N

N
N

HAL

open science

Improving Parallel Local Search for SAT

Alejandro Arbelaez, Youssef Hamadi

» To cite this version:

Alejandro Arbelaez, Youssef Hamadi. Improving Parallel Local Search for SAT. Learning and Intelli-

gent OptimizatioN Conference LIONS, Jan 2011, Rome, Italy. inria-00563775

HAL Id: inria-00563775
https://inria.hal.science/inria-00563775
Submitted on 7 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00563775
https://hal.archives-ouvertes.fr

Improving Parallel Local Search for SAT

Alejandro Arbelaez!, Youssef Hamadi??

! Microsoft-INRIA joint-lab, Orsay France
alejandro.arbelaez@inria.fr
2 Microsoft Research, Cambridge United Kingdom
3 LIX Ecole Polytechnique, F91128 Palaiseau, France
youssefh@microsoft.com

Abstract. In this work, our objective is to study the impact of knowl-
edge sharing on the performance of portfolio-based parallel local search
algorithms. Our work is motivated by the demonstrated importance of
clause-sharing in the performance of complete parallel SAT solvers. Un-
like complete solvers, state-of-the-art local search algorithms for SAT
are not able to generate redundant clauses during their execution. In our
settings, each member of the portfolio shares its best configuration (i.e.,
one which minimizes conflicting clauses) in a common structure. At each
restart point, instead of classically generating a random configuration to
start with, each algorithm aggregates the shared knowledge to carefully
craft a new starting point. We present several aggregation strategies and
evaluate them on a large set of problems.

Keywords: local search, SAT solving, parallelism.

1 Introduction

Complete parallel solvers for the propositional satisfiability problem have re-
ceived significant attention recently. These solvers can be divided into two main
categories the classical divide-and-conquer model and the portfolio-based ap-
proach. The first one, typically divides the search space into several sub-spaces
while the second one lets algorithms compete on the original formula [1]. Both
take advantage of the modern SAT solving architecture [2], to exchange the
conflict-clauses generated in the system and improve the overall performance.
This push towards parallelism in complete SAT solvers has been motivated by
their practical applicability. Indeed, many domains, from software verification to
computational biology and automated planning rely on their performance. On
the contrary, since local search techniques only outperform complete ones on
random SAT instances, their parallelizing has not received much attention so
far. The main contribution on the parallelization of local search algorithms for
SAT solving basically executes a portfolio of independent algorithms which com-
pete without any communication between them. In our settings, each member of
the portfolio shares its best configuration (i.e., one which minimizes the number
of conflicting clauses) in a common structure. At each restart point, instead of

classically generating a random configuration to start with, each algorithm ag-
gregates the shared knowledge to carefully craft a new starting point. We present
several aggregation strategies and evaluate them on a large set of instances.

This paper is organized as follows: background material is presented in section
2. Section 3 describes previous work on parallel SAT and cooperative algorithms.
Section 4 presents our methodology and our aggregation strategies, section 5
evaluates them, and section 6 presents some concluding remarks and future
directions of research.

2 Background

2.1 The Propositional Satisfiability Problem

The Propositional Satisfiability Problem (SAT) can be represented by a pair
(V,C) where, V indicates a set of boolean variables and C a set of clauses repre-
senting a propositional conjunctive-normal form (CNF).

Solving a SAT problem involves finding a solution i.e., a truth assignment for
each variable such that all clauses are satisfied, or demonstrating that no such
assignment can be found. If a solution exist the problem is stated as satisfied
and unsatisfied otherwise. Currently, there are two well established techniques
for solving SAT problems, complete and incomplete techniques [3], the former
is developed on top of the DPLL algorithm. It combines a tree-based search
with constraint propagation, conflict-clause learning, and intelligent backtrack-
ing while the latter is based on local search algorithms to quickly find a truth
assignment for a given satisfiable instance [4].

2.2 Local Search for SAT

Algorithm 1 describes a traditional local search algorithm for SAT solving, it
starts with a random truth assignment for each variable in the formula F' (initial-
configuration line 2), and the key point of local search algorithms is depicted in
lines (3-9) here the algorithm flips the most appropriate variable candidate until
a solution is found or a given number of flips is reached (MaxFlips), after this
process the algorithm restarts itself with a new (fresh) random configuration.

As one may expect, a critical part of the algorithm is the variable selec-
tion function (select-variable) which indicates the next variable to be flipped
in the current iteration of the algorithm. Broadly speaking, there are two main
categories of variable selection functions, the first one motivated by the GSAT
algorithm [5] is based on the following score function:

score(x) = make(x) — break(x)

Intuitively make(x) indicates the number of clauses that are currently sat-
isfied but flipping become unsatisfied, and break(z) indicates the number of
clauses that are unsatisfied but flipping x become satisfied. In this way, local
search algorithms select the variable with minimal score value (preferably with

negative value), because flipping this variable would most likely increase the
chances of solving the instance.

The second category of variable selection functions is the Walksat-based one
[6] which includes a diversification strategy in order to avoid local minimums,
this extension selects, at random, an unsatisfied clause and then picks a vari-
able from that clause. The variable that is generally picked will result in the
fewest previously satisfied clauses becoming unsatisfied, with some probability
of picking one of the variables at random.

Algorithm 1 Local Search For SAT (CNF formula F, Max-Flips, Max-Tries)

1: for try := 1 to Max-Tries do
2: A := initial-configuration(F).
3 for flip := 1 to Max-Flips do
4 if A satisfies F then

5: return A

6 end if

7 x := select-variable(A)

8: A := A with x flipped

9: end for

10: end for

11: return ’No solution found’

2.3 Refinements

This section briefly reviews the main characteristics of state-of-the-art local
search solvers for SAT solving. As pointed out above these algorithms are de-
veloped to deal with the variable selection function and are mainly devoted to
avoid getting trapped in a local minima. This way, the following list describes
several well-known mechanisms for selecting the most appropriate variable to
flip at a given state of the search.

— Novwelty [7] firstly selects an unsatisfied clause ¢ and from c selects the best
Vpest and second best vopes; variable candidates, if vpes; is not the latest
flipped variable in ¢ then Novelty flips this variable, otherwise vapes; is flipped
with a given probability p and vpes: with probability 1 — p. Important exten-
sions to this algorithm can be found in Nowvelty+, Novelty++ and Novelty+p.

— GPWSAT [8] (G2) uses a list of promising decreasing variables to determine
the next variable to be flipped and if the list of decreasing variables is empty
the algorithm uses Nowelty++ as a backup heuristic. G2 WSAT+p (G2+p)
uses a similar strategy that G2 WSAT however in this case the backup solver
is Novelty+p.

— Scaling and Probabilistic Smoothing (SAPS) [9] implements a multiplicative
increase rule to dynamically modify the penalty for unsatisfied clauses and
with a given probability Pis..ocn this penalty value is adjusted according to
a given smoothing factor p.

— Pure Additive Weighting Scheme (PAWS) [10] implements an additive in-
crease rule to dynamically modify the penalty for unsatisfied clauses and if a
given clause penalty has been changed a given number of times this penalty
value is adjusted.

— Reactive SAPS (RSAPS) [9] extends SAPS by adding an automatic tuning
mechanism to identify suitable values for the smoothing factor p.

— Adaptive Novelty+ (AN+) [11] uses an adaptive mechanism to properly tune
the noise parameter of Walksat-like algorithms (e.g, Novelty+)

— Adaptive G2 WSAT (AG2) [12] aims to integrate an adaptive noise mecha-
nism into the G2 WSAT algorithm. Similarly, Adaptive G> WSAT+p (AG2+p)
also uses an adaptive noise mechanism into the G2 WSAT+p algorithm.

3 Previous Work

In this section, we review the most important contributions devoted to parallel
SAT solving and cooperative algorithms.

3.1 Complete Methods for Parallel SAT

GrADSAT [13] is a parallel SAT solver based on the zChaff solver and equipped
with a master-slave architecture in which the problem space is divided into sub-
spaces, these sub-spaces are solved by independent zChaff clients and learnt
clauses whose size (i.e., number of literals) is less or equal to a given limit are
exchanged between clients. The technique organizes load-balancing through a
work stealing technique which allows the master to push work to idle clients.

Unlike other parallel solvers for SAT which divide the initial problem space
into sub-spaces, ManySAT [1] is a portfolio-based parallel solver where inde-
pendent DPLL algorithms are launched in parallel to solve a given problem
instance. Each algorithm in the portfolio implements a different and comple-
mentary restart strategy, polarity heuristic and learning scheme. In addition,
the first version of the algorithm exchanges learnt clauses whose size is less or
equal to a given limit. It is worth mentioning that ManySAT won the 2008
SAT Race, the 2009 SAT Competition and was placed second in the 2010 SAT
Race (all these in the parallel track). Interestingly all the algorithms successfully
qualified in the 2010 parallel track were based on a Portfolio architecture.

In [14] the authors proposed a hybrid algorithm which starts with a tra-
ditional DPLL algorithm to divide the problem space into sub-spaces. Each
sub-space is then allocated to a given local search algorithm (Walksat).

3.2 Incomplete Methods for Parallel SAT

PGSAT [15] is a parallel version of the GSAT algorithm. The entire set of vari-
ables is randomly divided into 7 subsets and allocated to different processors.
In this way at each iteration, if no global solution has been obtained, the i*"

processor uses the GSAT score function (see section 2) to select and flip the best
variable for the i*" subset. Another contribution to this parallelization architec-
ture is described in [16] where the authors aim to combine PGSAT and random
walk, therefore at each iteration, with a given probability wp an unsatisfiable
clause c is selected and a random variable from c is flipped and with probability
1-wp. PGSAT is used to flip 7 variables in parallel at a cost of reconciling partial
configurations to test if a solution has been found.

gNovelty+ (v.2) [17], belongs to the portfolio approach, this algorithm exe-
cutes n independent copies of the gNovelty+ (v.2) algorithm in parallel, until at
least one of them finds a solution or a given timeout is reached. This algorithm
was the only parallel local search solver presented in the random category of the
2009 SAT Competition*

In [18], Kroc et al., studied the application of a parallel hybrid algorithm
to deal with the max-SAT problem. This algorithm combines a complete solver
(minisat) and an incomplete one (Walksat). Broadly speaking both solvers are
launched in parallel and minisat is used to guide Walksat to promising regions
of the search space by means of suggesting values for the selected variables.

3.3 Cooperative Algorithms

In [19] a set of algorithms running in parallel exchange hints (i.e., partial valid
solutions) to solve hard graph coloring instances. To this end, they share a
blackboard where they can write a hint with a given probability ¢ and read a
hint with a given probability p.

In [20] the authors studied a sequential cooperative algorithm to deal with
the office-space-allocation problem. In this paper cooperation takes place when
a given algorithm is not able to improve its own best solution, at this point
a cooperative mechanism is used to explore suitable partial solutions stored
by individual heuristics. This algorithm is also equipped with a diversification
strategy to explore different regions of the search space.

Although Averaging in Previous Near Solutions [21] is not a cooperative al-
gorithm by itself, this method is used to determine the initial configuration for
the " restart in the GSAT algorithm. Broadly speaking, the initial configura-
tion is computed by performing a bitwise average between variables of the best
solution found during the previous restart (restart;_1) and two restarts before
(restart;_s). That is, variables with same values in both configurations are re-
used, and the extra set of variables are initialized with random values. Since
overtime, configurations with a few conflicting clauses tend to become similar,
all the variables are randomly initialized after a given number of restarts.

4 Knowledge Sharing in Parallel Local Search for SAT

Our objective is to extend a parallel portfolio of state-of-the-art local search
solvers for SAT with knowledge sharing or cooperation. Each algorithm is going

4 http://www.satcompetition.org/2009/

to share with others the best configuration it has found so far with its respective
cost (number of unsatisfied clauses) in a shared pair (M, C).

X1 X2 ... X
Xo1 Xao ... Xop
M = . L. C=[Cy,Cyy...,C.

X Xea oo Xep

Where n indicates the total number of variables of the problem and ¢ indicates
the number of local search algorithms in the portfolio. In the following we are
associating local search algorithms and processing cores. Each element Xj; in
the matrix indicates the " variable of the best configuration found so far by
the j*" core. Similarly, the j** element in C indicates the cost for the respective
configuration in M.

These best configurations can be exploited by each local search to build a new
initial configuration. In the following, we propose seven strategies to determine
the initial configuration (cf. function initial-configuration in algorithm 1).

4.1 Using Best Known Configurations

In this section, we propose three methods to build the new initial configuration
init by aggregating best known configurations. In this way, we define init; for
all the variables X;,i € [1..n] as follows:

1. Agree: if there exists a value v such that v=X; for all j € [1..c] then nit;=v,
otherwise a random value is used.

2. Magority: if there exists two values v and v’ such that [{X;; = v|j € [1..c]}| >
{Xji =v'|j € [1..c]}| then init;=v, otherwise a random value is used.

3. Prob: init;=1 with probability pones=%"%> and init;=0 with probability 1 —
Pones, Where ones = [{X;; = 1|j € [1..c]}|.

4.2 Weighting Best Known Configurations

In contrast with our previous methods where all best known solutions are treated
equally important, the methods proposed in this section use a weighting mech-
anism to consider the cost of best known configurations. The computation of
the initial configuration init uses one of the following two weighting systems:
Ranking and Normalized Performance, where values from better configurations
are most likely to be used.

Ranking This method sorts the configurations of the shared matrix from worst
to best according to their cost. The worst ranked one gets weight of 1 (i.e.,
RankW;=1), and the best ranked ¢ (i.e., RankW,=c).

Normalized Performance This method assigns weights (NormW) consider-
ing a normalized value of the number of unsatisfied clauses of the configuration:

€| = Cj

NormW; = C]

Using the previous two weighting mechanisms, we define the following four
extra methods to determine initial configurations.
To this end, we define @(val, Weight) =3, x,,=vary Weight.

1. Majority RankW:: if there exists two values v and v’ such that (v, RankW) >
&(v', RankW) then init;=v, otherwise a random value is used.
2. Magjority Normalized W : if there exists two values v and v such that &(v, NormW) >
&(v', NormW) then init;=v, otherwise a random value is used.
3. Prob RankW: init;=1 with probability PRoneS:% and init;=0
with probability 1- Prones, where Rones=®(1, RankW') and Rzeros=®(0, RankW).
4. Prob NormalizedW': init;=1 with probability Pyones=< 22 and init;=0

Nones+N zeros

with probability 1-Pyones, where Nones=®(1, NormW) and N zeros=®(0, NormW)

4.3 Restart Policy

As mentioned earlier on, shared knowledge is exploited when a given algorithm
is restarted. At this point the current working configuration of a given algo-
rithm is re-initialized according to a given aggregation strategy. However, it is
important to restrict cooperation since it adds overheads and more importantly
tend to generate similar configurations. In this context, we propose a new restart
policy to avoid re-initializing the working configuration again and again. This
new policy re-initializes the working configuration for a given restart (i.e., every
MaxFlips) if and only if, performance improvements in best known solutions
have been observed during the latest restart window. This new restart policy is
formally described in the following definition, where we assume that bcg; is the
cost of the best known configuration for a given algorithm i up to the (k — 1)
restart.

Definition 1 At a given restart k for a given algorithm i the working config-
uration is reinitialized iff there exists an algorithm q such that begg # be—_1)q
and q # 1.

5 Experiments

5.1 Experimental Settings

We conducted experiments using instances from the RANDOM category of the
2009 SAT competition. Since state-of-the-art local search solvers are unable to

solve UNSAT instances, we filtered out these instances. We also removed in-
stances whose status was reported as UNKNOWN in the competition. This way,
we collected 359 satisfiable instances.

We decided to build our parallel portfolio on UBCSAT-1.1, a well known local
search library which provides efficient implementation of the latest local search
for SAT algorithms [22]. We did preliminary experiments to extract from this
library the 8 algorithms which perform best on our set of problems. From that,
we defined the following three baseline portfolio constructions where algorithms
are independent searches without cooperation. The first one pcores-PAWS uses
p copies of the best single algorithm (PAWS), the second portfolio 4cores-No
sharing uses the best subset of 4 algorithms (PAWS, G2+p, AG2, AG2+p)
and the last one 8cores-No sharing uses all the 8 algorithms (PAWS, G2+p,
AG2, AG2+p, G2, SAPS, RSAPS, AN+). All the algorithms were used with
their default parameters, and without any restart. Indeed these techniques are
equipped with important diversification strategies and usually perform better
when the restart flag is switched off (i.e., MaxFlips=00).

On the other hand, the previous knowledge aggregation mechanisms were
built on top of a portfolio with 4 algorithms (same algorithms as 4cores-No
sharing) and a portfolio with 8 algorithms (same algorithms as 8cores-No shar-
ing). There, we used the modified restart policy described in section 4.3 with
MazxFlips set to 10,

All tests were conducted on a cluster of 8 Linux Mandriva machines with 8
GB of RAM and two quad-core (8 cores) 2.33 Ghz Intel Processors. In all the
experiments, we used a timeout of 5 minutes (300 seconds) for each algorithm in
the portfolio, so that for each experiment the total CPU time was set to ¢ x 300
seconds, where ¢ indicates the number of algorithms in the portfolio.

We executed each instance 10 times (each time with a different random seed)
and reported two metrics, the Penalized Average Runtime (PAR) [23] which
computes the average runtime overall instances, but where unsolved instances
are considered as 10x the cutoff time, and the runtime for each instance which is
calculated as the median across the 10 runs. Overall, our experiments for these
359 SAT instances took 187 days of CPU time.

5.2 Practical Performances with 4 Cores

Fig. 1 shows the results of each aggregation strategy using a portfolio with
4 cores, comparatively to the 4 cores baseline portfolios. The x-axis gives the
number of problems solved and the y-axis presents the cumulated runtime.

As expected, the portfolio with the top 4 best algorithms (4cores-No Sharing)
performs better (309) that the one with 4 copies of the best algorithms (4cores-
PAWS) (275).

The performance of the portfolios with knowledge sharing is quite good.
Overall, it seems that adding a weighting mechanism can often hurt the per-
formance of the underlying aggregation strategy. Among the weighting options,
it seems that the Normalized Performance performs better. The best portfolio

1200~

—+— 4cores-PAWS
—&— 4cores-No Sharing £
4— 4cores—Agree 4
—+— 4cores-Majority / o
1000 4cores—Prob / T
4cores—Majority RankW T
—*— 4cores—Majority NormalizedW
—#— 4cores—Prob RankW F
—=4A— 4cores—Prob NormalizedW

800

600

Time(s)

400

200

0 S e
200 220 240 260 280 300 320 340
Solved Instances

Fig. 1. Number of solved instances using 4 cores in a given amount of time

implements the Prob strategy without any weighting (329). This corresponds to
a gain of 20 problems against the corresponding 4cores-No Sharing baseline.

A detailed examination of cores-Prob and 4cores-No Sharing is presented
in Figs. 2 and 3. These Figures show, respectively, a runtime and a best configu-
ration cost comparison. In both figures, points below (resp. above) the diagonal
line indicate that /cores-Prob performs better (resp. worse) than /cores-No
Sharing. In the runtime comparison, we observe that easy instances are corre-
lated as they require few steps to be solved, and for the remaining set of instances
4cores-Prob usually exhibits a better performance. On the other hand, the sec-
ond figure shows that when the instances are not solved, the median cost of the
best configuration (number of unsatisfied clauses) found by 4cores-Prob is usu-
ally better than for 4cores-No Sharing. Notice that some points are overlapped
because the two strategies reported the same cost.

All the experiments using 4 cores are summarized in Table 1, reporting for
each portfolio the number of solved instances (#solved), the median time across
all instances (median time), the Penalized Average Runtime (PAR) and the to-
tal number of instances that timed out in all the 10 runs (never solved). These
results confirm that sharing best known configurations outperforms independent

1200 . . LK)

1]
.
. ¢
H
1000 H
. . .
.
.
800
= .
£ . et
I .
8 600t .
% . .
8
3 . . .
8 o .
400 . :
.
<
H . . °
H . .
. :
200 . - . . . H
e . LI
-,
b9 ¥. .’. . . . o . °® .
o] e L L L L L]
0 200 400 00 1000 1200

Fig. 2. Runtime comparison, each point indicates the runtime to solve a given instance
using 4cores-Prob (y-axis) and jcores-No Sharing (x-axis)

351
al
250 .
]
8 2
Qo
o
o
|
b
o
8150 .
<
1p
058 . . .
0 | | |
0 05 1 25 3 35

15
4Cores-No Sharing cost

Fig. 3. Best configuration cost comparison on unsolved instances. Each point indicates
the best configuration (median) cost of a given instance using jcores-Prob (y-axis)
and 4cores-No Sharing (x-axis)

searches, for instance 4cores-Prob and jcores-Prob Normalized W solved respec-
tively 20 and 17 more instances than 4cores-No Sharing and all the cooperative
strategies (except 4cores-Majority RankW) exhibit better PAR. Interestingly,
4cores-PAWS exhibited the best median runtime overall the experiments with
4 cores, this fact suggests that PAWS by itself is able to quickly solve an im-
portant number of instances. Moreover, only 2 instances timeout in all the 10
runs for jcores-Agree and 4cores-Prob Normalized W against 7 for 4cores-No
Sharing. Notice that this Table also includes 1core-PAWS, the best sequential
local search on this set of problems. The PAR score for 1core-PAWS is lower
than the other values of the table because this portfolio uses only 1 algorithm,
therefore the timeout is only 300 seconds, while 4 cores portfolios use a timeout
of 1200 seconds.

lStrategy [#solved[median time| PAR |never solved
lcore-PAWS 249 1.76 911.17 71
4cores-PAWS 275 1.63 2915.19 61
4cores-No Sharing 309 2.19 1901.00 7
4cores-Agree 321 2.54 1431.33 2
4cores-Majority 313 2.53 1724.94 11
4cores-Prob 329 2.51 1257.93 4
4cores-Majority RankW 304 2.47 1930.61 11
4cores-Majority NormalizedW| 314 2.48 1807.42 9
4cores-Prob RankW 316 2.53 1621.33 7
4cores-Prob NormalizedW 326 2.50 1261.82 2

Table 1. Overall evaluation using 4 cores

5.3 Practical Performances with 8 Cores

We now move on to portfolios with 8 cores. The results of these experiments are
depicted in Fig. 4 indicating the total number of solved instances within a given
amount of time. As in previous experiments, we report the results of baseline
portfolios Scores-No Sharing and Scores-PAWS, and in this case we focus the
experiments on Prob and Prob NormalizedW (the best two strategies using 4
cores). We can observe that the cooperative portfolios largely outperform the
non-cooperative ones.

Table 2 summarizes these results, and once again it includes the best indi-
vidual algorithm running in a single core. We can remark that Scores-Prob and
8cores-Prob NormalizedW solve respectively 24 and 16 more instances than
8cores-No Sharing. Furthermore, it shows that knowledge sharing portfolios are
faster than individual searches, with a PAR of 3743.63 seconds for 8cores-No
Sharing against respectively 2247.97 for 8cores-Prob and 2295.99 for Scores-
Prob NormalizedW . Finally, it is also important to note that only 1 instance

2400

—+— 8cores—PAWS @ Ve

—8— 8cores-No Sharing M ’ 4&
~— 8cores—Prob / 2
- f

—+— 8cores—Prob NormalizedW |

2000

1500

Time(s)

1000

500

200 220 240 260 280 300 320 340
Solved Instances

Fig. 4. Number of solved instances using 8 cores in a given amount of time

timed out in all the 10 runs for 8cores-Prob Normalized W against 8 for Scores-
No Sharing.

lStrategy ‘#solved‘median time‘ PAR ‘never solved
lcore-PAWS 249 1.76 911.17 71
8cores-PAWS 286 2.00 5213.84 56
8cores-No Sharing 311 2.33 3743.63 8
8cores-Prob 335 2.45 2247.97 2
8cores-Prob NormalizedW| 327 2.47 2295.99 1

Table 2. Overall evaluation using 8 cores

Extensive experimental results presented in this paper show that Prob (4
and 8 cores) exhibited the overall best performance. We attribute this to the
fact that the probability component of this method balances the exploitation of
best solutions found so far with the exploration of other values for the variables,
helping in this way, to diversify the new starting configuration.

5.4 Hardware Impact

In this section, we wanted to assess the inherent slowdown caused by increased
cache, and bus contingency when more processing cores are used at the same
time. To this end we decided to run our PAWS baseline portfolio where each in-
dependent algorithm uses the same random seed on respectively 1, 4 and 8 cores.
Since all the algorithms are executing the same search, this experiment measures
the slowdown caused by hardware limitations. The results are presented in Fig.
5.

The first case executes a single copy of PAWS with a timeout of 300 seconds,
the second case executes 4 parallel copies of PAWS with a timeout of 1200
seconds (4 x 300) and the third case executes 8 parallel copies of PAWS with a
timeout of 2400 seconds (8 x 300).

300 T
.
250 N
. °
L)

200 . il
)
£ 2
s .
(%] . 4
g 150 .)
o -
g
Jd .

100 B

50 i 4
o
L
0
0 50 100 150 200 250 300

1 Core runtime

Fig. 5. Runtime comparison using parallel local search portfolios made of respectively
1, 4, and 8 identical copies of PAWS (same random seed). Red points indicate the
performance of 4 cores vs 1 core. Black points indicate the performance of 8 cores vs 1
core, points above the blue line indicate that 1 core is faster

Finally, we estimate the runtime of each instance as the median across 10 runs
(each time with the same seed) divided by the number of cores. In this figure,
it can be observed that the performance overhead is almost not distinguishable
between 1 and 4 cores (red points). However, the overhead between 1 and 8 cores
is important for difficult instances (black points).

6 Conclusions and Future Work

In this work, our objective was to integrate knowledge sharing strategies in
parallel local search for SAT. We were motivated by the recent developments
in parallel DPLL solvers. We decided to restrict the information shared to the
best configuration found so far by the algorithms in a portfolio. From that we
defined several simple knowledge aggregation strategies along a specific lazy
restart policy which creates a new initial configuration when a fix cutoff is meet
and when the quality of the shared information has been improved.

Extensive experiments were done on a large number of instances coming from
the latest SAT competition. They showed that adding the proposed sharing
policies improves the performance of a parallel portfolio, this improvement is
exhibited in both number of solved instances and the Penalized Average Runtime
(PAR). Tt is also reflected in the best configuration cost of problems which could
not be solved within the time limit.

We believe that our work represents a very first step in the incorporation of
knowledge sharing strategies in parallel local search for SAT. Further work will
investigate the use of additional information to exchange, for instance: tabu-list,
the age and score of a variable, information on local minima, etc. It should also
investigate the best way to integrate this extra knowledge in the course of a given
algorithm. As said earlier, state-of-the-art local search perform better when they
do not restart. Incorporating extra information without forcing the algorithm to
restart is likely to be important.

7 Acknowledgements

We would like to thank Said Jabbour and Ibrahim Abdoulahi for helpful dis-
cussions about parallel SAT solving and the anonymous reviewers for their com-
ments which helped to improve this paper.

References

1. Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: A Parallel SAT Solver. Journal on
Satisfiability, Boolean Modeling and Computation, JSAT 6 (2009) 245-262

2. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an Efficient SAT Solver. In: Proceedings of the 38th Design Automation
Conference (DAC’01). (2001) 530-535

3. Bordeaux, L., Hamadi, Y., Zhang, L.: Propositional Satisfiability and Constraint
Programming: A Comparative Survey. ACM Comput. Surv. 38(4) (2006)

4. Hoos, H.H., Stiitzle, T.: Local Search Algorithms for SAT: An Empirical Evalua-
tion. J. Autom. Reasoning 24(4) (2000) 421-481

5. Selman, B., Levesque, H.J., Mitchell, D.G.: A New Method for Solving Hard
Satisfiability Problems. In 440-446, ed.: AAAIL (1992)

6. Selman, B., Kautz, H.A., Cohen, B.: Noise Strategies for Improving Local Search.
In: AAAL (1994) 337-343

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

McAllester, D.A., Selman, B., Kautz, H.A.: Evidence for Invariants in Local Search.
In: AAAT/TAAL (1997) 321-326

Li, C.M., Huang, W.Q.: Diversification and Determinism in Local Search for Sat-
isfiability. In Bacchus, F., Walsh, T., eds.: SAT’05. Volume 3569 of LNCS., St.
Andrews, UK, Springer (June 2005) 158-172

Hutter, F., Tompkins, D.A.D., Hoos, H.H.: Scaling and Probabilistic Smoothing:
Efficient Dynamic Local Search for SAT. In Hentenryck, P.V., ed.: CP’02. Volume
2470 of LNCS., Ithaca, NY, USA, Springer (September 2002) 233-248

Thornton, J., Pham, D.N., Bain, S., Ferreira Jr, V.: Additive versus Multiplicative
Clause Weighting for SAT. In McGuinness, D.L., Ferguson, G., eds.: AAAI, San
Jose, California, USA, AAAT Press / The MIT Press (July 2004) 191-196

Hoos, H.H.: An Adaptive Noise Mechanism for WalkSAT. In: AAAT/TAAL (2002)
655-660

Li, C.M., Wei, W., Zhang, H.: Combining Adaptive Noise and Look-Ahead in
Local Search. In Marques-Silva, J., Sakallah, K.A., eds.: SAT’07. Volume 4501 of
LNCS., Lisbon, Portugal, Springer (May 2007) 121-133

Chrabakh, W., Wolski, R.: GridSAT: A System for Solving Satisfiability Problems
Using a Computational Grid. Parallel Computing 32(9) (2006) 660-687

Zhang, W., Huang, Z., Zhang, J.: Parallel Execution of Stochastic Search Pro-
cedures on Reduced SAT Instances. In Ishizuka, M., Sattar, A., eds.: Pacific
Rim International Conferences on Artificial Intelligence (PRICAI). Volume 2417
of LNCS., Tokyo, Japan, Springer (August 2002) 108-117

Roli, A.: Criticality and Parallelism in Structured SAT Instances. In Hentenryck,
P.V., ed.: CP’02. Volume 2470 of LNCS., Ithaca, NY, USA, Springer (September
2002) 714-719

Roli, A., Blesa, M.J., Blum, C.: Random Walk and Parallelism in Local Search.
In: Metaheuristic International Conference (MIC’05), Vienna, Austria (2005)
Pham, D.N., Gretton, C.: gNovelty+ (v.2). In: Solver description, SAT competition
2009. (2009)

Kroc, L., Sabharwal, A., Gomes, C.P., Selman, B.: Integrating Systematic and
Local Search Paradigms: A New Strategy for MaxSAT. In Boutilier, C., ed.: IJCAI,
Pasadena, California (July 2009) 544-551

Hogg, T., Williams, C.P.: Solving the Really Hard Problems with Cooperative
Search. In: AAAIL (1993) 231-236

Silva, D.L., Burke, E.K.: Asynchronous Cooperative Local Search for the Office-
Space-Allocation Problem. INFORMS Journal on Computing 19(4) (2007) 575—
587

Selman, B., Kautz, H.A.: Domain-Independent Extensions to GSAT: Solving Large
Structured Satisfiability Problems. In: IJCAL (1993) 290-295

Tompkins, D.A.D., Hoos, H.H.: UBCSAT: An Implementation and Experimen-
tation Environment for SLS algorithms for SAT and MAX-SAT. In Hoos, H.H.,
Mitchell, D.G., eds.: SAT’04. Volume 3542 of LNCS., Vancouver, BC, Canada,
Springer (2004) 306-320

Hutter, F., Hoos, H.H., Leyton-Brown, K.: Tradeoffs in the Empirical Evaluation
of Competing Algorithm Designs. Annals of Mathematics and Artificial Intelligenc
(AMALI), Special Issue on Learning and Intelligent Optimization (2010)

