidden interaction
via direct function call, variable access, or inheritance
relationships. This abstraction rather o�ers the
capability of black-box integration of modules in
order to simplify con�guration and maintenance of
software systems. Module reusability and provision of
standard API are some other advantages of adopting
component-based software development[2, 3]. Although
using this paradigm in earlier embedded systems was
relatively successful [4, 5, 6, 7], most of the e�orts
in the context of WSNs remain ine�cient or limited
in the scope of use. The TinyOS programming
model, namedNesC [8], is perhaps the most popular
component model for WSNs. WhereasNesC eases
WSN programming, this component model remains
tightly bound to the TinyOS platform. Other
proposals, such asOpenCom [9] and THINK [10], are
either too heavyweight for WSNs, or not able to support
event-driven programming, which is of high importance
in WSNs.

In this article, we present extended results on
Remora , a lightweight component model designed
for resource-constraint embedded systems, including
WSNs [11]. The strong abstraction promoted
by this model allows a wide range of embedded
systems to exploit it at di�erent software levels
from Operating System (OS) to application. To
achieve this goal, Remora provides a very e�cient
mechanism for event management, as embedded
applications are inherently event-driven. Remora
components are described in XML as an extension of
the Service Component Architecture (SCA) model [12]
in order to make WSN applications compliant
with the state-of-the-art componentization standards.
Additionally, the C-like language for component
implementation in Remora attracts both embedded
system programmers and PC-based developers to
programming for WSNs. Remora also features
a coherent mechanism for componentinstantiation
and property-based component con�guration in order
to facilitate lightweight event-driven programming in
WSNs. Notably, in this paper the aforementioned
features ofRemora are extended in the following ways.
First, we propose a programming approach, based
on the concept of Autonomous Composable Module
(ACM), to achieve a practical and e�cient way of

The Computer Journal , Vol. ??, No. ??, ????

Page 2 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For R
eview

 O
nly

Component-based Approach for Sensor Software 3

developing component-basedmiddleware systems in
WSNs. Second, we introduce a mechanism to enable
tuning system software by componentizing the OS-
level services and customizing OS functionality based
on target application's requirements. The Remora
speci�cations and their implementation techniques are
also extensively explored in this paper.

As a matter of validation, we demonstrate the com-
prehensive evaluation results of deployingRemora
components on Contiki|a leading operating system for
WSNs [13]. Speci�cally, we extend our earlier evalua-
tion e�orts in [11] with considering a complementary set
of performance �gures, such as required programming
e�ort. The e�cient use of Contiki features, such as
process management and event distribution [14], on the
one hand, and the abstraction layer linking Remora
to Contiki, on the other hand, promise a very e�ective
and generic approach towards practical high-level pro-
gramming in WSNs. In particular, we present the func-
tionality of Remora within the context of a real use
case involving a network-levelapplication suite in order
to support code distribution in dynamic sensor appli-
cations. Finally, the evaluation work is completed by
carrying out a comprehensive investigation of existing
software component models for WSNs and comparing
them with Remora .

The remainder of this article is therefore organized as
follows. In Section 2, the speci�cation of the Remora
component model is presented. Section 3 describes how
Remora is implemented, while the evaluation results
are reported in Section 4, including the assessment of a
real Remora -based deployment. A survey of existing
approaches and a discussion onRemora extension
opportunities are presented in Section 5 and Section
6, respectively. Finally, Section 7 concludes this paper
and identi�es some future work.

2. REMORA COMPONENT MODEL

In this section, we �rst discuss the primary design
concepts in Remora and then we explain the
speci�cations of the Remora component model. The
�rst obvious principle is that WSN applications in our
approach are built out of components conforming to
the Remora component model. The other design
principles of Remora include:
XML-based Component Description. The �rst
design goal emphasizes simplicity and generality of
the technique for describingRemora components. In
Remora , we therefore adopt XML technologies to
describe components. The basis for the XML schema
we de�ned is the Service Component Architecture
(SCA) notations in order to provide a uniform
component model covering components from sensors to
the Internet, as well as to accelerate standardization
of component-based programming in WSNs. As
SCA was originally designed for large-scale systems-
of-systems [12],Remora extends SCA with its own

architectural concerns to achieve realistic component-
based programming in WSNs.
C-like Language for Component Implementa-
tion. Remora components are written in a C-like lan-
guage enhancing the C language with features to sup-
port component-based and structured programming.
The other objective in this enhancement is to attract
both embedded systems programmers and PC-based de-
velopers towards high-level programming in WSNs.
OS Abstraction Layer. The Remora component
framework is integrated with the underlying operating
system through a well-de�ned OS-abstraction layer.
This thin layer can be developed for various WSN
operating systems supporting the C language, such
as Contiki. This feature ensures the portability of
Remora components towards di�erent OSs. The
abstraction provided by Remora becomes more
valuable when the component framework is easily
con�gured to reuse OS-provided features, such as event
processing and task scheduling.
Event Handling. Event-driven programming is a
common technique for programming embedded systems
as memory requirements in this programming model
is very low. Besides the support for events at the
operating system level in embedded systems, we also
need to consider event handling at the application layer.
Remora therefore proposes an high-level support of
event generation and event handling, which makes it
one of the key features of our proposal. In particular,
Remora achieves this goal by reifying the concept of
event as a �rst-class architectural element simplifying
the development of event-oriented scenarios.

Before describing our component model, we �rst
de�ne the basic terms used throughout this article.
Figure 1 illustrates the development process of
Remora -based applications. A Remora application
consists of a set ofRemora Components, containing
descriptions and implementations of software modules.
The Remora engine processes the components and
generates standard C code deployable within the
Remora framework. The framework is an OS-
independent module supporting the speci�cation of the
Remora component model. Finally, the Remora
application is deployed on the target sensor node via
the Remora runtime, which is an OS-abstraction layer
integrating the application to the system software.

Application

REMORA Framework
Description

<XML>

Implementation
C-like

REMORA Components
REMORA
Engine

Deployable
Components

Development Machine Sensor Node

REMORA Framework

REMORA Runtime

Sensor Hardware

Operating System

Components

Development Machine Sensor Node

gine

Local Call

FIGURE 1. Development process of Remora -based
applications.

The Computer Journal , Vol. ??, No. ??, ????

Page 3 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For R
eview

 O
nly

4 A. Taherkordi et al.

2.1. Component Speci�cation

A Remora component contains two main artifacts:
component descriptionand component implementation.
The component description is an XML document con-
taining the speci�cations of the component including its
services, references, producedEvents, consumedEvents,
and properties (cf. Figure 2). A service can expose a
Remora interface, which is a separate XML document
specifying the functions provided by the component,
while a reference indicates the operations required by
the component as an interface. Likewise, aproducedE-
vent identi�es an event type generated by a component,
whereas aconsumedEventspeci�es component's inter-
est on receiving a particular event. The component im-
plementation is a C-like program containing three types
of operations: i) operations implementing the compo-
nent's services,ii) operations processing events, andiii)
component's private operations.

<?xml version="1.0" encoding="UTF-8"?>
<componentType name="COMPONENT_NAME”>

<service name="SERVICE1_NAME">
<interface.remora name="INTERFACE1_NAME"/>

</service>
... other services
<reference name="REFERENCE1_NAME">

<interface.remora name="INTERFACE2_NAME"/>
</reference>
... other references
<property name="PROP1_NAME" type="PROP1_TYPE">

PROP1_DEFAULT_VALUE
</property>
... other properties
<producer >

<event.remora type="EVENT1_TYPE" name="EVENT1_VAR_NAME"/>
</producer>
... other producers
<consumer operation="CONSUMER_OPERATION">

<event.remora type="EVENT2_TYPE" name="EVENT2_VAR_NAME"/>
</consumer>
... other consumers

</componentType>

FIGURE 2. The XML template for describing Remora
components.

To make the speci�cation more concrete, we
�rst present a simple example of a Remora -based
application, then we discussRemora features carefully.
This simple application is in charge ofblinking a LED
on a sensor node every three seconds. Figure 3 depicts
the components involved in this application.

Blink

Reference Consume

ProduceService Property

ISensorApp

toggleTimer

TimerEvent

Leds ILeds

RefRefRefRef

FIGURE 3. A simple Remora -based application.

We here focus on theBlink component and describe
it according to the Remora component model. In
Figure 4, the XML description of the Blink component
is shown. This component provides anISensorApp
interface to start application execution and requires
an ILeds interface to switch LEDs on and o�, which
is implemented by the Leds component. It also owns

a property to toggle a LED on the sensor node. As
the Blink component produces no event, theproducer
tag in the component description is empty, while it
is subscribed to receiveTimerEvent and process this
event in the timerExpired function. The last part of
the component description is the libraries used by the
component implementation.

<?xml version="1.0" encoding="UTF-8"?>
<componentType name="app.BlinkApp">

<service name="iSensorApp">
<interface.remora name="core.boot.api.ISensorApp"/>

</service>
<reference name="iLeds">

<interface.remora name="core.peripheral.api.ILeds">
</reference>
<property name="toggle" type="xsd:short">0</property>
<producer />
<consumer operation="timerExpired">

<event.remora type="core.sys.TimerEvent" name="aTimeEvent"/>
</consumer>
<libraries >

<include name="stdio" type="SystemLib"/>
</libraries>

</ componentType >

FIGURE 4. XML description of Blink component.

Figure 5 presents the excerpt of theBlink implemen-
tation. This C-like code implements the single function
of the ISensorApp interface (runApplication) and han-
dlesTimerEvent within the timerExpired function. In the
runApplication function, we specify that the TimerEvent
generator (aTimeEvent.producer) is con�gured to gener-
ate periodically TimeEvent every three seconds. The last
command in this function is also to notify the TimerEvent
generator to start time measurement. When time is
expired, Timer sets the attributes of aTimeEvent (e.g.,
latency) and then the Remora framework calls the
timerExpired function.

void runApplication (){
printf("--- Starting Blink Application ---");
short periodic = 1;
aTimeEvent.producer .configure(3*CLOCK_SECOND, periodic);
aTimeEvent.producer .start();

}
void timerExpired (){

if (this .toggle == 0){
iLeds .onLeds(LEDS_RED);
this .toggle = 1;

}else{
iLeds .offLeds(LEDS_RED);
this .toggle = 0;

}
printf("Time elapsed after interval: %d", aTimeEvent.latency);

}

FIGURE 5. C-like implementation of Blink component.

Services and References. The �rst step towards
component-based programming is identifying system
services, and then identifying which component(s)
provides a service and which one(s) requires the
service (so called reference). Similar to component
descriptions in Remora , interfaces are described in
XML. Interface description includes a name and the
associated operations. Figure 6 presents the simpli�ed
ILeds interface used by the Blink component as a
reference. Every component providing a service should
implement all the operations speci�ed in the interface
description with the same signatures.

The Computer Journal , Vol. ??, No. ??, ????

Page 4 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For R
eview

 O
nly

Component-based Approach for Sensor Software 5

<?xml version="1.0" encoding="UTF-8"?>
<interface.remora name=" core.peripheral.api.ILeds ">

<operation name="getLeds" return ="xsd:unsignedByte"/>
<operation name="onLeds">

<in name="leds" type="xsd:unsignedByte"/>
</operation>
<operation name="offLeds">

<in name="leds" type="xsd:unsignedByte"/>
</operation>

</ interface.remora >

FIGURE 6. A simpli�ed description of ILeds interface.

Component Properties. In Remora , programmers
can de�ne properties for a component. Properties
enable recon�guration of component behaviors and also
convert components from a dead unit of functionality
to an active entity tractable during the application
lifespan. The component recon�guration becomes
very essential for event producer components,e.g., to
generate accurateTimerEvents in the Blink application,
we need to con�gure the Timer component through a
property that holds the time at which the measurement
is started. Properties also enable components to
become either stateless or stateful. A component is
stateful if and only if it de�nes a property| e.g., the
Blink component in our sample application is a stateful
component retaining the value of thetoggle property|
whereas theLeds component is a stateless component.
The properties of a component can be accessed from the
component implementation using the keywordthis .
Component Implementation. Remora compo-
nents are implemented by using a dialect of C lan-
guage with a set of new commands. This C-like lan-
guage is mainly proposed to support the unique charac-
teristics of Remora , namely, component instantiation,
event processing, and property manipulation. There-
fore, for pure component-based programming without
the above features, the programmer can almost rely on
C features and develop an elementaryRemora -based
application including only Remora -based interface in-
vocations. We implicitly introduced a few of these
commands within the Blink component implementation,
while the complete description of commands is available
in [15].
Parameter-based Recon�guration. To preserve
e�ciency in resource usage,Remora relies on compile-
time linking so that system components are linked
together statically and their memory address is also
computed at compile-time. Additionally, for multiple-
instance components, all required instances are created
in compiler-speci�ed addresses prior to application
startup. These constraints not only reduce the size of
the �nal code, but also relieve the programmer from the
burden of managing memory within the source code. In
Remora , the recon�guration feature is also considered
from a parametric perspective: ARemora component
can be recon�gured statically by changing the behavior
of its functions through its component properties. In
particular, for the property-dependent functions of a
component, the behavior of the component can easily be

changed by adjusting property values and thus a form
of parameter-based recon�gurability is enabled within
the component.

2.2. Component Instantiation

Remora features a concrete mechanism to support
component instantiation. This feature is essentially
proposed to manage e�ciently event producer com-
ponents. The Remora engine greatly bene�ts from
component instantiation when undertaking linking of
one event producer to several consumer components.
For example, in the Blink application, the producer
(Timer) of TimerEvent should be instantiated per con-
sumer component, while theUserButtonEvent generator
is a single-instance component publishing an event to
all subscribed components when the user button on a
sensor node is pressed.

By component instantiation, we refer to two
principles: i) the component code is always single-
instance, and ii) the component context is replicated
per instance. By component context, we mean
the data structures required to handle the properties
independently from the component's code. By doing
that, a Remora component becomes arecon�gurable
and reusableentity with a strong abstraction, and more
importantly the memory overhead is kept very low by
avoiding code duplication.

Remora proposes three multiplicity types for
the component's context: raw-instance (stateless
component), single-instance, and multiple-instances.
The Remora engine features an algorithm computing
the multiplicity type of a component based on three
parameters: i) whether the component owns any
property, ii) whether the component is an event
producer, andiii) the number of components subscribed
to a speci�c event. When the multiplicity type is
determined, the Remora engine statically allocates
memory to each component instance.

2.3. Event Management

As high-level event processing is a necessary functional-
ity in embedded systems, theRemora design compre-
hensively supports events between components. The
main goal is to reify the concept of event as a �rst-
class architectural element simplifying the development
of event-oriented scenarios at a low cost. The event de-
sign principles in Remora include:
Event Attributes. An event type in our approach can
have a set of attributes with speci�c types. By de�ning
attributes, the event producer can provide the event-
speci�c information to the event consumer, e.g., the
latency attribute of TimerEvent in the Blink application.
Application Events vs OS Events. Events in our
framework are categorized into two classes:application-
events and OS-events. Application-level events are
generated by the Remora framework (like Timer in

The Computer Journal , Vol. ??, No. ??, ????

Page 5 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For R
eview

 O
nly

6 A. Taherkordi et al.

the Blink application), while the latter are generated
by the sensor operating system. In other words, the
only di�erence of these two types is the source of event
generation. To process OS-events at the application
level, the Remora runtime features mechanisms to
observe OS-events, translate them to corresponding
application-level events, and publish them throughOS-
event producer components.

Event Observation Interface. One of the important
aspects of event processing is the time period in which
events should be observed by the event producer.
Obviously, the length of this period varies with the type
of events, e.g., the observation period for a TCP/IP
event is the whole application lifespan (automatic
observation), while a Timer event is observed according
to the user-con�gured time (manual observation).
Remora therefore proposes the event observation
interface in order to control the manual observations.
This interface includes event control operations, such as
start , pause, resume, and terminate . If an event type
is manually observable, the associated event producer
should implement the generic observation interface. By
doing that, the event consumer can handle the life cycle
of the observation process by calling the operations of
this interface without being aware of the associated
event producer.

Event Con�guration Interface. The speci�cation of
an event type in our approach contains acon�guration
interface. Each component producing an event should
implement the associated con�guration interface. This
feature enables the event consumer to con�gure
event generation before starting the event observation
process. More importantly, by introducing such an
interface within the event speci�cation, the event
producer and the event consumer become completely
decoupled, e.g., in the Blink application, TimerEvent
generation is con�gured within the Blink component
without being aware of the associated event generator.

Single Event Producer per Event Type. Each
event type in our approach is produced byone and only
one component. Instead of imposing the high overhead
of de�ning event channels and binding event consumers
and producers, we ease event-based programming
by assuming one-to-one association between event
types and event producers. The programmer is also
released from identifying such bindings as theRemora
framework becomes responsible to automatically wire
producers and consumers. We believe that this
assumption does not a�ect event-related requirements
of embedded platforms. In case an event is produced by
two di�erent components, the programmer can de�ne a
new event type, extended from the original event, for
one of the producer components.

2.3.1. Event Casting

Events in our proposal can be either unicast, or
multicast. Unicast is a one-to-one connection between
an event producer and an event consumer|e.g.,
TimerEvent in the Blink application. In contrast to the
unicast model, a multicast event may be of interest
to more than one component| e.g., a UserButtonEvent
may be handled by several components. TheRemora
framework distinguishes between these two types in
order to improve the e�ciency of processing and
distributing events. Event distribution should also be
considered together with component instantiation. We
need to clarify how multiplicity type of components on
the one side, and unicast events and multicast events
on the other side are related. To this end, we de�ne
two invariants:

Invariant1: The consumer of a unicast event
should be a raw-instance or single-instance
component.

Invariant2: The producer of a multicast event
should be a raw-instance or single-instance
component.

These invariants are mainly proposed to boost
the e�ciency of event processing in the Remora
framework. We do not support other event
communication schemes since it implies to reify at
runtime the source and the destination of an event and
to maintain complex routing tables within the Remora
framework, which will induce signi�cant overheads in
term of memory footprints and execution time. We
rather believe that these invariants do not limit event-
related logic of embedded applications.

2.3.2. Events Description

Similar to components, events have their own
descriptions, which are in accordance to the event
speci�cation in Remora . Figure 7 presents a
simpli�ed events description document of the Blink
application. This document consists of two outer tags:
remora-events and os-events , corresponding to the
application level events and the OS events, respectively.
For each event type, we can specify its observation
model and casting type. The attributes of an event are
also described by the attribute tag and the operations
of event con�guration interface is speci�ed by the
configInterface tag.

2.3.3. Event Management Illustration

Figure 8 illustrates the event management mechanism
implemented in Remora . We explain the mechanism
based on the steps labeled in the �gure. During the
�rst two steps, the event consumer can con�gure event
generation and control event observation by calling the

The Computer Journal , Vol. ??, No. ??, ????

Page 6 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For R
eview

 O
nly

Component-based Approach for Sensor Software 7

<?xml version="1.0" encoding="UTF-8"?>
<events >

<remora-events >
<event-type name ="core.sys.TimerEvent"

 castType ="unicast" observation ="manual">
 < attribute name="latency" type="xsd:int"/>
 < configInterface >
 < operation name="configure">
 < in name="interval" type="xsd:int"/>
 < in name="periodic" type="xsd:short"/>
 </operation>
 </configInterface>

</event-type>
</remora-events>
<!-- add other application event types here -->
<os-events >

<!-- describe OS-events here -->
</os-events>

</events>

FIGURE 7. Application events description.

associated interfaces realized by the event producer
component. These steps in our sample application are
achieved in the Blink component (event consumer) by
the code below:

aTimeEvent.producer.configure(3*CLOCK SECOND,
periodic);

aTimeEvent.producer.start();
Note that the programmer is not aware of the

TimerEvent producer. She/he only knows that the
TimerEvent generator is expected to implement the
configure function de�ned in the description of
TimerEvent (cf. Figure 8). The TimerEvent producer
should also implement the observation interface as the
observation type of TimerEvent is manual.

Whereas the above steps are initiated by the
component programmer, the next two steps are
performed by theRemora component framework. Step
3 is dedicated to polling the producer component
to observe event occurrence. The event producer is
polled by the Remora framework through a dispatcher
function in the producer. In fact, the event observation
occurs in this function. The polling process is
started, paused, resumed, and terminated based on the
programmer's con�guration for the event observation,
performed in step 2.

For application-level events, theRemora framework
is in charge of calling periodically this function, while
for OS-events,Remora invokes this function whenever
an OS-event is observed by theRemora runtime.
The Remora runtime listens only to application-
requested OS-events, and delivers the relevant ones to
the framework. The Remora framework then forwards
the event to the corresponding OS-event producer
component by calling its dispatcher function| e.g.,
user button is a Contiki-level event that should be
processed by theRemora component UserButton. This
component then generates an high-levelUserButtonEvent
and publishes it to the Remora framework.

Finally, in step 4, upon detecting an event in the
dispatcher function, the producer component creates
the associated event, �lls the required attributes, and
publishes it to the Remora framework. The framework
in turn forwards the event to the interesting components

by calling their event handler function.

REMORAFramework

1

2

3
4

REMORARuntime
OS-events

Event Producer

Event
Attribute 1

realize

Attribute n
realize

dispatcher

Event
ConsumerCoConf. Interface

Obsrv. Interface

handler

FIGURE 8. Event management mechanism in Remora .

2.4. Components Assembly and Deployment

A typical Remora application may contain several im-
plementations of a given component type due to the
existing heterogeneity in WSN hardware and software
platforms. To con�gure an application according to the
target platform requirements, Remora introduces com-
ponents assembly(equivalent to composite component
in SCA). This XML document speci�es the list of ap-
plication components, as well as bindings between ref-
erences and services of components. Figure 9 shows
the con�guration of Blink application in which there is
only one binding from Blink to the Leds component im-
plementing the interface ILeds for the MSP430 micro-
controller. Note that, based on the event casting in-
variants, the event-binding between Blink and Timer is
created automatically by the Remora framework.

<?xml version="1.0" encoding="UTF-8"?>
<composite name="app.BlinkAppConfigurer">

<component name="ledControl">
<implementation.remora

 implementer="cmu.telosb.peripheral.Leds"/>
</component>
<component name="blink">

<implementation.remora implementer="app.BlinkApp">
</component>
<component name="timer"/>

<implementation.remora implementer="core.sys.Timer"/>
</component>
<!—components wiring -->
<wire source ="blink/iLeds" target ="ledControl/iLeds"/>

</ composite >

FIGURE 9. Blink application con�guration.

Figure 10 illustrates the four main phases of an
application deployment. The Remora development
box encompasses artifacts supporting component
speci�cation. Events description and components
con�guration are used to describe system events
and components assembly, respectively. Components
and interfaces are also described in separate XML
documents, one for each. External types are a
set of C header �les containing application's type
de�nitions. The last group of elements in this box
are C-like implementation �les of components in which
OS libraries may be called through a set of System
APIs implemented by Remora runtime components.
Note that there is no hard-coded dependencies between
Remora implementers and the native API of the

The Computer Journal , Vol. ??, No. ??, ????

Page 7 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For R
eview

 O
nly

8 A. Taherkordi et al.

underlying OS (e.g., Contiki) to ensure portability of
Remora components towards di�erent OSs.

In the next phase, the Remora engine reads the
elements of the development box and also OS libraries
in order to generate theRemora framework including
the source code of components and OS-support code.
Then, application object �le will be created through
OS-provided facilities and �nally deployed on sensor
nodes.

Events
Description

<xml >

Interface
Description

<xml >
External Types

Definition

C code

Component
Description

<xml>

Component
Implementation

C-like code

Components
Configuration

<xml >

REMORADevelopment Box REMORAEngine

OS
Libs REMORARuntime

Operating System

Sensor Hardware

.c .h

REMORAApplication

Application

ApplAppl

Sensor Node

make
include

generateimport
OS

support

Remora-based
System APIs

FIGURE 10. Remora -based development process.

2.5. Middleware Programming

The research e�orts on sensor middleware have hitherto
focused on developing services and algorithms for
routing, quality of service, energy-e�ciency, resource
management, localization, synchronization, etc. These,
however, often fall short of expectation in integrating
services and algorithms into a generic middleware
system, and in helping application programmers
to compose a system that exactly matches their
requirements. This raises the need for a speci�c
approach for middleware programming in WSNs that
goes beyond dealing with only application-speci�c
logics. From the programming point of view,
middleware services are distinguished from other
components in the system by the following two main
factors.

First, despite the application-level programming,
middleware components are developed very close to
the operating system, requiring to tightly interact
with system-level components. Therefore, sensor pro-
gramming models, supporting middleware develop-
ment, should provide the primitives required to inter-
face between middleware services and system compo-
nents. Remora addresses this concern through the OS
Abstraction Layer and the OS-Wrapper components. In
addition to enabling the portability of sensor applica-
tions, these principles makeRemora a suitable pro-
gramming model to build middleware applications.

Second, middleware solutions should be exposed as
a well-packaged, stand-alone application which can
be easy integrated to the target application with
minimum programming e�ort. Although this issue has
been extensively addressed in conventional resource-rich
systems, software pieces in WSNs are often assembled
together in an ad-hoc manner, without any well-
established software composition model. This problem

originates from the fact that WSN programming
abstractions do not pay enough attention to software
composition and integration approaches. With the
increasing number of intermediate software solutions
for WSNs (e.g., networking, algorithms and QoS),
programming constructs are required to compose the
application, middleware services, and the operating
system into a uni�ed sensor software in a generic, simple
and robust manner.

The technique we have adopted in Remora to
compile and assemble components has the potentials to
meet a higher level of assembly which isintegrating a
given set of Remora -based applications. In particular,
we enhance theRemora engine with the capability
of processing multiple isolated Remora applications
and integrating them into a uni�ed system. The
main concerns, in this endeavor, include how to expose
an application's functionality as an API and bind
applications based on the dependencies between their
APIs. Remora addresses these concerns based on the
concept of Autonomous Composable Module(ACM).
This refers to developing Remora applications in an
autonomous manner so that the programmer considers
an under-development application as a stand-alone
module with its own operations. It means that, based
on this approach, the dependencies of the application
to others are not declared within its description. The
Remora engine is in charge of analyzing dependencies
among ACMs and binding them together. Figure 11
shows the overall architecture ofRemora composition
solution, consisting of a set of ACMs and the main
sensor application. The latter not only implements
the application logic, but also serves as a starting
point to execute programs. An ACM contains a set of
Remora components implementing its logics, as well
as a component representing its API.

Remora Framework

ACMACMACM
API

Main Application

FIGURE 11. The overall architecture for composing the
main application and ACMs.

As a use case for the Remora middleware
programming model, in [15] we demonstrate a
run-time middleware system, called RemoWare , to
support dynamic recon�guration of Remora -based
applications. RemoWare is basically an ACM which
can be easily used as a middleware solution in
any dynamic sensor application to enable run-time
recon�guration of Remora components.

The Computer Journal , Vol. ??, No. ??, ????

Page 8 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For R
eview

 O
nly

Component-based Approach for Sensor Software 9

2.6. Automatic Tuning

Besides the componentization of application-level
modules, Remora can be exploited to componentize
operating system's modules either by wrapping them in
Remora components, or redeveloping them according
to the Remora speci�cation. This enables the
Remora engine to expand its control on the
con�guration of sensor software and therefore makes
it possible to automatically tune the target software
installed on nodes. In this way, the Remora engine
can gain a meta knowledge showing which OS-level
components are involved in supporting application logic
and based on that it can trace the interactions between
application components and system components. In
this way, it can identify the orphan components|the
components that are not involved in the application
scenario execution.

Figure 12 describes aninitial con�guration (prior
to deploying on nodes) of sensor software in which
the application-level components gain system services
through OS-wrapper components at the runtime layer.
These components interact either directly with kernel-
level modules, or with other intermediary wrapper
components beneath the runtime. This initial setting
can be optimized byRemora engine. When it executes
the tuning process, deduces that one of the intermediary
components is orphan, and removes it from the �nal
package installed on nodes.

Operating System
Kernel

Remora Runtime

Application

OS
Module

OS-Wrapper
Component

Application
Component

Legend

Orphan
Component

FIGURE 12. The Remora engine tunes the operating
system by tracing component dependencies and �nding
orphan components.

3. IMPLEMENTATION

To discuss the implementation of Remora , we
structure this section according to the main modules
proposed for Remora -based application development,
namely, the engine, the framework, and the runtime.
Since the platform supporting the component model is
comprehensive and includes numerous implementation
issues, we only highlight the key technologies and
design techniques used for implementing each of the
aforementioned modules. Beyond the internal design of
modules, the overall design goal is to keep the artifacts
of each module completely independent from others
in the sense that in the �nal system, each module
is composed of three set of source codes dedicated

to corresponding modules. The main advantage of
this separation is to minimize the required e�ort to
port the component model to a new operating system
by ensuring a clear isolation between theRemora
framework and the Remora runtime.

3.1. Remora Engine

The Remora engine is deployed on the programmer's
desktop machine to read all artifacts within the
development box, perform required analyses for
code generation, and generate the �nal C code of
components, as well as OS-support code. We adopt
Java to develop the engine because of its cross-platform
capabilities, as well as its strong support for XML
processing. Additionally, the object-oriented nature of
Java simpli�es the complex process of code analyzing
and code generation. We briey discuss the key design
principles of this Java-based engine below.

The �rst task of the engine is to parse the C-
like implementation of components and extract the
information concerning the speci�cation of Remora .
To this end, we have developed a parser module,
which is originally generated by ANTLR|a widely
used open-source parser generator [16]. Since this
generated tool only parses the source code, we have
modi�ed the generated parser to extract Remora -
required information, such asname, signature, and body
of implementation functions. By doing that, the engine
builds a meta-data structure containing all required
information about the implementation of a component
and the rest of the engine tasks are performed based on
that.

The other key implementation part of the Remora
engine deals withprocessing events, component instan-
tiation , and component lifecycle. This unit deduces the
multiplicity type of components according to the algo-
rithm 1 and generates the necessary data structures.
This algorithm determines the multiplicity type based
on the type of events generated by the component, as
well as whether the component owns any property or
not. If the �nal value of variable InstNumber is 0, this
means that the component has no instance and only re-
quires the code memory, while the value of 1 shows that
only one instance of component's data should be stored
in the data memory. Finally, for a multiple instance
component the value ofInstNumber is 2.

This module also features a set of well-de�ned tech-
niques, such asin-component call graph analyzerand
cross-component call tracker to support stateful com-
ponent. The former concept is concerned with discov-
ering state-dependentfunctions of a component. Two
types of state dependency can be envisaged for a func-
tion: i) explicit dependency: the component's prop-
erty(s) is(are) directly accessed within the function's
code, ii) implicit dependency: the function contains
direct/indirect invocation(s) to an explicit type. To
preserve the state of a component, we need to retain

The Computer Journal , Vol. ??, No. ??, ????

Page 9 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For R
eview

 O
nly

10 A. Taherkordi et al.

Algorithm 1 Determining the multiplicity type of
components
Input: producedEvents, events generated by the com-

ponents
Input: properties, component's properties
Output: component's multiplicity type

InstNumber (� 1
MultiConsumers (false
for aEvent in producedEvents do

if aEvent is unicast then
if sizeOf (aEvent:consumers) > 1 then

MultiConsumers (true
break

end if
end if

end for
if MultiConsumers is false then

if sizeOf (producedEvents) > 0 then
InstNumber (1

else
if sizeOf (properties) > 0 then

InstNumber (1
else

InstNumber (0
end if

end if
else

InstNumber (2
end if

a pointer to the component's context and pass it to
the state-dependent functions of component. The in-
component call graph analyzer employs a recursive tech-
nique to navigate the function calls with the component
and identify the state-dependent functions. Likewise,
the cross-component call tracker tracks the interactions
between components in order to retain the state of com-
ponents. Finally, the major task of the engine is to sup-
port events and manage the component lifecycle by em-
bedding framework-support patches in the component
implementation.

Automatic tuning of sensor software is the other
responsibility of the Remora engine. The data
structure supporting the tuning process is a directional
graph in which every node represents a component
of the system and edges between nodes are the
service-based interactions among the components (cf.
Figure 13). The engine �rst creates this graph and
then navigates the nodes based on the Depth-First
Search (DFS) algorithm to �nd the orphan nodes.
In particular, it initiates this process from the main
component of application, implementing the interface
ISensorApp, as the root of graph. When it accomplishes
DFS, it removes orphan nodes|all components that are
never visited by DFS.

Moreover, the Remora engine undertakes binding
ACM modules in order to support middleware

OS
Services

Application

Remora
Runtime

DFS Start

visited node

not visited node

FIGURE 13. Using depth-�rst search algorithm to
discover the orphan nodes.

programming. This process is carried out in a two-
phase strategy. It �rst processes the components
con�guration document of each ACM and creates a
disconnected, directed graph structure in which each
ACM would have directed edges to the required APIs.
In the second phase, the engine analyzes the yielded
disconnected graph from the �rst phase and creates
a connected graph representing dependencies among
ACMs, as well as between the main sensor application
and ACMs. Therefore, it provides a higher-level of
wiring model between co-habiting applications and this
model is further processed by the engine to implement
the execution ow graph in the system.

3.2. REMORA Framework

The Remora framework is composed of a collection
of core C programs, supporting the event management
model of Remora and hosting the target application's
components. As mentioned before, theRemora
framework is an OS-independent module. There
are two main reasons for this: i) the core of the
framework is written in the C language and also the
�nal code of application's components are translated
to equivalent C programs by the Remora engine, ii)
the framework is linked to the OS via the Remora
runtime which translates all OS-originated interactions
(e.g., OS-events) to a set of pre-de�ned, application-
speci�c instructions understandable by the framework
(cf. Section 2.3). The other possible dependency issue
is caused by the mechanism used to form theRemora
framework as aprocesswithin the OS and scheduleit to
run. This is also extensively addressed by theRemora
runtime as explained in Section 3.3.

The main mission of the framework is to facilitate
event management tasks, including scheduling and
dispatching. To explain these tasks, we �rst introduce
two queuedata structures supporting our event model.
The �rst queue is dedicated to the event producer
components (PQ), while the second one is designed to
maintain the event consumers(CQ). We discuss here
how the Remora framework is built based on these
data structures.

Scheduling in Remora refers to all operations
required to enqueueand dequeueevent producers and

The Computer Journal , Vol. ??, No. ??, ????

Page 10 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For R
eview

 O
nly

Component-based Approach for Sensor Software 11

event consumers. In particular, the main concern
is when to enqueue/dequeue a component andwho
should perform these tasks. TheRemora framework
addresses these issues based on the observation model
of events. For example, if an event isautomatically
observable, the associated producer component and
all the subscribed consumers are enqueued by the
framework core during the application startup, while
in a manual observation, producer and consumer are
placed respectively in PQ and CQ when the consumer
component calls the start function of observation
interface. A question may arise is that prior to initiating
the scheduling mechanism, how the components
instances are created. InRemora , memory allocation
for components is done statically. Therefore, the
memory address of all instances of all components are
determined during the framework compilation and we
do not impose the high overhead of dynamic memory
allocation to such a resource-constraint platform.
At runtime, parts of the framework, embedded in
each component, are responsible for dealing with
component lifecycle| e.g., activating or deactivating
event generator components.

The other role of the Remora framework is to
periodically poll the generator components for event
observation, and then feed event handlers with the
matched events. To achieve the former, event
generators in Remora keep a pointer to the globally
known callback function, dispatcher, thereby, the
Remora framework is able to poll event generators by
periodically calling this function. Similarly, the latter
is realized by invoking the callback handler function
within the event consumer component liketimerExpired
in the Blink component.

Figure 14 illustrates the dispatching mechanism in
the framework including the supporting data structures.
In Polling, the Remora framework continuously polls
the EventProducer components through dispatcher|
the globally known callback function. Whenever
a producer dispatches an event (AbstEvent), the
framework casts this event to the actual event
type, which is either UCastEvent(unicast event) or
MCastEvent(multicast event). UCastEventwill be directly
forwarded to the subscribed consumer through the
callback function pointer stored in the UCastEvent. If
a MCastEvent is generated, the framework delivers it
to all the interesting components formerly enqueued.
For OS-events, the same procedure is followed except
the polling phase, which is performed by the operating
system.

3.3. REMORA Runtime

The Remora framework is integrated with the
underlying operating system through the Remora
runtime. In our current implementation, the core of
the Remora runtime is a Contiki-compliant process
running together with all other autostart processes

Distributing Multicast Event

Forwarding Unicast Event

Polling

 Unicast Eventnt U Unicast Event

callback

EventProducer 1 EventProducer n

Pollin g

EventProducer 2 …

AbstEvent

MCastEvent

UCastEvent

calcalcalcalcal lbalbalba ckckckcalcalcalcalcalcalcal lbalbalbalba ckckckck

UCastConsumer

MCastConsumer MCastConsumer…

produce

FIGURE 14. Remora event processing mechanism.

of Contiki (see Figure 15). This process undertakes
two tasks: i) periodically scheduling the Remora
framework (for polling event generator components) to
run, and ii) listening to the OS-events and delivering
the relevant ones to the Remora framework. By
relevant, we mean the Remora runtime recognizes
those OS-events that are of interest to the application.
To achieve such a �ltering, the source code of this
part is generated by the Remora engine according
to the events description (cf. Section 2.3.2) of
target application and then imported to the Remora
runtime. By doing that, we provide a lightweight event
dissemination mechanism interpreting only application-
speci�c OS-events.

Contiki Process Management

Autostart Process 1
REMORAAutostart Process

… …
REMORARuntime

Contiki Event- Based Kernel

FIGURE 15. Integration of Contiki and Remora through
the runtime layer.

In addition, the application code may need to use
libraries available in the OS. In Remora , a programmer
can develop a set ofRemora components acting as
system API providers. In fact, these components
delegate all high-level system calls to the corresponding
OS-level functions| e.g., the currentTime() function
call in the system API is delegated to the Contiki
function clock time() . We o�er this API to decouple
the application components from OS modules and
ensure the portability of Remora -based applications.
If an application is not expected to be ported to other
operating systems, programmers can directly call the
OS functions within component code and therefore
slightly improve the runtime performance.

4. EVALUATION

To evaluate the e�ciency of Remora , in this section
we �rst demonstrate and assess a realRemora -based
application, then we focus on the general performance
�gures of Remora .

4.1. A Real Remora-based Deployment

Our real application scenario is a network-level
application suite consisting of a set of mini applications

The Computer Journal , Vol. ??, No. ??, ????

Page 11 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For R
eview

 O
nly

12 A. Taherkordi et al.

bundled together. This suite is basically designed
to provide services, such ascode propagator and web
facilities in WSNs. We focus here on the �rst one and
design it based on theRemora approach.

Code propagation becomes a very important need
in WSNs when we need to update remotely the
running application software [17]. The code propagator
application is responsible for receiving all segments of
a running application's object code over the network
and loading the new application image afterwards. The
code propagator exploits the TCP and UDP protocols
to propagate code over the network. At �rst, TCP is
used to transfer new code, block by block, to the sink
node connected to the code repository machine, and
then UDP is used to broadcast wirelessly new code from
a sink node to other sensor nodes in the network. When
all blocks are received, the code propagator loads the
new application.

Figure 16 describes the components involved in the
�rst part of our application scenario. TCPListener is
a core component listening to TCP events. This
multiple-instances event generator is created for each
TCP event consumer component with unique listening
port number. For example, CodePropagator receives
data from port 6510 (codePropPort), while WebListener
is noti�ed for all TCPEvents on port 80 (webPort).
CodePropagator stores all blocks of new code in the
external ash memory through the interface IFile
implemented by the FileSystem component. When
all blocks are received,CodePropagator loads the new
application by calling the interface ILoader from the
component ELFLoader. These two interfaces are system
APIs that delegate all application-level requests to the
OS-speci�c libraries. The interface INet , implemented
by the component Network, is also the other system
API providing the low-level network primitives to
TCPListener.

FileSystem

TCPListener

codePropPort

CodePropagator

TCPEvent

FileFi

Web ListenerWe

ELFLoaderEL

currentOffset t
dataLengthth
listenPort

packetNum

rtrtrtrt

TCPEvent

ISensorApp

webPorttt

ILoader

IFile

Network

INet
ELFFileNamee

ELFFileId dd
fileOffset etet

FIGURE 16. Code propagation application architecture.

As mentioned before, we adopt Contiki as our OS
platform to assess the Remora component model.
Contiki is being increasingly used in both academia and
industrial applications in a wide range of sensor node
types. Additionally, Contiki is written in the standard
C language and henceRemora can be easily ported to
this platform. Finally, the great support of Contiki on
event processing and process management motivate us
to design and implement theRemora runtime on this
OS. Our hardware platform is the popular TelosB mote
equipped with a 16-bit TI MSP430 MCU with 48KB

TABLE 1. The memory requirement of code propagation
application in Remora -based and Contiki-based implemen-
tations.

Code Data
Programming Memory Memory
Model (bytes) (bytes)
Contiki 722 72

Code Propagation Components
CodePropagator 252 36
TCPListener 310 0

System API Components
ELFLoader 38 0

Remora Network 92 0
FileSystem 68 0

Remora Core
Framework and Runtime 494 14
Total 1254 50

Remora overhead +532 -22

ROM and 10KB RAM.
The concrete separation of concerns in this applica-

tion is the �rst visible advantage of using Remora . The
second improvement is theeasy reuse ofTCPListener for
other TCP-required applications, which is not the case
in a non-componentized implementation. In particular,
for each new application, we only need to instantiate
the context of TCPListener and con�gure its properties
(like port number) accordingly| e.g., WebListenerin Fig-
ure 16.
Memory Footprint. Table 1 reports the memory
requirement of Remora and Contiki programming
model (protothreads) for implementing the code
propagation application. As indicated in the table,
the Remora -based development does not impose
additional data memory overhead, while it consumes
extra 532 bytes of code memory, which is essentially
related to the cost of framework and runtime modules.
This cost is paid once and for all, regardless of the
size and the number of applications running on the
sensor node. The code memory cost could be even
further reduced by removing system APIs (Network,
FileSystem, and ELFLoader) and calling directly the
Contiki's libraries within CodePropagator. Note that the
overhead ofTCPListenercan also be decreased when this
component is shared for the use of other applications|
e.g., WebListener. Therefore, we can conclude that the
memory overhead ofRemora is negligible compared to
the high-level features it provides to the end-user.
Processing Cost. Figure 17 reports the comparison
of CPU costs in these two approaches. The time
measurement was started when the �rst block of new
application's code was received and it was stopped
when the last block of code arrived to the sensor
node. Since in-�le seeking and writing is a costly
process, we removed invocations related toFileSystem
and ELFLoader and measured the execution time
afterwards. As the size of new code (ELF �le)

The Computer Journal , Vol. ??, No. ??, ????

Page 12 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For R
eview

 O
nly

Component-based Approach for Sensor Software 13

TABLE 2. Line of code for our main components.
Line of Line of

Code Code Reduced
Component (Remora) (Contiki) E�ort
TCP Listener 62 104 41%
Code Propagator 19 36 47%

is increased, the processing overhead ofRemora is
also slightly increased compared with the equivalent
Contiki implementation. We believe that this very
low overhead is due to the extra context-switchings
(among event processing functions within theRemora
runtime) occurring for larger code in Remora , which
is not the case in the Contiki-based implementation.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25 30

C
P

U
 U

sa
ge

 (
m

s)

Code Size (KBytes)

CPU usage vs code size

Remora CPU usage
Contiki CPU usage

FIGURE 17. CPU usage for receiving new code by
propagator application in Remora and Contiki.

Programming E�ort. Evaluating the programming
e�ort is di�cult since it is a�ected by factors di�cult
to measure| e.g., the nature of code (algorithmic or
routine), the complexity of the processing, and syntax
and semantic of programming languages. However,
WSN programming research has hitherto adopted the
number of lines of code (LOC) as a simple indication.
Table 2 reports this metric for the two main components
of code propagator application. It is interesting to
compare these measurements against the equivalent
functionality available in Contiki libraries, where it
is directly developed atop of the operating system.
The Contiki-based implementation of the TCP listener
module contains 41% more LOC than our version. This
e�ciency is achieved since in our implementation event-
handling code is embedded in the run-time system and
shared for the use of di�erent applications. We also gain
a signi�cant improvement in LOC for code propagator
module compared with the Contiki's implementation. It
is because the verbose code of event handling in Contiki
programming model is replaced with the shortened C-
like code of Remora .
Tuning Result. The e�ciency of the tuning technique
directly depends to the target use case and its
requirements in terms of low-level system services. In
the case of the code propagation application, we cannot
precisely measure the reduction of the �nal object code

TABLE 3. The minimum memory requirement of
Remora .

Code Data
Memory Memory

Module (bytes) (bytes)
Framework Core 374 4
Runtime Core 120 10
Total 494 14

size as it is basically an intermediate application lying
beneath the main sensor application. Therefore, we
measure the tuning performance of the code propagator
by considering it as a main sensor application. Applying
tuning technique on this application yields 5% reduction
in the �nal Contiki binary object �le. This e�ciency is
achieved by automatic removal of modules that never
involve in the code propagation process,e.g., programs
interfacing a node's peripherals (e.g., light, button and
sensors).

The rest of this section is devoted to the assessment
of two main performance �gures of Remora , namely,
memory footprints and CPU usage.

4.2. Memory Footprint

In Remora , we have made a great e�ort to maintain
memory costs as low as possible. The �rst step of this
e�ort is to avoid creating meta-data structures, which
are not bene�cial in a static deployment. Distinguishing
unicast events and multicast events has also led to a
signi�cant reduction in memory footprints as Remora
does not need to create any supporting data structure
for unicast events.

The memory footprints in Remora is categorized
into a minimum overhead and a dynamic overhead. The
former is paid once and for all, regardless of the amount
of memory is needed for the application components,
while the latter depends on the size of application.
Table 3 shows the minimum memory requirements of
Remora , which turn out to be quite reasonable with
respect to both code and data memory. As mentioned
before, our sensor node, TelosB, is equipped with 48KB
of program memory and 10KB of data memory. As
Contiki consumes roughly 24KB (without µIP support)
of both these memories, Remora has a very low
memory overhead considering the provided facilities and
the remaining space in the memory.

Table 4 shows the memory requirement of di�erent
types of modules in the Remora framework. The
exact memory overhead ofRemora depends on how
an application is con�gured, e.g., an application,
containing one single instance event producer and one
unicast event, needs extra 56 bytes (38 + 8 + 10) of
both data and code memory. Ordinary components
do not impose any memory overhead asRemora
does not create any meta data structures for them.
For other types of modules, Remora keeps the data

The Computer Journal , Vol. ??, No. ??, ????

Page 13 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For R
eview

 O
nly

14 A. Taherkordi et al.

TABLE 4. The memory requirement of di�erent entities
in Remora .

Code Data
Memory Memory

Entity (bytes) (bytes)
Ordinary Component 0 0
Event Single Ins. 38 8
Producer Multiple Ins. 42 10
Event Unicast 0 10

Multicast 0 10
Multicast Event Consumer 30 6
OS Event 28 4
System API 4 0

memory overheads very low as this memory in our
platform is really scarce. We also believe that the
code memory overhead is not signi�cant since a typical
WSN application is small in size and it may contain
up to a few tens of components, including ordinary
components. It should be noted that componentization
itself reduces the memory usage by maximizing the
reusability degree of system functionalities like the one
discussed in the code propagation application.

4.3. CPU Usage

As energy cost ofRemora core is limited to only the
use of the processing unit, we focus on the processing
cost of our approach and show that Remora keeps
the CPU usage at a reasonable level, and in some
con�gurations it even reduces CPU usage compared to
the Contiki-based application development.

To perform the evaluation, we set up a Blink
application in which a varying number of mirror
components (1 to 15) switch LEDs on and o� every
second. The two implementations of this application,
Contiki-based and Remora -based, were compared
according to a CPU measurement metric. The metric
was to measure the amount of time required by one
Remora component and one Contiki process to switch
LEDs six times: three times on and three times
o�. With the less number of switches, we cannot
extract the exact timing di�erences as our hardware
platform provides a timing accuracy of the order of one
millisecond.

We started our evaluation by deploying an applica-
tion similar to the one presented in Section 2.1 and mea-
suring the CPU usage based on our metric. In each
next evaluation step, we added a mirrorBlink compo-
nent to the application and measured again the time.
This experiment was continued for 15 times. We made
the same measurement for a Contiki-based Blink appli-
cation and added a new Contiki Blink process in each
step. Figure 18 shows the evaluation result of our sce-
nario. When we have oneBlink component/process, the
CPU overhead of both approaches is almost the same,
indicating that the Remora runtime and framework
impose no additional processing overhead. When the

number of components/process increases towards 15,
reduction in CPU usage is achieved in two dimensions.

5500

5600

5700

5800

5900

6000

2 4 6 8 10 12 14 16

C
P

U
 U

sa
ge

 (
m

s)

Number of components

Remora
Contiki

FIGURE 18. The Remora -based implementation does
not impose additional CPU overhead compared to the
Contiki-based implementation.

Firstly, the number of CPU cycles for Remora
is slightly less than for the Contiki application.
This di�erence reaches 13 milliseconds when Contiki
undertakes running 15 Blink processes. Therefore, we
can conclude thatRemora does not impose additional
processing overhead a�ecting the performance of the
system. Secondly, the CPU usage ofRemora
application is reduced when the number of Blink
components is increased. This improvement is achieved
because the number of context switches between the
Remora runtime and the Remora framework is
signi�cantly decreased when there are more event
producer components (Timer) in PQ.

To clarify this issue, we assume that the application
running time is T and Contiki periodically allocates
CPU to the Remora runtime in this period. In
each allocation round, the runtime module invokes the
event manager in the Remora framework to poll the
application level event producers. Given that there
are K producers in PQ, the polling process consumes
K � t1 of CPU, where t1 is the average processing
cost of one element. Therefore, the frequency of
event manager calling (equal to the number of context-
switches) is in the order of T=K � t1. Therefore, as
the value of K is increased the number of context-
switches is decreased accordingly. Figure 19 shows the
changes in the number of context-switches when the
number of Timer components is increased to 15. As
a result, the maximum performance in Remora relies
on the average number of event producer components
enqueued during the application lifespan, while in the
worst case (a very few producers in the queue)Remora
does not impose any additional processing cost.

5. EXISTING APPROACHES

In this section, we survey the existing component-based
approaches for programming on embedded system
and WSNs. As mentioned before, a number of
these component models are proposed not only to
facilitate development of application modules, but

The Computer Journal , Vol. ??, No. ??, ????

Page 14 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For R
eview

 O
nly

Component-based Approach for Sensor Software 15

3000

4000

5000

6000

7000

8000

9000

10000

11000

2 4 6 8 10 12 14 16

N
um

be
r

of
 c

on
te

xt
-s

w
itc

he
s

Number of components

Context-switch overhead

FIGURE 19. As the number of producer components in
the queue is increased, the number of context switches is
signi�cantly decreased.

also to build component-based operating systems for
WSNs. Furthermore, the other objective behind
component-based frameworks for WSNs has been the
provision of run-time recon�gurability in dynamic WSN
applications. There are also a few attempts devoted
to porting the existing component-based approaches to
other platforms| e.g., embedded systems, large-scale
systems, to sensor platforms with some minor changes.

NesC [8] is perhaps the best known component
model being designed speci�cally for WSNs and
used to develop TinyOS [18]. Knowing NesC
language, programming in TinyOS is quite simple
and the developed components are reusable in di�erent
applications. As mentioned earlier, the main downside
of NesC is that it is tightly bound to the TinyOS
platform. Moreover, although NesC e�ciently
supports event-driven programming, events in NesC
are not considered as independent entities with their
own attributes and speci�cations. Therefore, the
binding model of event-related components is not
well-described as it is not essentially described based
on the speci�cation of events. Additionally, the
unique features of Remora , such as multiplicity in
component instance and property-based recon�guration
of components bring signi�cant improvements to
component-based programming in WSNs compared to
NesC.

Coulson et al. in [9] propose OpenCom as
a generic component-based programming model for
building system applications without dependency on
any target-speci�c platform environment. The authors
express that they have tried to build OpenCom with
negligible overhead for supporting features speci�c to
a development area, however it is a generic model
and basically developed for platforms without resource
constraints and tends to be complex for embedded
systems.

To evaluate OpenCom , we deployed a samplebeacon
application [19], including Radio, Timer and Beaconcom-
ponents, on a TelosB node with Contiki. Based on our
measurements, the memory footprint of this application
is signi�cantly high, so that it consumes 4; 618 bytes of

TABLE 5. Overview of existing component-based
approaches to WSN programming.

Cost per
OS Core Component

Approach Platform Size(KB) (Bytes)
Lorien Lorien 5.5 350
Think OS-Indep. 2 102
FiGaRo Contiki 2 15
LooCI SunSpot 20 587
Remora OS-Indep. 0.5 8

code memory and 28 bytes of data memory. As a real
application, Gridkit [20] is an OpenCom -based mid-
dleware for sensor networks, realizing co-ordinated dis-
tributed recon�gurations based on policies and context
information provided by a context engine. This middle-
ware was deployed onGumstix -based [21] sensor plat-
forms (a resource-rich node type) for a ood-monitoring
scenario, where the minimum memory requirement of
Gridkit core middleware andOpenCOM run-time is
about 104 KB of memory. Lorien [22] is anOpenCom -
driven approach that was recently proposed to provide
a fully recon�gurable OS platform in WSNs, however
this work is still at an initial stage of development.

FiGaRo [23] is a WSN-speci�c dynamic component
model, focusing on what and where should be
recon�gured. Speci�cally, Figaro proposes a set
of C macros representing a new component model
exploitable over any operating system written in the C
language. However, the dynamic aspect ofFiGaRo |
its main feature|is only exploitable on the Contiki
operating system. Apart from that, FiGaRo fails to
consider event management issues at the component
design level and mostly relies on the operating system's
event handling features.

LooCI [24] is a component-based approach, provid-
ing a loosely-coupled component infrastructure focusing
on an event-based binding model for WSNs, while the
Java-based implementation of LooCI limits its usage
to the SunSPOT sensor node.

The THINK framework [10] is an implementation
of the Fractal [25] component model applied to
operating systems. The choice of the THINK
framework is motivated by the fact that it allows
�ne-grained recon�guration of components. Although
the experiments on deploying THINK components on
WSNs have been quite promising in terms of memory
usage [26], the lack of application-level event support is
the main hurdle for using THINK in WSNs.

Table 5 shows a summarized comparison ofRemora
with other works proposed in this category in terms of
minimum memory required for the core and additional
memory overhead per component.

The OSGi model [27] is a framework targeting
powerful embedded devices, such as mobile phones
and network gateways along with enterprise computers.

The Computer Journal , Vol. ??, No. ??, ????

Page 15 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For R
eview

 O
nly

16 A. Taherkordi et al.

OSGi features a secure execution environment, support
for runtime recon�guration, lifecycle management,
and various system services. While OSGi is
suitable for powerful embedded devices, the smallest
implementation, Concierge [28] consumes more than
80KB of memory, making it inappropriate for resource-
constrained platforms.

OSKit [29] is a set of o�-the-shelf components for
building operating systems. OSKit is developed with
a programming anguage calledKnit [30]. However,
in contrast to NesC, Knit is not limited to OSKit .
Nevertheless,OSKit has adapted the Microsoft COM
model and is not primarily focused on embedded
systems.

6. DISCUSSION: EXTENSION OPPORTU-
NITIES

We believe that the current speci�cation of Remora
along with its low resource requirements can tackle the
concerns we mentioned at the beginning of this paper.
However, there are a number issues|to further support
advanced programming in WSNs|that has not been
considered by the currentRemora yet. In this section,
we focus on these issues and identify potential solutions.
Dynamic Reprogramming. Enabling dynamic
reprogramming in WSNs becomes a vital feature when
the target application is subject to changes| e.g., �xing
bugs, upgrading operating system and applications,
and adapting applications behavior according to the
physical environment [31, 32, 17]. Although the
component-based nature ofRemora can simplify the
support for dynamic replacement of system modules,
the restrictions on the Remora component model,
including the lack of dynamic memory allocation
and the absence of a meta-data to dynamically
handle the interactions between components, make the
recon�guration of Remora components a challenging
issue. In fact, the main problem is that how to
e�ciently provide such a feature in such a way that
the overhead of dynamic memory allocation is carefully
minimized. Reducing the additional memory required
to store the meta-data is another issue in the way of
upgrading Remora to a dynamically recon�gurable
module.
Componentization of an OS using Remora. As
mentioned earlier, the current goal of Remora is to
be exploited only in application-level programming.
However, we believe that the e�cient support of
event processing inRemora potentially enables it to
componentize system level functionalities. This can also
increase the customization of an operating system for a
particular WSN application. In the Blink application,
we implicitly demonstrated this capability by wrapping
the Timer component, which is essentially developed at
the OS level. To address precisely this issue, we need
to enhance the current Remora implementation with
features like concurrency support, task scheduling, and

interrupts handling.
Supporting Preemption. In our current implemen-
tation, a Remora process cannot be preempted by
any other process in the operating system. This issue
becomes critical when a component execution takes a
long time to complete and it causes large average wait-
ing times for other processes waiting for the processor.
The event handling model of Remora can be used to
provide preemption by de�ning a new event type per
preemption-required point of application, while in this
case the component implementation and the event man-
agement become quite complicated. This concern will
also be considered in the future extensions forRemora .
In particular, we intend to promote the native Contiki
macros, handling process lifecycle, to theRemora ap-
plication level. In this way, the Remora component
becomes preemptable by explicitly yielding the running
process.
Distribution Support. Beside the fact that
Remora provides a strong abstraction for single
node programming, the same level of programming
abstraction is expected to occur at the network
level. This challenge opens up another key area
for future work: how to make Remora components
distributed by the provision of a well-de�ned remote
invocation mechanism. In particular, this refers to
rather programming with low-level APIs to provide
distribution; we can automatically generate the code
which is required for sending data over the network
or invoking methods. As a result, the communication
strategy could be rei�ed at the architecture level and
therefore relieve the programmer from dealing with the
speci�cities of the protocol she/he will need to use for
exposing her/his services across the network.

7. CONCLUSION

From a high-level programming point of view, WSNs
are still di�cult to program. Most of the state-
of-the-art programming approaches address this issue
by slightly extending low-level system programming
languages and promoting them as a solution for
application development in WSNs. In this article, we
considered WSN high-level programming as a challenge
independent from low-level programming paradigms
and presented Remora as a novel programming
abstraction for resource-constrained embedded systems.

Remora simpli�es high-level event-driven program-
ming in WSNs by a component-based approach
portable to di�erent operating system platforms. In-
volving PC-based developers in WSN programming and
conforming Remora to the state-of-the-art technolo-
gies for component development are two other chal-
lenges addressed in this article. The special con-
sideration paid to the event abstraction in Remora
makes it a practical and e�cient approach for WSN
applications development. The other key features of
Remora include: simplifying middleware services de-

The Computer Journal , Vol. ??, No. ??, ????

Page 16 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For R
eview

 O
nly

Component-based Approach for Sensor Software 17

velopment, enabling tunability of operating system soft-
ware by wrapper components, rich support of compo-
nent reusability and instantiation, and reduced e�ort
and resource usage in WSN programming.

Careful restrictions on the Remora component
model, including the lack of dynamic memory allocation
and avoiding M-to-N communications between event
producers and event consumers bring signi�cant
improvements to the static deployments in WSNs,
where the main improvement happens in sensor memory
usage. The main additional memory overhead is
induced by the Remora runtime, occupying only 1% of
the total code memory on our sensor platform, which is
a very low overhead considering the provided facilities
and the remaining space in the memory.

The remora future work targets all issues discussed
in the previous section. In particular, we are currently
considering the �rst issue and investigating how the
Remora speci�cation should be modi�ed to support
dynamic programming in WSNs with a reasonable
cost.

ACKNOWLEDGEMENTS

This work was partly funded by the Research Council of
Norway through the project SWISNET, grant number
176151.

REFERENCES

[1] Sugihara, R. and Gupta, R. K. (2008) Programming
models for sensor networks: A survey. ACM
Transactions on Sensor Networks (TOSN) , 4, 1{29.

[2] Szyperski, C. (2002) Component Software: Beyond
Object-Oriented Programming, 2nd edition . Addison-
Wesley, Boston, MA, USA.

[3] Bachmann, F., Bass, L., Buhman, C., Comella-Dorda,
S., Long, F., Robert, J., Seacord, R., and Wallnau,
K. (2000) Technical Concepts of Component-Based
Software Engineering. Technical Report CMU/SEI-
2000-TR-008. Carnegie Mellon Software Engineering
Institute, Pittsburgh, PA, USA.

[4] Van Ommering, R., Van der Linden, F., Kramer, J.,
and Magee, J. (2000) The Koala Component Model for
Consumer Electronics Software. Computer, 33, 78{85.

[5] Genssler, T., Christoph, A., Winter, M., Nierstrasz, O.,
Ducasse, S., Wuyts, R., Ar�evalo, G., Sch•onhage, B.,
M•uller, P. O., and Stich, C. (2002) Components for em-
bedded software: the PECOS approach. Proceedings of
the International Conference on Compilers, Architec-
tures and Synthesis for Embedded Systems (CASES),
Grenoble, France, pp. 19{26. ACM.

[6] Hansson, H., Akerholm, M., Crnkovic, I., and Torngren,
M. (2004) Saveccm - a component model for safety-
critical real-time systems. Proceedings of the 30th
EUROMICRO Conference , Washington, DC, USA, pp.
627{635. IEEE Computer Society.

[7] Pl�sek, A., Loiret, F., Merle, P., and Seinturier,
L. (2008) A component framework for java-based
real-time embedded systems. Proceedings of the
9th ACM/IFIP/USENIX International Conference on

Middleware (Middleware) , Leuven, Belgium, pp. 124{
143. Springer-Verlag.

[8] Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer,
E., and Culler, D. (2003) The nesC language: A
holistic approach to networked embedded systems.
Proceedings of the ACM SIGPLAN 2003 conference
on Programming language design and implementation
(PLDI) , San Diego, California, USA, pp. 1{11. ACM.

[9] Coulson, G., Blair, G., Grace, P., Taiani, F., Joolia,
A., Lee, K., Ueyama, J., and Sivaharan, T. (2008) A
generic component model for building systems software.
ACM Transactions on Computer Systems (TOCS) , 26,
1{42.

[10] Fassino, J.-P., Stefani, J.-B., Lawall, J. L., and
Muller, G. (2002) Think: A Software Framework
for Component-based Operating System Kernels.
Proceedings of the General Track of the annual
conference on USENIX Annual Technical Conference
(ATEC) , Berkeley, CA, USA, pp. 73{86. USENIX
Association.

[11] Taherkordi, A., Loiret, F., Abdolrazaghi, A., Rouvoy,
R., Trung, Q. L., and Eliassen, F. (2010) Programming
Sensor Networks Using Remora Component Model.
DCOSS'10: Proceedings of the 6th International
Conference on Distributed Computing in Sensor
Systems, Santa Barbara, CA, USA, pp. 45{62. Springer.

[12] OSOA. The service component architecture. http:
//www.oasis-opencsa.org/sca .

[13] Dunkels, A., Gronvall, B., and Voigt, T. (2004) Contiki
- A Lightweight and Flexible Operating System for Tiny
Networked Sensors. Proceedings of the 29th Annual
IEEE International Conference on Local Computer
Networks (LCN) , Tampa, Florida, USA, pp. 455{462.
IEEE Computer Society.

[14] Dunkels, A., Schmidt, O., Voigt, T., and Ali, M. (2006)
Protothreads: simplifying event-driven programming of
memory-constrained embedded systems. Proceedings
of the 4th international conference on Embedded
networked sensor systems (SenSys), Boulder, Colorado,
USA, pp. 29{42. ACM.

[15] University of Oslo (2010). The Remora Component
Model. http://folk.uio.no/amirhost/remora .

[16] ANTLR. Parser Generator. http://www.antlr.org .
[17] P�asztor, B., Mottola, L., Mascolo, C., Picco, G. P.,

Ellwood, S. A., and Macdonald, D. W. (2010) Selective
Reprogramming of Mobile Sensor Networks through
Social Community Detection. Proceedings of 7th
European Conference on the Wireless Sensor Networks
(EWSN) , Coimbra, Portugal, pp. 178{193. Springer-
Verlag.

[18] Levis, P., Madden, S., Polastre, J., Szewczyk, R., Woo,
A., Gay, D., Hill, J., Welsh, M., Brewer, E., and Culler,
D. TinyOS: An operating system for sensor networks.
Ambient Intelligence , pp. 15{148.

[19] Chatzigiannakis, I., Fischer, S., Koninis, C., Mylonas,
G., and P�sterer, D. (2009) WISEBED: an Open
Large-Scale Wireless Sensor Network Testbed. 1st In-
ternational Conference on Sensor Networks Applica-
tions, Experimentation and Logistics (SENSAPPEAL) ,
Athens, Greece Lecture Notes of the Institute for Com-
puter Sciences, Social-Inf, pp. 68{87. Springer-Verlag.

The Computer Journal , Vol. ??, No. ??, ????

Page 17 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For R
eview

 O
nly

18 A. Taherkordi et al.

[20] Grace, P., Coulson, G., Blair, G., Porter, B., and
Hughes, D. (2006) Dynamic recon�guration in sensor
middleware. Proceedings of the international workshop
on Middleware for sensor networks (MidSens), pp. 1{6.

[21] Gumstix. http://www.gumstix.com .
[22] Porter, B. and Coulson, G. (2009) Lorien: a

pure dynamic component-based operating system for
wireless sensor networks. Proceedings of the 4th
International Workshop on Middleware Tools, Services
and Run-Time Support for Sensor Networks, Urbana
Champaign, Illinois MidSens '09, pp. 7{12. ACM.

[23] Mottola, L., Picco, G. P., and Sheikh, A. A.
(2008) Figaro: �ne-grained software recon�guration
for wireless sensor networks. Proceedings of the
5th European conference on Wireless sensor networks
(EWSN) , Bologna, Italy, pp. 286{304. Springer-Verlag.

[24] Hughes, D., Thoelen, K., Horr�e, W., Matthys, N.,
del Cid Garcia, P. J., Michiels, S., Huygens, C.,
and Joosen, W. (2009) LooCI: A loosely-coupled
component infrastructure for networked embedded
systems. Proceedings of the 7th International
Conference on Advances in Mobile Computing &
Multimedia , Kuala Lumpur, Malaysia, December, pp.
195{203. ACM.

[25] Bruneton, E., Coupaye, T., Leclercq, M., Qu�ema, V.,
and Stefani, J.-B. (2006) The Fractal component
model and its support in Java. Software Practice and
Experience, special issue on Experiences with Auto-
adaptive and Recon�gurable Systems, 36, 1257{1284.

[26] Lobry, O., Navas, J., and Babau, J.-P. (2009) Opti-
mizing Component-Based Embedded Software. Pro-
ceedings of the 33rd Annual IEEE International Com-
puter Software and Applications Conference (COMP-
SAC), Washington, DC, USA, pp. 491{496. IEEE Com-
puter Society.

[27] OSGi Alliance (1999). The OSGi framework. http:
//www.osgi.org .

[28] Rellermeyer, J. S. and Alonso, G. (2007) Concierge: a
service platform for resource-constrained devices. ACM
SIGOPS Operating Systems Review, 41, 245{258.

[29] Ford, B., Back, G., Benson, G., Lepreau, J., Lin, A.,
and Shivers, O. (1997) The Flux OSKit: a substrate
for kernel and language research. Proceedings of the
16th ACM symposium on Operating systems principles
(SOSP), Saint Malo, France, pp. 38{51. ACM.

[30] Reid, A., Flatt, M., Stoller, L., Lepreau, J.,
and Eide, E. (2000) Knit: component composition
for systems software. Proceedings of the 4th
conference on Symposium on Operating System Design
& Implementation - Volume 4 , San Diego, California
OSDI'00, pp. 24{24. USENIX Association.

[31] Taherkordi, A., Le-Trung, Q., Rouvoy, R., and Eliassen,
F. (2009) WiSeKit : A Distributed Middleware
to Support Application-Level Adaptation in Sensor
Networks. Proceedings of the 9th IFIP WG 6.1
International Conference on Distributed Applications
and Interoperable Systems (DAIS), Lisbon, Portugal,
pp. 44{58. Springer-Verlag.

[32] Taherkordi, A., Rouvoy, R., Le-Trung, Q., and Eliassen,
F. (2008) A self-adaptive context processing framework
for wireless sensor networks. Proceedings of the
3rd international workshop on Middleware for sensor
networks (MidSens), Leuven, Belgium, pp. 7{12. ACM.

The Computer Journal , Vol. ??, No. ??, ????

Page 18 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

