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An Anthropomorphic Navigation Scheme
for Dynamic Scenarios

Leonardo Scandolo and Thierry Fraichard

Abstract— This paper is concerned with the navigation of
personal robots in human-populated environments. The behav-
ior of a person among its peers is governed by a number of
unspoken social rules, e.g. maintaining an appropriate distance.
The primary contribution of this paper is a navigation scheme
that is anthropomorphic, i.e. that emulates human behaviors and
seeks to adhere to these social rules. Unlike previous works
in this area, the focus herein is on dynamic scenarios. The
navigation scheme proposed explicitly reasons on the future
behavior of the people involved so as to produce better socially
acceptable trajectories (not to mention safer trajectories as
well). The navigation scheme relies upon a novel cost function
called the social costmap that captures in a unified way the
different social rules imposed by the people populating the
robot’s workspace.

I. INTRODUCTION

As personal robots become more common, their behavior
needs to be refined in order to meet the expectations of the
general population. Over generations, humans have devel-
oped a form of non-verbal communication that uses space as
its medium. This is the realm of proxemics, which is the area
of study of communication through the use of space, body
positions and proximity [1], [2]. Although these social rules
are not explicit, people feel general discomfort when they are
broken [3]; such is the case when a person stands too close
to another one, or when he turns his back to an interlocutor.
Since it has been shown that people behave towards personal
robots the way they would towards human [4], such rule-
breaking behaviors will cause a similar discomfort when
performed by robots, so it is imperative that the algorithms
that control robots interacting with humans be designed
to emulate the expected behaviors of humans. In other
words, they should yield socially acceptable behaviors so
as to facilitate the integration of robots in human-populated
environments and their acceptance.

This paper is concerned with the navigation of personal
robots in human-populated environments (Fig. 1-top). The
goal is to design a navigation scheme that is anthropo-
morphic, i.e. that emulates human behaviors and adheres
to the unspoken social rules that govern the motion of a
person among its peers. The introduction of social rules in
navigation is fairly recent but interesting results have already
been obtained (see §II). In most cases works in this area
do not fully take the time dimension into account in the
motion planning process; they usually make a “frozen-world”
assumption and rely instead on fast on-line recalculation of
the planned motions to handle the changes in the environ-
ment. However, from a motion safety point of view, the

INRIA, LIG-CNRS and Grenoble University (FR).

Fig. 1. A human-populated environment (top); the corresponding social
costmap (middle); a trajectory planning tree (bottom).

analysis done in [5] has shown the flaw in this assumption
and the importance of explicitly reasoning about the future
evolution of the environment in order to guarantee collision
avoidance. It turns out that this is also true from a behavioral
point of view: it will be shown that better anthropomorphic
behaviors can be obtained by reasoning about the future
evolution of the environment. The focus of the paper is
therefore on dynamic scenarios. The primary contribution
is an anthropomorphic navigation scheme aimed at dealing
with dynamic environments.

To begin with, the social rules that should be obeyed
by the robot are identified. These rules are derived from
works in the fields of environmental psychology (and more
specifically proxemics), and experiments carried out to test
the reactions of people to different behaviors displayed
by robots. Different rules identified in those works lead
to different constraints, from which different mathematical
models are derived. The first contribution of the paper is an
integrated model of these different rules. It takes the form of
a cost function defined on the robot’s workspace. This cost
function is called social costmap (SCM), it captures in a
unified way the social rules imposed by the different people
(whether moving or not) populating the robot’s workspace



(Fig. 1-middle).
The second contribution of the paper is the anthropomor-

phic navigation scheme itself. It follows the Partial Motion
Planning paradigm (PMP), a compromise between purely
reactive navigation and full-fledged motion planning [6],
designed to take into account the various constraints imposed
by dynamic environments: upper-bounded planning time and
motion safety. At each navigation cycle, PMP builds a tree in
the state-time space of the robot and returns the best possible
trajectory (Fig. 1-bottom). In the context of this paper,
PMP uses the information about the future evolution of the
environment and the corresponding SCMs to determine, at
each navigation cycle, the best socially acceptable trajectory.

The paper is organized as follows: the relevant literature
in both Environmental Psychology and Robotics is reviewed
in §II. The social costmap model is presented in §III. The an-
thropomorphic navigation scheme is detailed in §IV. Finally,
experimental results obtained in simulation are presented
in §V.

II. RELATED WORKS

A. Environmental Psychology

The field of environmental psychology has been around
since the second half of the 20th century. It attempts to
understand how a person’s behavior and feelings are affected
by its surroundings. We are interested specifically in the way
the presence and actions of other people affect an individual,
that is to say, the effects of the social environment. This is
because it is important for a robot that needs to move in
a social environment to try to minimize the discomfort it
inflicts on the people around it by behaving in a way similar
to that of a human, since experiments have shown that people
behave around robots as they do around other people [4].

An important area of environmental psychology for this
work is thus proxemics, which deals with the way people
interact with each other through the use of space. The idea
that a person may have a notion of personal space which
is around himself and is a cause of discomfort when other
people trespass it dates from the 1950’s [1]. Edward T.
Hall coined the word proxemics by combining the words
proximity and semiotics. He wanted to convey the idea of
people communicating by the use of space and other physical
factors [2].

One of the first papers to delve into the matter of prox-
emics is [2]. In it, Hall describes a system for classifying
different types of proxemic behavior, such as face orientation,
proximity, voice loudness and posture among others. The
system is fairly simple and oriented towards instructing
an anthropologist on what cues to give attention to while
observing a social interaction; nevertheless it is very useful
for understanding how to model non-verbal communication
and unspoken social rules for close interaction.

Since then, experiments have been carried out to try to
best define the notion of personal space and to assess its
size and the reaction of people to it being violated. In [3],
Middlemist et al. conducted an experiment that confirms that
violation of personal space is a cause of arousal, which leads

to discomfort. Kaya and Erkı́p in [7] show how personal
space changes in size and shape in crowded areas and also
depending on the sex of the person. In [8] and [9] an
overview of the field of environmental psychology and non
verbal communication can be found. The author of [8] cites
numerous results on the field, which lead him to make some
observations on the subject of personal space, its shape, and
factors that may affect it. Some of the conclusions in his
book are that personal space is mostly circular (if viewed
from above) and slightly bigger on the front. Also, the shape
and size of a person’s personal space are different depending
on the person’s race and culture. He also observes that in
crowded spaces, people tend to disregard personal space, and
treat other people as they would objects.

Other more subtle factors also play a role in the field of
environmental psychology. In [10], the reaction of people
to different types and amounts of eye contact are analyzed,
as well as the way it influences other behaviors. Argyle,
in [8], analyzes a lot of different factors that take part in
social interactions, such as posture, gaze direction, gestures,
physical contact and smell among others. In [11], Sisbot et al.
proposes and tests a general human aware navigation scheme.
In it, humans are modeled by describing their structure and
kinematics, including their position and orientation, and in-
formation needed to compute costs depending on the person’s
geometric configuration and pose. Taking these variables into
account, several criteria are used to construct potential fields
in a 2d grid in which the space is divided, and then merge
them into a single grid that the planner uses to calculate the
optimum plan for a given situation. An A∗ algorithm is used
to find the best route between two points in the grid. It is
assumed in the work that any person in the environment is
static, and it relies on fast recalculation time should a person
move.

B. Robotics

In [12] a model is presented to attempt to mimic the
behavior of a human while joining, maintaining and leaving
a group conversation. Its input is limited to the location
and orientation of humans in the environment. With this
information, a robot regulates its velocity in order to maintain
a constant distance with a person, and an orientation that
allows it to face him. For groups of people an average of the
velocity and orientation is computed to ensure that the robot
faces the middle of the group and stays within a coherent
distance of all the participants.

Amaoka et al. in [13] propose a mathematical model
of personal space in order to apply it to agents in virtual
worlds and simulate realistic behavior. They use two 2-
dimensional Gaussian functions which represent the personal
space around an individual. They then test a very simple
navigation scheme using this information.

In [14], a navigation planner is presented for different
tasks. It works by applying an A∗ algorithm over a variable
size 2-dimensional grid. The humans and the robot in the
environment are modeled by their pose and velocity, and the
planner takes into account the expected result of an action on



the configuration of the robot and the expected change in the
position of a person to assess the fitness of a possible robot
action. The planner assumes that there will be no change in
the velocity of any of the people in the environment, and
relies on fast on-line recalculation should a change occur.

In [15], human safety for the use of high-speed robots is
enforced through the use of a velocity limit that is dependent
on the distance to a human. The authors ran experiments and
concluded that a linear relation exists between velocity and
distance that ensures that people in the robot’s environment
do not experience any discomfort or uncertainty because of
the robot’s motions.

Lastly, the work in [16] very closely resembles the one
presented in this paper; it was published after the initial
submission of this work and brought to our attention by our
reviewers. The authors of that work present an approach that
builds a cost map of the environment and arrive at a trajectory
building upon an RRT planner. The main differences between
the two works reside in the definition of the cost map, as well
as in the actual use of the cost map during the planning stage.
While they simply sample the configuration-time space and
expand using a typical RRT scheme, and then choose the best
path based on the cost map, the work presented here takes the
cost map into account during the tree creation, thus biasing
the paths created towards more socially acceptable ones.

III. SOCIAL COSTMAP MODEL

A. Environment

The model of the world presented in this section will
be 2-dimensional, meaning that the workspace W will be
equivalent to R2.

The positions and vectors specified will be given for a
common fixed frame of reference.

1) People: A human in the environment will be modeled
as a tuple p = (px, py, pθ, pv, pr), where:
• (px, py) ∈ R2 is the position of the person.
• pθ ∈ S is the gaze direction of the person
• pv ∈ R2 is the linear velocity of a person
• pr ∈ R is the radius of the disk that represents the person.

2) Objects in the environment: The information about
the obstacles in the environment will also be present in
order to avoid plans that will lead to a collision. In this
case an object B can have an arbitrary geometric shape
and location. Therefore the environment will also contain
n objects B1, . . . ,Bn where Bi ⊂ W ∀i.

3) Interaction sets: One of the goals of the planning
algorithm is to avoid trajectories where the robot blocks the
vision of a person with respect to the entity or entities he
is interacting with. These can be either objects or people in
the environment. Therefore a list of interaction sets which
can contain people and objects in the environment will be
available. These sets will indicate the assumption that all the
entities in it are interacting with each other, either actively
or passively. The space between two interacting entities will
be referred to as an interaction region.

4) Social environment: The social environment of the
robot will consist of a set of people ps =

⋃
p, a set of objects

Bs =
⋃
B and the set of all interaction sets is. Therefore,

besides the information about the robot that is being planned
for, the input of the planning algorithm will consist of the
social environment S = {Bs, ps, is}.

B. Constraints

The social costmap (SCM ) will take as input the social
environment S and map points in the workspace W to a
cost value in the range [0,∞]; lower values representing
lower discomfort caused by a robot occupying that point
in space. It will be defined as an aggregate of different
cost functions that arise from constraints imposed by social
behavior expectations.

1) Static Personal Space: Personal space is a very im-
portant concept, and it is central to Hall’s proxemic theory.
In his seminal works, such as [2], he proposes the idea
of different spaces of interaction for humans, which are
concentric rings around an individual. He refers to them, in
increasing size order, as intimate, personal, social and public
spaces. Unwanted invasion of a person’s personal space is
cause of discomfort and anxiety, even more so for invasion
of the intimate space. Hall’s concept of interaction spaces
of a person will be modeled as a costmap whose costs will
be symmetrical around him. The cost function regarding a
person p for a point r = (rx, ry) in this case will be PS
defined as:

PS(p, r) =



∞ if d ≤ pr

1
wi(d−pr)

+ wI if pr < d ≤ di

(wI − wP ) e
−
(

d−di
2w2

p

)
if di < d ≤ dp

wp e
−
(

d−dp

2c2s

)
if dp < d

Where d = dist(p, r) is the distance between point r and the
center of the circle by which person p is modeled. Parameter
distances di and dp represent the intimate space radius and
the personal space radius respectively. The slopes of the
function are defined by the weight parameters wi, wp and
ws.

2) Back Space: In general, a human is most comfortable
when he is aware of all the moving objects or people in his
environment. Therefore it is sensible to censor trajectories
that travel closely behind a person because they stand to
cause fear or discomfort. Psychological works such as [3]
provide empirical evidence of this behavior. This constraint
attempts to minimize that discomfort by assuming a blind
angle of α radians behind an individual, and giving the
space directly inside that region a high cost value, which
will decrease the further away the point is, anda the smaller
the angular distance with the gaze line. The cost function will
only take non-zero values inside back space region of angle
α. The vector j = −pθ is defined, and is the inverse vector
from the person’s gaze vector, which points in the direction



of the blind zone. The vector v = (px, py)− (rx, ry) is also
defined. The back space function BS will be defined as:

BS(p, r) =

 0 if ∠(j, v) > α
2

wm β(g, r) e
−
( |d|2

2w2
s

)
otherwise

Again d is the distance between point r and person p.
The weight parameter wm controls maximum value of the
cost of the function and the weight parameter ws controls its
slope. The function β(g, r) provides a weight for the angular
distance between the gaze direction and the vector v.

3) Personal Space during Motion: During motion the
personal space of a person is enlarged as a natural safety
measure to avoid coming close to an obstacle. This ensures
that the person has enough time to maneuver should some-
thing unexpected happen. The study performed in [17] found
that personal space during motion resembles an ellipse.The
motion space (MS) costmap will be defined in order to
capture the constraints imposed by this behavior. The point
(cx, cy) is defined as the projection of the point r = (rx, ry)
into the reference frame whose origin is (px, py) and whose
positive y axis is aligned with the subject’s velocity vector
(pv). The definition of the personal space function during
motion follows:

MS(p, r) =

 wm e
−
(

c2x
2w2

mx
+

c2y

2w2
my

)
if cy > 0

0 otherwise

In this case wmx and wmy define the ellipsis’ slope and
size so they are dependent on pv , such that for an average
walking velocity the costmap that is formed will be of a
size according to the findings of [17]. As it stands, wmx and
wmy can (and should) have different change rates. wm is
a parameter that defines the maximum height of this cost
function.

4) Merging the different constraints: A unified model of
the personal space constraints needs to be defined, contem-
plating the concepts of static personal space, back space
and personal space during motion. Therefore the dynamic
personal space (DPS).

The DPS will be defined in a way that will ensure
that static personal space is always preserved, but when
a subject starts walking, his personal space will morph
accordingly.The DPS costmap will be defined simply as:

DPS(p, r) = max(BS(p, r),MS(p, r), PS(p, r))

One parametrization of the DPS costmap is shown in Fig. 2,
for a human moving forward at a velocity assumed to be the
normal walking speed of an individual.

5) Interaction regions: The purpose of this constraint can
be simply stated as “Do not traverse the space between
two interacting entities.” Behavioral experiments such as
[18] attest that unwanted interruption of visual connection
between interacting entities is cause of discomfort.

For every interaction set i in S, we will model this
constraint as a cost function defined as follows:

Fig. 2. Dynamic Personal Space

• For the case where there are only 2 elements in the
interaction set i, namely e1 and e2, the whole region between
them will be considered as a high cost area. That area will
be defined as the convex hull of e1 ∪ e2. Formally, this cost
function will be modeled as:

IR(i, r) =

{
wm if r ∈ ch(e1, e2)
0 otherwise

Where ch(e1, e2) ⊂ R2 is the convex hull of e1 ∪ e2, and
the weight parameter wm defines the cost of the interaction
region.

• For the case of 3 elements or more in i, the point cp is
defined as the barycenter of all the positions of the elements.
The interaction region for the set i will be defined as the
union of the interaction regions defined between the elements
of i and an interaction focus if . The region occupied by if
will be a circle with center point cp, and whose radius wr
is a parameter of the cost function. Formally, the interaction
region cost is defined as:

IR(i, r) =

{
wm if ∃e ∈ i . r ∈ ch(e, if)
0 otherwise

Where again wm defines the cost of the interaction region.
6) Merging all the constraints: The social costmap cost

function will be defined as the summation of the costmaps
we have defined previously, this is modeled this way so as to
give higher costs to areas in which a higher amount of people
are being disturbed, thus ensuring that the least people are
discomforted by the chosen trajectory. The social costmap is
therefore defined as:

SCM(S, r) =
∑
p∈S

DPS(S, p, r) +
∑
i∈S

IR(i, r)

IV. ANTHROPOMORPHIC NAVIGATION SCHEME

A. Partial motion planning

Given the dynamicity of an environment populated with
people, a navigation scheme needs to comply with real time
constraints in order to ensure safety conditions. That is why
we chose to implement a partial motion planning (PMP)[6]
scheme that makes use of the social cost map.

This scheme iterates allowing a lower level planner create
a map for a limited time. Once the time is up, it takes the
first steps of the best trajectory found so far and concurrently



Fig. 3. A house scenario (left), the social costmap mapped (middle) and an iteration of the planner (right).

executes those steps while allowing the lower level plan-
ner to continue calculating a best trajectory with updated
information about the environment. This ensures that the
planner is responsive and works with up-to-date data on its
surroundings.

B. Building the tree

For the lower level planner which builds a tree to explore
the state-time space, an RRT [19] method was chosen.

At each iteration, this method picks a random configu-
ration and expands the closest node to it towards it. This
ensures a rapid coverage of the configuration space, ensured
by the randomness of the configuration chosen at every step.

The algorithm implemented slightly modifies the way in
which a regular RRT planner works by making use of the
SCM: every time a new node is expanded its SCM value is
computed and stored; when the algorithm needs to choose
the nearest neighbor to expand, and the action control to
apply, the metric used is biased towards less costly states,
ensuring that states which cause discomfort on people are
less frequently expanded.

C. Choosing a trajectory

Once the time to expand the tree has expired, a branch of
the tree must be chosen that will provide a trajectory for the
robot to follow. The selection of this branch is in this case
biased towards the least costly trajectories in terms of the
social cost function. All of the nodes in the tree are assessed
and the one that provides the best compromise between a
defined metric for the configuration space of the robot and
the aggregated cost of its branch is selected for execution.

V. SIMULATION RESULTS

A. Simulation

The planner was implemented within a ROS1 based navi-
gational architecture. Within this architecture, it consists of a
node which receives information about the expected behavior
of the people in its environment and the static obstacles in
it; it then iterates providing an incremental plan which is
executed by another component in the ROS architecture, and
its behavior is simulated in the 3D simulator Gazebo2 in
order to assess the characteristics of the plans returned by
the planner.

1www.ros.org
2www.playerstage.sourceforge.net

B. Robot model

A differential drive monocycle system was used for the
experiments. Therefore the states of the robot A consist of
a tuple s = (x, y, θ, v, ω) where (x, y) is the position of the
robot, θ its orientation, v its linear velocity and ω its angular
velocity.

A control action for the model is a tuple u = (σ, ε) where
σ is the linear acceleration and ε the angular acceleration.

The differential equations for the model follow:

ẋ = v cos θ
ẏ = v sin θ

θ̇ = ω
v̇ = σ
ω̇ = ε

Where the acceleration and velocity values have upper and
lower bounds.

C. Results

The planner was tested in several scenarios, which provide
distinct difficulties that the planner should overcome gra-
ciously. They included bar and factory settings, open areas
such as parks or streets, and more space restricted settings
such as a hallway, an elevator and an office entrance.

The scenarios provided great input in order to fine tune the
cost model. Once that phase was completed, it was successful
at navigating through all the situations that were created.

Fig. 3 shows the house scenario.The SCM is plotted in
a grid, with red points indicating high cost areas.The plan
that is chosen in one of the iterations of the algorithm is
highlighted in the last frame, among the tree that is built for
that time window.

Fig. 4. Sequence depicting the trajectory chosen by the planner in the
factory scenario in order to avoid crossing the paths of incoming people



Fig. 5. Difference between the plans outputted by the planner when only
state space is explored (left) and when state-time space is explored (right)

TABLE I
AVERAGE EXECUTION TIMES FOR DIFFERENT STEPS OF THE PLANNER

Exec. Time
SCM cost calculation <10 µs

RRT iteration 0.1 ms

Finding best plan 0.16 ms

Fig. 4 shows the trajectory the planner arrived at in a
situation where several people are coming towards the robot.
In this case a plan was chosen that stays away from incoming
people as much as possible by timing its passing through
different corridors in order not to run into any human.

Fig. 5 depicts the different trajectories arrived at by both
the planner and a modified version of it that works only in
state space for the door crossing scenario. In it it is clearly
visible the increase in quality of the trajectries taken by the
planner when the time dimension is taken into account.

Table I shows average computing times for several parts of
the trajectory planner. The results were obtained on a laptop
with an Intel Core2 Duo running at 2.8 GHz. The amounts of
nodes tested and added to the tree per PMP cycle averaged
between 2100 and 2800 for a time window of half a second.
The SCM cost calculation is fast enough not to produce any
noticeable performance change as the number of people in
the environment varies.

VI. CONCLUSIONS AND FUTURE WORK

An anthropomorphic navigation scheme has been pre-
sented that utilizes information about its environment to com-
pute trajectories that are socially acceptable. This navigation
scheme is based on a Partial Motion Planning architecture.
At its core it utilizes a modified version of an RRT algorithm
that uses costmap information to bias the tree expansion
towards less costly trajectories. The costmap is obtained
from a model of acceptable human spatial behavior, which
is supported by empirical data obtained in the field of
proxemics, and on human-robot interaction experiments.

The navigation scheme was successfully tested in a sim-
ulated environment to assess the quality of the approach;
several scenarios with unique difficulties were tested to make
sure the approach is sound and the plans reached respected
the basic principles of human proxemics.

Future work lies in the direction of imposing stricter safety
constraints into the planner, such as adding an inevitable
collision states checker [20]. Another line of work could
lie in exploring different ways of using the SCM described,
such as implementing the techniques found in [21]. Other
future works include extending the model to allow for more
complex interactions, such as following a person, or handing
over objects, and using a flocking simulator such as [22] to
better predict human motion in a real environment.

Finally, testing this planning scheme on a robotic platform
in a real life situation is a pending line of work.
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