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ABSTRACT
In this paper, we present an approach to calculate the wavefront in
the back pupil plane of an objective in a fluorescent MACROscope.
We use the three-dimensional image of a fluorescent bead because it
contains potential pupil information in the ‘far’ out-of-focus planes
for sensing the wavefront at the back focal plane of the objective.
Wavefront sensing by phase retrieval technique is needed for several
reasons. Firstly, the point-spread function of the imagingsystem
can be calculated from the estimated pupil phase and used forimage
restoration. Secondly, the aberrations in the optics of theobjective
can be determined by studying this phase. Finally, the estimated
wavefront can be used to correct the aberrated optical path with-
out a wavefront sensor. In this paper, we estimate the wavefront of
a MACROscope optical system by using Bayesian inferencing and
derive the Gerchberg-Saxton algorithm as a special case.

Index Terms— fluorescence MACROscopy, phase retrieval,
field aberration, Gerchberg-Saxton algorithm, Bayes’ theorem

1. INTRODUCTION

The MACROscope is an imaging arrangement for analyzing micro-
scopic and MACROscopic preparations by collecting the emitted flu-
orescence from a preparation [see1]. The working principle behind
such a MACROscope is similar to that of a fluorescence microscope
except for (an) additional zoom lens(es). This extra attachment to
the objective lens makes it possible to view large object fields and to
work at larger distances. Fig.1 shows a schematic of the MACRO-
scope with the arrows showing the axial movement of the motorized
control and the zoom lens system. By fixing the objective and chang-
ing the zoom positions, the system can work at a distance of about
80mm above the specimen and provide a20mm (diagonal diameter)
field-of-view (FOV).

In this paper, we tackle the problem of phase retrieval as it is
linked to the problem of object restoration from observed intensities
using a calculated point-spread function (PSF). In addition, the shape
of the wavefront determines the type of aberrations during imaging
and also permits its eventual correction. In literature, prior work re-
lated to this subject is on wavefront reconstruction using adaptive
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Fig. 1. Schematic of a MACROscope showing axial zoom and mo-
torized control. Reproduced from [1].

optics (AO) [see2; 3; 4]. The AO methods are based on the idea of
phase aberration compensation by physically adding a special con-
jugate element in the optical system. A review of the recent trends in
AO is given in [5]. In [6], the amplitude and phase of the pupil func-
tion was measured by using a fiber-optic interferometer. We will see
how wavefront sensing could also be done computationally from a
Bayesian perspective and derive the Gerchberg-Saxton (GS)[7] al-
gorithm as a special case.

This article is organized as follows. In Section2, we provide the
background for a scalar PSF calculation and the mathematical frame-
work for the Bayesian interpretation. As the MACROscope’s zoom
is variable, for a fixed objective magnification, the workingeffective
numerical aperture (NA) of the optical system is unknown. Asa re-
sult, for the algorithm, the effective NA needs to be calculated from
the images of point sources. The objective lens of a MACROscope
is corrected for certain aberrations like the chromatic aberration. As
the MACROscope works under very low NA (the illumination and
the emission rays are nearly paraxial), the spherical aberration due to
the difference in the refractive index between the objective immer-
sion medium and the specimen medium is negligible. Nevertheless,
the use of different apertures for changing the zoom can cause other
aberrations. We will see towards the end of this article, in Section3,
how the retrieved phase can be used to detect such aberrations.

2. WAVEFRONT SENSING-A BAYESIAN
INTERPRETATION

Wavefront sensing by phase retrieval is the process of estimating
the amplitude and the phase of a pupil function from the observed
intensities of a point source. In order to develop our phase retrieval
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algorithm, we have to look at the scalar diffraction model ofthe mag-
nitude PSF. From the Kirchhoff-Fraunhofer approximation [see8],
we can write the near-focus amplitude PSF,hA(x,y,z), in terms of
the inverse Fourier transform of the two-dimensional (2-D) exit pupil
function,P(kx,ky,z), at each defocusz as

hA (x,y,z) = F−1
2D {P(kx ,ky,z)} , (1)

where(x,y,z) ∈ Ωs and (kx ,ky,kz) ∈ Ω f are the coordinates in
the spatial and in the pupil domain. The above expression states
that the field distribution of a point source in an image spaceis
the inverse Fourier transform of the overall complex field distribu-
tion of the wavefront, in the back pupil plane of the optical system.
We also notice that the inverse Fourier transform of an unaberrated
pupil, when considered as a circular disc, gives an Airy discpattern
(Besselfunction). If we represent(kx ,ky) in the radial coordinates,

θi = arcsin((k2
x + k2

y)
1/2/ki) andki = 2πni/λex. ni is the refrac-

tive index of the objective immersion medium andλex the excitation
wavelength. The pupil function, after including defocus and aberra-
tions, can be written as

P(kx,ky,z) =







exp(jk0 ϕ(θi,θs,z)), if
(k2

x+k2
y)

1
2

ki
<

NA
ni

,

0, otherwise,
(2)

where NA= ni sinα, andα is the maximum semi-aperture angle so
that θi ≤ α. ϕ(θi,θs,z) is the optical phase difference between the
wavefront emerging from the exit pupil and a reference wave.In
the above expression, the amplitude of the pupil function isapprox-
imated to be a constant.θs is the angle in the object plane related
to θi by Snell’s law asni sinθi = ns sin θs, andns is the refractive
index of the specimen medium.

The phaseϕ(θi,θs,z) is the sum of the defocus termϕd(θi,z)
and the aberration phaseϕa(θi,θs). P. A. Stokseth [9] gave the ex-
pression for this defect of focus as:

ϕd(θi,z;ni)≈ niz(1− cosθi) . (3)

In this case, as the medium between the lens and the specimen is
air, ni = 1.0. For a widefield MACROscope, the emission ampli-
tude PSF,hA (x;λem), could be assumed to be close to the excitation
amplitude PSF,hA(x;λex), so that they are related to the magnitude
PSF,h(x), by

h(x) = |hA (x;λex)|
2 . (4)

In the entire expression forh(x), as the only unknown is the phase
ϕa(θi,θs) from the aberrations, the problem of phase retrieval is a
question of estimating the aberrated phase from the observed inten-
sities. As we are working on a MACROscope under low NA, the
effect of polarization can be neglected and a scalar diffraction model
is sufficient.

2.1. Maximum likelihood algorithm

If we consider the assumption of Poissonian photon countingstatis-
tics [see10], the observation can be written as:

i(x) = P{|hA(x)|
2 + b(x)} ,∀x ∈Ωs , (5)

where b(x) is the low-frequency background signal [10]. In the
above expression, we assume that the fluorescent bead can be con-
sidered as a point source. The background,b(x), can be estimated
either from a single dark image of the CCD or from the histogram.

To estimate the amplitude PSF,hA (x), from the intensity image,
i(x), we use Bayesian inferencing. From the Bayes’ theorem, the
posterior probability is

Pr(hA |i) =
Pr(i|hA)Pr(hA )

Pr(i)
, (6)

wherePr(hA) is a p.d.f, the prior from whichhA is assumed to
be generated. Pr(i|hA) is the likelihood function for the PSF
and it specifies the probability of obtaining an imagei(x) from a
diffraction-limited point source:

Pr(i|hA) = ∏
x∈Ωs

(hA + b) (x)i(x)exp (− (hA + b) (x))

i(x)!
. (7)

An estimate of the near-focus amplitude distribution,ĥA , can be ob-
tained by using the maximum a posteriori (MAP) estimate or bymin-
imizing the cologarithm of thea posteriorias

ĥA (x) = argmax
hA (x)

Pr(hA |i), s. t. kMAX <
2πNA

λex
,

= argmin
hA(x)

− log[Pr(hA |i)], s. t. kMAX <
2πNA

λex
, (8)

wherekMAX is the maximum frequency permissible by the pupil
of the imaging system. AsPr(i(x)) does not depend onhA (x), it
can be considered as a normalization constant, and it shall hereafter
be excluded from all the estimation procedures. The minimization
of the cologarithm ofPr(hA |i) in Eq. (6) can be rewritten as the
minimization of the following joint energy functional:

J (hA |i) = − log[Pr(hA |i)] = Jobs(i|hA)
︸ ︷︷ ︸

Image energy

+Jreg,hA
(hA )

︸ ︷︷ ︸

Prior energy

. (9)

Jobs: Ωs 7→C is a measure of fidelity to the data and it corresponds
to the cologarithm of the termPr(i|hA) from the noise distribution.
It has the role of pulling the solution towards the observation data.
We make a decision about the underlying scene based on this cost
function, and it specifies the penalty paid by the system in producing
an incorrect estimate of the scene.Jreg,hA

: Ωs 7→ R corresponds to
the penalty termPr(hA ) that ensures smoothness of the solution. For
the GS algorithm, as there is no intrinsic smoothness term, to com-
pare our approach with the GS algorithm, we drop the prior energy
term in Eq. (6) (by assuming a uniform distribution). The amplitude
PSF can be estimated by the maximum likelihood (ML) algorithm:

ĥA(x) = argmin
hA (x)

Jobs(i|hA) , s. t. kMAX <
2πNA

λex

= argmin
hA (x)

− log[Pr(i|hA)], s. t. kMAX <
2πNA

λex
,

= argmax
hA (x)

|hA (x)|
2 − i(x) log

(

|hA(x)|
2 + b(x)

)

,

s. t. kMAX <
2πNA

λex
. (10)

As there is no closed-form solution to the above problem, we use the
following fixed-point iterative algorithm:

ĥ
(n+1)
A (x) = ĥ

(n)
A − τ

∂

∂hA (x)
Jobs(i|hA) . (11)



In the above iterative step,τ ∈ [0,1] is a scaling factor and the gra-
dient of the cost function in Eq. (11) is

∂

∂hA
Jobs(i|hA) =

∂

∂hA
{|hA |

2 + b− i log|
(

hA |
2 + b

)

} ,

=

(

hA(−x)−
i(x)

(|hA (x)|2 + b(x))
hA (−x)

)

,

∀x ∈Ωs . (12)

wherehA (−x) is the complex conjugate transpose ofhA (x). From
Eq. (11) and (12) we get the fixed-point iterative algorithm for the
near-focus amplitude PSF as

ĥ
(n+1)
A (x) = ĥ

(n)
A (x)− τ×



ĥ
(n)
A (−x)−

i(x)
(

|ĥ
(n)
A (x)|2 + b(x)

) ĥ
(n)
A (−x)



 , (13)

∀x ∈ Ωs. For the above iterations, the initial pupil function,
P̂(0)(kx,ky,z = 0), is chosen to be a disc with a maximum radius
of kMAX and phase zero (cf. Eq. (2)). This is inverse Fourier trans-

formed to get̂h(0)A (x) (cf. Eq. (1)). The iterations are done until ei-
ther the mean-squared error (MSE) between the phase estimates for
two successive iteration is below a certain value or a certain number
of iterations is reached by the algorithm. It is important tonote that
although the given observation is real, the final estimateĥA(x) is
complex.

2.2. The Gerchberg-Saxton algorithm

The GS algorithm is a pupil phase estimation technique of forward
and inverse Fourier transforms on the observation. This problem
of phase retrieval is normally under-determined. However,as the
phase that is to be estimated does not change with defocus, itcan
be estimated if images of point source at multiple defocus positions
are available. The only requirement is that these sections are as far
away as possible from the central defocus section. This is because,
the extremity sections have more information about the conjugate
plane than the center. As the distance from the center tends towards
infinity, the intensity slice at infinity directly gives the back pupil
plane. However, the measurement of defocused beads becomesin-
creasingly difficult in practice for larger defocusing due to the de-
caying intensity withz, which imposes a compromise.

The initialization of the pupil function is same as that for the
fixed-point iterative algorithm. A suitable phase curvature is added
to this complex pupil function to obtain the defocus adjusted com-
plex pupil function,P(kx ,ky,z), at every defocusz. This is inverse
Fourier transformed (cf. Eq. (4)) to get the corresponding amplitude
PSF (hA (x)) intensities at the different defocus planes. The mag-
nitude ofhA (x) is assigned to the corresponding measured intensi-
ties (after background subtraction) at the different defocus planes.
A Fourier transform of this modifiedhA (x) gives the new estimate
of the defocus-adjusted complex exit pupil function,P̂(kx ,ky,z), at
the different defocus positions ofz. The resulting defocus-adjusted
complex pupil functions are readjusted back to zero and averaged to
get a new estimate of the complex exit pupil functionP̂(kx,ky,z =
0). This process is repeated until the MSE criterion or the maximum
iteration is reached. Some constraints are introduced during the it-
erative algorithm that can aid in the convergence of the algorithm.
The progress of the fixed-point algorithm is same as the GS algo-
rithm except for Step5 in Algorithm 1. We see that whenτ = 1 in

begin
Input : Observed:M defocus sections ii(x), ∀x ∈Ωs.
Data: Maximum iterationnMAX .
Output : Complex pupil functionP̂(kx ,ky,z = 0).

1. Initialization:n← 0, calculateP̂(n)(kx ,ky,z = 0) (cf.
Eq. (2)).
2. Preprocessing: Estimate backgroundb̂.
i(x)← i(x)− b̂ and seti(x) = {0 : forall i(x)< 0}.
while n ≤ nMAX do

while m ≤ M do
3. Adjust defocus:P̂(n)(kx ,ky,z(m))←

P̂(n)(kx,ky,z(m))exp(iϕd(kx,ky,z(m))) (cf.
Eq. (3)).
4. Pupil to PSF:

ĥ
(n)
A (x)←F−1

2D {P̂
(n)(kx ,ky,z)}

5. Assign:|ĥ(n)
A (x)| ← (i(x))1/2.

6. PSF to pupil:

P̂(n+1)(kx ,ky,z)←F2D{ĥ
(n)
A (x)}.

7. Readjust defocus:̂P(n+1)(kx,ky,z)←

P̂(n+1)(kx ,ky,z)exp(−iϕd(kx ,ky,z)).
8. Projection: Impose NA limit on
P̂(n+1)(kx ,ky,z) to remove higher frequencies.

end
end

end
Algorithm 1 : The Gerchberg-Saxton algorithm.

Eq. (12), then the factori(x)/(|ĥ(n)
A (x)|2 + b(x)), at each iteration,

performs the assigning operation of Step5.

3. RESULTS AND DISCUSSION

For the experiments, we chose fluorescent microspheres of size
2.5µm from Molecular Probes’. We diluted a1µl of this suspension
in 20µl of distilled water and dried a drop of this on to a coverslip.
These dried beads were then imaged using a LeicaTM MacroFluoTM

fit with a 5× planapochromatic HR objective and16 zoom positions.
The maximum NA of this system is0.5. Two zoom positions are
considered at9.2× (radial sampling178.33nm and axial sampling
1000nm), and1.6× (radial sampling998.3nm and axial sampling
1000nm).

Given the fact that the MACROscope works under a variable
zoom, the NA of the optical mount is variable. If we consider the
light as a cone, the apex of the cone is at the central observedinten-
sity plane and the base of the cone is the observed diffraction ring
at a defocus plane of distanceH away from the center.D is the di-
ameter of the largest concentric ring of the base. For the observed
intensities in Fig.2(a)/(b), for a zoom of9.2×, the maximum ra-
dius of the diffractive ring pattern at a distance ofH = 61µm away
from the center was measured to be about32.46µm. The measured
radius D/2 is related to the angleα and the defocus distanceH
by tan(α) = D/2H = 32.46/61 = 0.53. The maximum subtended
semi-cone angle will beα = arctan(0.53) = 0.49 radians. Since
ni = 1, the effective NA can be calculated to be about0.47 which
is closer to the manufacture specified NA of0.5. If we consider an-
other set of images taken under a zoom of1.6×, D was measured to
be32.70µm for a H of 71µm. In this case the NA was calculated as
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Fig. 2. Radial and axial intensity projection of a2.5µm fluores-
cent bead on a log scale. The beads were imaged using a LeicaTM

MacroFluoTM . (a) and (b) are taken from the field centre, and at a
zoom9.2× with a radial sampling of178.33nm and axial sampling
of 1000nm. The projection along the radial plane shows the overlap
region marked in white. (c) and (d) are taken from the periphery,
and at a zoom1.6× with a radial sampling of998.3nm and axial
sampling of1000nm.

0.22. We use these two calculated NA values to limit the frequency
bandwidth in the pupil plane of Eq. (1).

Four defocus sections were chosen above and below the cen-
tral defocus reference plane of the1.6× image that is shown in
Fig. 2(c)/(d). This bead is cropped from the periphery of the field.
One of the defocus sections is shown in Fig.3(a). The wrapped phase
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Fig. 3. (a) The first section of the observed intensity,z = −57µm,
and (b) retrieved wrapped pupil phase from the intensity images of
Fig.2(c), (d). τ = 0.6 and the maximum number of iteration is1000.

of the pupil is retrieved after about1000 iterations of the fixed-point
algorithm, withτ = 0.6, is shown in Fig.3(b). In order to reduce
noisy estimates, at each iteration, the estimate obtained from the GS
algorithm is filtered by a Gaussian filter with a standard-deviation
σ = 356.66nm. However, this is anad hocmethod. Instead, at each
iteration of the fixed-point iterative algorithm, the estimated pupil
function is regularized by a total variation functional [see 10]. We

noticed that the solution relatively stabilizes after about 300 itera-
tions and does not deteriorate any further.

From the estimated phase, we see that the pupil function of the
optical system is chopped. This chopping of the pupil, or the‘cat’s’
eye effect [see11], is a result of two limiting apertures (the objective
and the zoom) brought together without any tele-centric correction.
This effect can also be seen in the axial projection in Fig. 2(b), and in
the defocus section of Fig. 3(a). For ease of understanding,the defo-
cus projection of the image is demarcated with two white circles to
show that the PSF axis is not parallel to the optical axis. Ourfuture
work is aimed at correcting this field aberration computationally.
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