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Abstract

Software systems are seen more and more as evolutive systems. At the design phase,

software is constantly in adaptation by the building process itself, and at runtime, it

can be adapted in response to changing conditions in the executing environment such

as location or resources. Adaptation is generally difficult to specify because of its cross-

cutting impact on software. This article introduces an approach to unify adaptation at

design and at runtime based on Aspect Oriented Modeling. Our approach proposes a

unified aspect metamodel and a platform that realizes two different weaving processes

to achieve design and runtime adaptations. This approach is used in a Dynamic Soft-

ware Product Line which derives products that can be configured at design time and

adapted at runtime in order to dynamically fit new requirements or resource changes.

Such products are implemented using the Service Component Architecture and Java.

Finally, we illustrate the use of our approach based on an adaptive e-shopping scenario.

The main advantages of this unification are: a clear separation of concerns, the self-

contained aspect model that can be weaved during the design and execution, and the

platform independence guaranteed by two different types of weaving.
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1. Introduction

Forty years after the first conference on Software Engineering [1] and almost

twenty years after the IEEE Computer Society has standardized this discipline, Soft-
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ware Engineering is still struggling to produce large software systems [2, 3]. As it

was already pointed out by the NATO conference and formalized by M.M. Lehman

[4], two main reasons for this situation are (1) the fact that software systems have an

intrinsic increasing complexity, but also (2) that such systems are living entities with a

continuous infinite life cycle.

Software Product Line (SPL) engineering was mainly introduced to deal with the

intrinsic increasing complexity [5]. SPL focuses on variability management and aims

at deriving different products from a same product family. In SPL, feature diagrams

express the variability of a same product family by defining its variants and its variation

points [6, 7]. Based on a feature diagram, one of the most difficult SPL challenges is

Product Derivation (PD), which is the complete process of building a particular product

belonging to the product family [8]. The PD defines how assets are selected according

to a given feature configuration, and specifies how those assets are composed in order

to build the desired product.

Aspect-Oriented Software Development (AOSD) and Model-Driven Engineering

(MDE) can be used to face the issue of continuous infinite life cycle. AOSD and MDE

follow the well-known separation of concerns principle, which has been proven to pro-

vide many benefits, including reduced complexity, improved reusability, and easier

evolution [9]. Thanks to AOSD, software systems can be modularized using orthog-

onal aspects that are woven at the production time [10]. MDE deals with levels of

abstraction and considers any software artifact produced at any step of the develop-

ment process as a valuable asset by itself to be reused across different systems and

implementation platforms[11].

The Aspect Oriented Modeling (AOM) initiative introduces the AOSD principles

in the MDE development process, particularly in the composition and transforma-

tion phases [12] [13]. AOM is currently being used within more and more SPL ap-

proaches [14, 15, 16, 17] in order to compose assets selected from a feature diagram.

Those approaches however only contribute to the design phases of the software life

cycle. The system features and their corresponding assets are modeled using AOM

techniques. The product derivation process is supported by automatic model composi-

tions and transformations. As a consequence, they are used to build software systems

that, once deployed, cannot be easily evolved.

New concerns like ubiquitous computing, mobile and autonomous systems em-

phasize on dynamic adaptation, which is usually achieved by performing structural or

behavioral changes at runtime. Some SPL approaches contribute to the runtime phase

[18, 19]. They are based on rules specifying the contextual changes that trigger the dy-

namic adaptation of a software system. Although some of those approaches make use

of aspects to specify and realize dynamic adaptation, they define new mechanisms that

differ from those involved in existing SPL approaches focusing on the design phase.

As a consequence, there exist no unified AOM-based SPL approach that covers the

complete life cycle, from design to runtime.

In this article, we propose such a unified approach, the goal of which is to support

the complete software life cycle: from feature selection and initial product derivation,

to runtime adaptation in response to changes of the execution environment. Our ap-

proach considers that the creation of the initial product is performed through design

adaptations. Once created and deployed, the product can then be subject to dynamic



adaptations. Our approach unifies design and runtime adaptations by representing both

categories of adaptation as executable aspect models.

The approach is built on two main entities. First, an unified aspect metamodel is

used to support the definition of both design and runtime adaptations. Second, a plat-

form transparently realizes the adaptations expressed by means of the unified meta-

model. This platform is composed of two independent mappings that support weaving

at design or at runtime. The weaving at design time links the elements of the aspect

in the design model. The result of such a weaving can then be further transformed

into platform-specific models and code. The weaving at runtime dynamically links the

elements of the aspect to the running system.

The main advantages of our approach are: (1) a clear separation of concerns

achieved by defining aspect models, (2) the possibility of weaving such aspects at dif-

ferent phases of the application lifecycle (design and runtime), and (3) the platform

independence guaranteed by aspects that are agnostic to the underlying technologies

used for each weaving. The proposed approach has been implemented and validated in

a Dynamic SPL called CAPucine [20].

The remainder of this article is structured as follows. Section 2 presents the mo-

tivation behind the definition and implementation of aspect models at design and at

runtime. Section 3 describes our approach in detail. In Section 4 we illustrate with an

e-commerce example how this approach can be used in the context of a dynamic SPL.

The advantages and disadvantages of our approach are discussed in Section 5. Section

6 presents the related work. In Section 7, we draw our conclusions and anticipate future

work.

2. Motivation

In all software processes, existing software can be adapted either at the design

phase or at the runtime phase. For each of those two phases, dedicated technologies

are used to specify and realize the adaptations. For instance, design languages provide

adaptation mechanisms such as inheritance or composition; and runtime platforms that

support dynamic adaptation provide API’s to dynamically change connections between

running components.

Design adaptations are often considered to be of completely different nature than

runtime adaptations. Design adaptations are motivated by design goals whereas run-

time adaptations are motivated by changes of the software’s environment. Moreover,

design adaptations are considered as permanent adaptations that cannot be rolled back

whereas runtime adaptations are considered as impermanent.

However, whatever the technology and whatever the phase, a software adaptation is

always initiated by a particular motivation and is always realized through modifications

of some software artifacts. Therefore, from a specification point of view, design and

runtime adaptation are not so different. We then argue that a single unified language

should be provided to specify both of them. Based on this language, a platform should

be realized to execute the weaving of design and runtime aspects transparently.

Having only one unified language to specify design and runtime adaptations offers

several advantages. First, it formalizes similarities and differences that exist between



the two kinds of adaptation. Second, it may serve as a basis to transform design adap-

tations into runtime ones and vice versa. Transforming design adaptations into runtime

one allows one to delay the realization of some design adaptations to the runtime phase.

Transforming runtime adaptation into design one prevents the realization of adaptation

mechanisms that have been defined regarding specific environment’s changes that may

never arise at runtime. Third, unifying the specification of modifications done by both

aspects is the first step to compute analysis between aspects, such as dependency anal-

ysis for example.

Having a platform that executes the weaving of design and runtime aspects trans-

parently offers several advantages. First, it supports the whole life cycle from the initial

creation of the product (driven by feature selection) to its dynamic adaptation (driven

by changes of its environment). Second, it then maintains traceability links between

the motivations (features selection or changes of the product’s environment) and the

adaptations of the software artifact. Third, it can be used as a flexibility cursor to reach

a tradeoff between a development cycle that will be fully design oriented (without any

runtime adaptation), and a development cycle that will be fully runtime oriented (with-

out any feature selection).

In the next section, we present our approach that provides such a unified language

and its corresponding platform.

3. Approach

Our approach allows software systems to be adapted at design time and runtime.

We consider an adaptation as the addition or removal of optional parts to a fixed base

core. Our approach is based on SPL principles. Feature diagrams (FD) are used to

model commonalities (i.e. core), and variabilities (i.e. optional), among the members

of the same family of software products. An FD typically consists of a hierarchy of

features, which may be mandatory or optional. To realize each feature and fill the gap

between features and implementation, we rely on a metamodel for defining aspect-like

composition models. Such models link every particular feature with an optional set

of components that may be part of a product. Every model contains the information

required for the composition including: (1) the locations modified by the feature, (2)

the elements to be added and (3) the set of modifications to perform in order to add

those elements.

The platform weaves the models in two different ways for both design time, and

runtime. This duality of the platform is due to the motivations behind design and

runtime weaving. While in design, the platform takes into account the decisions from

the developers that want to derive a product, at runtime, the weaving is triggered with

context events of changes in the environment, without human intervention. A product

is then adapted via a design choice through a feature selection, or a runtime choice in

reaction to context events.

Our approach is based on three main phases for building and/or adapting a prod-

uct: aspect modeling, design weaving, and runtime weaving. Figure 1 illustrates such

phases.
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Figure 1: Different development phases using aspect models.

• Aspect Modeling relates to the definition, using a high level language, of differ-

ent composable aspects to describe any product. Typically, a product is described

by a core model, and a set of independent aspect models that are woven to the

core. Our approach is symmetric i.e. both the core and the aspects are modeled

using the same metamodel and are treated in the same way.

• Design Weaving represents the design adaptations. It covers the aspect model

weaving of the core with several aspects. This process is triggered by the devel-

oper of the application who selects the aspects to be woven with the core model.

The design weaving ends with a partially generated product, that after manual

completion can be deployed and executed.

• Runtime Weaving represents the runtime adaptations. It covers the aspect weav-

ing at runtime. Our approach is based on the execution environment (by means



of contextual events for example), to decide when an aspect can be woven at run-

time. As we target component-based and service-oriented software, the changes

that we propose to apply at runtime refer to architectural modifications (e.g.

adding a new component, modifying existing bindings, removing services).

The following sections introduce the aspect metamodel, and describe in detail the

process to transform aspect models into elements to perform design and runtime weav-

ing.

3.1. Aspect Metamodeling

The aspect metamodel (see Figure 2) is formed by four parts: the elements to be

woven (Model), the places where the weaving is realized (Pointcut), the modifica-

tions performed by the aspect (Advice), and optionally, the moment at runtime when

the aspect gets to be woven (Event).
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Figure 2: Aspect Metamodel.



• Modeling the elements to be woven (what): the Model part of the meta-

model is used to define the core model. It describes the software structure

as a set of elements (meta-class Element) that provides services (meta-class

Service) and requires references (meta-class Reference). An element can

contain other elements. This is expressed using the composite pattern of the

meta-class Container. To connect the Model with the other parts of the as-

pect, there is a meta-class called ReferencedElement. This meta-class is

specialized by all the meta-classes in the Model, and works as an entry point for

the Pointcut and Advice.

• Modeling the place (where): we consider the Pointcut as a query that returns

all the model elements that have to be present in the model in order for an as-

pect to be woven. A Pointcut (meta-class Pointcut) is composed of expres-

sions (meta-class Expression) and variables (meta-class Variable). An

expression can be either composite (meta-class Composite) or atomic (meta-

class Atomic). A composite expression may contain nested expressions. To

aggregate the results it uses an operator (meta-attribute operator) that de-

fines the semantics of the composition (e.g., AND, OR). An atomic expression

can be specialized in three different forms: InstanceOf, FindByName and

Owned. InstanceOf is used to find an element using its type as a parameter.

FindByName returns the elements whose name is equal to the name attribute

of the expression. Finally the Owned expression looks for couples of elements

where one of the elements (parent) owns the other (child). A variable rep-

resents a place where the elements obtained as a result of the execution of an

expression are stored.

• Modeling the modifications (how): we consider the Advice to be a sequence

of atomic modifications (meta-class Modification). The following atomic

modifications are supported by our metamodel:

– The addition of a new model element (meta-classes Add). To add an ele-

ment, each Add statement links an element of the model, represented as a

ReferencedElement, and a Variable of the query, which represents

the place where the element is going to be added.

– The removal of an existing model element (meta-classes Delete). To re-

move an element, each Remove statement references a Variable which

represents the elements that are going to be removed.

• Modeling the time (when): Modeling the time is only relevant for aspects that

can be woven at runtime. This is why an aspect may or may not contain an event

definition (multiplicity is 0..1). To model the time we use context events. By

context we mean every piece of information that may affect an application. Ex-

amples of such information may vary from availability of resources or services to

information like temperature, location, or even hardware restrictions like mem-

ory. Consequently, a context event is a change in context information. To model

this event, we define the notion of observable. An observable is an abstraction of

a single piece of information referring to context. It consists of a single value that



can be easily evaluated to decide whether to weave an aspect dynamically or not.

Figure 2 illustrates this part of the aspect metamodel, an Observable appears

as part of a Condition that belongs to the aspect’s Event.The evaluation of

the condition indicates wether the aspect to which it belongs has to be woven at

runtime, and consequently triggering an adaptation of the running application.

3.2. Design and Runtime Weaving

Once the aspect metamodel has been defined, we need to define a platform that

is able to use the aspect models. The platform is in charge of transforming models

and generating code for design weaving and creating adaptation scripts for runtime

weaving. Given the nature and the challenges of each type of weaving, the process

and technologies used to transform the models are different in each case. Both are

explained in detail in the following sections.

3.2.1. From aspect models to design weaving

In general terms, the design weaving consists of successive calls to a single generic

model transformation (weaver). This transformation takes as inputs the core model M

and an aspect A to be woven, and returns a single model representing the composition

of the core and the aspect. The transformation itself relies on the metamodel of Fig-

ure 2. It consists in iterating over the set of modifications specified in the Advice of A

in order to execute each one of them.

The places where each modification takes place is defined by the associated

Pointcut. The execution of this pointcut on the core model iterates over its ex-

pressions, which can be either atomic (FindByName, InstanceOf and Owned) or

composite. Each atomic expression returns the collection of core model elements that

match the filter conditions. A composite expression is evaluated by accumulating and

combining the result of each atomic expression. The way the resulting elements are

combined depends on the composite operator. The and operator is interpreted as the

intersection of the model elements, whereas the or operator translates as their union.

At the end of the pointcut execution, all the places impacted by the aspect have

been identified. Then the modifications specified by the aspect can be applied. Two

possible modifications are allowed:

• Add: to add an element, the meta-class Add has a relationship with the

ReferencedElement being added and the Variable where it will be

added. Nevertheless, having this relationship allows for any referenced element

to be woven at any place in the core model. To prevent incompatible combina-

tions, like for example trying to add a Container inside an Attribute, we

have defined a scope for these combinations. There is a set of allowed pairs of

types, where the first type corresponds to the referenced element being woven

and the second type corresponds to the variable where the element is going to

be added. For each allowed pair, we perform the adequate operations to add the

element. Allowed pairs vary from coarse grained operations (i.e. adding a new

Element inside an existing Container) to finer grained ones (i.e. adding a

new Operation inside a Service Contract). For the incompatible pairs,

no weaving is performed.



• Delete: deletes the elements at the places described by the Variable. The

deletion of an element triggers the destruction of it’s inner elements (for

Element or Container elements).

The transformation finishes when all modifications specified in the advice have been

performed. The weaving process repeats until all the aspects whose variants are se-

lected have been composed with the core model. The resulting model is no longer

the core but a complete representation of an application that also includes the right

constructs for the concerns defined in every aspect woven.

However, this model is still platform and technology independent. Following a

classic MDE approach, the composed model is used again as an input to two different

transformations to obtain platform and implementation models. A third transformation

verifies the consistency between the two models obtained. Finally, the platform model

is used to generate a composite file with the architecture of the product, and the imple-

mentation model is used to generate Java implementations for every component in the

model. Figure 3 illustrates this process.
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Figure 3: MDE transformation process.

3.2.2. From aspect models to runtime weaving

The second type of weaving is performed at runtime. The goal is to create the adap-

tation script required to perform an adaptation using the same aspect model that is used

for design weaving, and execute the script at runtime. We use a Service Component

Architecture (SCA) [21] implementation called FraSCAti [22] as target platform for

our applications. In FraSCAti, Java-based SCA components are at the same time

SCA-compliant and Fractal-compliant [23]. Thanks to this property, all the compo-

nents in FraSCAti benefit from the loose coupling and platform agnostic properties

from SCA, but also from the hierarchical and reflective characteristics of Fractal that



enable the product to be dynamically reconfigured. To achieve runtime weaving, we

build a transformation that takes the aspect model and generates the needed reconfigu-

ration scripts. Such transformation works as follows:

Model. The model is transformed into Java and SCA code, in the same way as the

model that results from the design weaving. At the end of this process, the architecture

and every specific service of the model are represented with SCA code as well as Java

classes implementing each one of the services that conform the application.

Pointcuts. The pointcuts are transformed into FPath code [24]. FPath is a query lan-

guage to navigate Fractal-based Architectures. It eases the navigation of component

systems and enables developers to define queries that search for elements of the archi-

tecture that match some criterion. The goal of the pointcut transformation is to trans-

form every Expression into the FPath script that finds the specific elements of the

architecture of the application being executed. Hence, every atomic expression has an

equivalence in terms of FPath. FPath also allows for multiple queries to be combined

by using the ’|’ operator for a union and the ’&’ operator for an intersection. In this

way, every CompositeExpression is translated into a union or an intersection of

its sub-expressions. Table 1 summarizes the equivalences between the pointcut model

and the FPath scripts.

Model Pointcut FPath Equivalent Meaning

FindByName(name) $root/descendant-or-self::*[name(.)==

’name’]

All the elements which name
is equal to ”name”.

Type

- Service or Reference $root/descendant-or-self::*/interface::* All the interfaces.
- Attribute $root/descendant-or-self::*/attribute::* All the attributes.
- Element $root/descendent-or-self::* All the components.

Owned $root/descendent-or-self::*/child::*; All the components owned by
another component.

CompositeExpression

- Operator= OR (exp1 | exp2) or union() Union of two expressions.
- Operator= AND (exp1 & exp2) or intersection() Intersection of two expres-

sions.

Table 1: Pointcut transformation

Advice. The advice is transformed into FScript code [24], which is a scripting lan-

guage dedicated to architectural reconfigurations of Fractal-based systems. A recon-

figuration in our case consists of two main steps: (1) find the place, and (2) perform

the modifications. The former step corresponds to FPath code. Similarly to an advice

that uses pointcuts to describe the places where it performs the modifications, FScript

uses FPath to find the places in the architecture where the adaptation will be applied.

For each variable required by the advice, there is an FPath script (generated from the

pointcut). The latter step is a translation of the Modify instruction into FScript code.



Events. The context events are transformed into Java rules. For each observable, a

method is generated. When a context event occurs, the corresponding method is in-

voked. This method has the conditions required to analyze the new value of the ob-

servable and to weave the corresponding aspect if needed. Such weaving corresponds

to the execution of the FScript code generated from the advice.

So far, we have presented the language for defining aspect models, and the platform

that uses those models at design and runtime. As it can be noticed, both design and

runtime weaving have the same input i.e., an aspect model, but they rely on different

processes and return different outputs. Design weaving can be seen as a refinement of

the core using the variability and the choices of developers through feature selection

and aspect weaving. Runtime weaving, on the other side, transforms the product to

obtain a new version using the appropriate reconfiguration technologies. In both cases,

the adaptation processes are transparent from the aspect definition. In the next section

we present a case study where aspect models are used at both design and runtime in the

implementation of a dynamic software product line.

4. Application to a Dynamic SPL

In this section, we illustrate with an example how the AOM detailed in Section 3

has been applied in CAPucine, a Dynamic SPL for context-aware applications [20].

Such a DSPL allows one to define a family of products using a feature diagram and

then implements two phases: (1) an initial phase that deals with the design and auto-

matic generation of applications, using models and model transformations, and (2) an

iterative phase that supports runtime adaptations by relying on a context information

manager to trigger reconfiguration scripts.

Here we show how AOM can be used to improve the DSPL by unifying design

and runtime adaptations. We use aspect models to extend the DSPL by providing: (1)

a unified language to describe a feature and the assets required to integrate it into a

software product at any moment in the life cycle (including the execution), and (2) an

automatized process to build the assets required in the iterative phase (in CAPucine,

runtime feature derivation scripts were initially written by hand).

Let us consider the feature diagram of Figure 4. It defines a family of products

with the essential functionality for an e-shopping scenario where a client connects to

a server in order to find and buy items. The FODA terminology distinguishes three

types of features: (1) mandatory features (dark circles) which are always selected,

(2) optional features (white circles), which can be chosen or not, and (3) alternative

features (inverted arc), a special kind of optionality where the selection is realized

among a limited set of exclusive (XOR) or non-exclusive (OR) alternatives.

The feature diagram presents the following features: (1) Catalog, correspond-

ing to the functionality to browse and list a set of items, additionally, the catalog

may use several filters (e.g. ByDiscount, ByWeather, ByLocation), (2)

Notification which can be implemented using Call or SMS, (3) Location of

the user that can be obtained via GPS and/or using Wifi triangulation, and finally (4)
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Figure 4: Feature Diagram.

Payment that can be performed through CreditCard or using a Discount ticket.

Additionally, there is one constraint among features indicating that location-based fil-

ter requires that one type of location is selected. We applied our approach to create a

high-level representation of the features. Each type of feature is modeled in a different

way as explained below.

4.1. Mandatory Features

Since mandatory features are always present in every product, they are modeled all

together as the core model. The core model of our example is illustrated in Figure 5.

We notice that, in the core, only the model is relevant, hence it does not include advice,

pointcuts, or events. The model holds a Container element which groups all the

other elements in the architecture. There are four additional elements: Catalog,

FrontEnd, Notification, and Payment. Besides the Container and the

FrontEnd, which are created as part of the architecture, note that each element is

intended to realize one of the mandatory features found in the feature model. For space

reasons, we focus on the Catalog and Notification elements, we show the sub-

elements they contain and how they are used in design and runtime weaving.

The Catalog element offers one service (catalogQuery) and requires one ref-

erence (filterProducts). As we will detail below, this reference is one join point

where multiple filters get to be woven and used by the Catalog. Additionally, we

specify the type of reference using the CatalogFilter contract which defines one

operator. This simply indicates that in order for any external element to provide a com-

patible service for this reference, it must respect the same contract by implementing

the same set of operations (in this case getFilteredProducts). In the same way,

the Notification element offers one service sendNotification and requires

one smsNotification typed with the contractNotSMS contract.
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sendNotification
:Service

smsNotification
:Reference

contractNotification
:ServiceContract

contractNotSMS
:ServiceContract

notify
:Operator

notifySMS
:Operator

contractNotification
:ServiceContract

getProducts
:Operator

Figure 5: Example’s core functionality.

4.2. Optional and Alternative Features

For each optional and alternative feature we define an independent aspect model.

There are in total 9 different aspects (i.e. discountFilter, weatherFilter, locationFilter,

smsNotifier, callNotifier, creditCardPayment, discountPayment, triangulationLocation,

and gpsLocation ).

In the remainder of this section, we describe two aspects (smsNotifier for design

and weatherFilter for runtime), to illustrate how aspect models are defined and woven

statically and dynamically with the core. Obviously, the same process is applied to all

other aspects.

4.2.1. Design weaving aspect: SMS Notifier

At design time, developers decide about the architecture of final products. Notifi-

cation via SMS is a good example of design decision. It does not depends on context

information. The decision whether to weave it or not come from a business require-

ments. Figure 6 presents the model for the SMS notifier aspect. It contains only three

of the four parts of an aspect model (as an aspect that won’t be woven at runtime, it

does not contain an event description):

• Advice: the advice is the place when we describe the actions to be followed in

order to weave the aspect. This aspect has one Add operation that puts together

the smsNotifier element in the place defined by variable reference. Both

reference and smsNotifier are defined in the pointcut and model parts

of the aspect.



• Pointcut: the pointcut has one composite expression that accumulates two

atomic expressions. The first atomic expression is a FindByName that searches

all the referenced elements in the core called ”smsNotification”. The second

atomic expression is an InstanceOf that finds all the referenced elements of

the type Reference. Since the operator type of the composite expression is

AND, the intersection of the results of these two atomic expressions is stored in

variable reference.

• Model: the model contains one element called smsNotifier. This element

provides a service that is compatible with the required reference in the core’s

catalog since it conforms to the contractNotSMS contract.

smsNotifierAspect:
Aspect

pointcut:Pointcut

toBeAddedTo = "reference"
toBeAdded = "smsNotifier"
type = "addBoundElement"

add:Add

advice:Advice model:Model event:Event

operatorType = "AND"

composite:
CompositeExpression

reference:Variable

type = "Element"

smsNotifier:Element

name = "smsNotification"
constrainedVariable = "reference" 

fbn:FindByName

type = "Reference"
constrainedVariable = "reference"

io:InstanceOf

smsNotification:
Service

contractNotSMS
:ServiceContract

notifySMS
:Operator

Figure 6: An aspect model for the SMS notification feature.

To weave the SMS notifier aspect, the advice modifications are executed one by

one. In this case the weaver executes Add, which makes the element smsNotifier

part of the whole architecture by adding it as one of the contained elements of the

container eCatalog. Next, one connection is added to create a binding between the

reference of the catalog and the service provided by the smsNotifier. Figure 7

depicts the core after the weatherFilter aspect has been woven. To simplify the

diagram, we only show the services and references impacted by the weaving process.

We use dashed lines to indicate which elements and relationships are added as a result

of the weaving.

4.2.2. Runtime weaving aspect: Weather Filter

Aspects that will be woven at runtime must have an event definition (see section

3.1). Regarding the Weather Filter, we have considered a context information related

to the temperature. Figure 8 shows the contents of the weather filter aspect. Similar

to the smsNotifier, the weather aspect defines: (1) a model with the elements



woven:Aspect

model:Model

eCatalog
:Container

FrontEnd
:Element

Catalog
:Element

Payment
:Element

advice:Advice pointcut:Pointcut event:Event

connection

:Connection

type = "Element"

smsNotifier:Element

smsNotification:
Service

notification
:Element

sendNotification
:Service

smsNotification
:Reference

contractNotSMS
:ServiceContract

notifySMS
:Operator

Figure 7: The result of weaving the core and the SMS notifier aspect.

to be added, (2) a pointcut that searches for a particular reference in the Catalog,

and (3) an advice that consist in adding the smsNotifier as a bound element in

the core architecture defined in the core model (Figure 5). What differentiates this

aspect is its fourth part: the Event. It defines one condition over an observable

called coldWeather. This means that dynamically, whenever the system receives a

notification that the temperature is below a given threshold, the aspect must be woven.

The modifications performed by the weather filter aspect are equivalent to the ones

of the design weaving. The difference resides in the technologies used to implement

them. As explained in Section 3, starting from this model, an adaptation script and a

Java rule that monitors the context information are generated.

Figure 9 illustrates a snippet of FScript generated for the advice example of Figure

8. In this case, the modification consist in adding a new Element weatherFilter

and bind it to an existing component catalog. Finally, Figure 10 shows an example

of a rule generated from the observable coldWeather

4.2.3. Dealing with more complex pointcuts

It is important to notice that the aspects presented in this section have a pointcut

that matches a single element in the base architecture. However, there are some cases

in which the variant needs to modify multiple places. For example, consider the aspect

associated with the ByLocation variant. It needs to identify two different places

in the architecture. First, it needs to find the filter mechanism found in the Catalog

element and bound its model in the same way as the ByWeather implementing aspect.

In addition to that, it also needs to find the service for location (Wifi or GPS) that it

requires. For such cases, the structure presented in the aspect metamodel allows the

aspects to define as many expressions as it needs to find the various places in the base



weatherFilter:
Aspect

pointcut:Pointcut

toBeAddedTo = "reference"
toBeAdded = "weatherFilter"
type = "addBoundElement"

add:Add

advice:Advice model:Model event:Event

operatorType = "AND"

composite:
CompositeExpression

reference:Variable

type = "Element"

weatherFilter:Element

name = "filterProducts"
constrainedVariable = "reference" 

fbn:FindByName

type = "Reference"
constrainedVariable = "reference"

io:InstanceOf

type = "CatalogFilter"

weatherFilter:
Service

type = "boolean"

coldWeather:

Observable

operatorType = "AND"

condition:Condition

type = "contractAC"

CatalogFilter:
ServiceContract getFilteredProducts:

Operator

Figure 8: An aspect model for the weather filter feature.

architecture, and to create the modifications that represent the weaving of the aspect.

The ByLocation implementing aspect can then define two different expressions for:

(1) the reference in the catalog, and (2) the service provided by one of the location

implementing aspects.

5. Discussion

In this section, we discuss the approach presented in this paper by justifying our

choices and summarizing their advantages and their limitations.

5.1. Justification

On the difference between design and runtime adaptations. Applications can be

adapted whether during the design phase or during the runtime phase. Design adapta-

tions are motivated by design decisions, whereas runtime adaptations are motivated by

changes in the executing environment. While a motivation of a design adaptation can-

not be modeled (it is a choice), the motivation of a runtime adaptation can be modeled

as a condition on the environment’s state. Moreover, design and runtime adaptations

are different also because they are realized by means of different mechanisms that use

different technological platforms.

On the reason for unifying design and runtime adaptations. Although design and run-

time adaptations have different motivations, and are performed using different mech-

anisms, they can be specified thanks to a unified language. Our aspect metamodel

provides such an unified language. The main advantage is the fact that design and run-

time adaptations are modeled thanks to aspects that share three principal descriptions:



1 a c t i o n addElement ( )
2{
3 −−S t e p 1 : Find t h e p l a c e ( FPath )

4 c u r r e n t = $ r o o t / d e s c e n d a n t−or−s e l f : :
5 ∗[ name ( . ) = = ’ c a t a l o g ’ ] ;
6 r e f = $ r o o t / d e s c e n d a n t−or−s e l f : :
7 ∗ / i n t e r f a c e : : ∗ [ name ( . ) = = ’ f i l t e r P r o d u c t s ’ ]
8 new= $ r o o t / d e s c e n d a n t−or−s e l f : :
9 ∗[ name ( . ) = = ’ w e a t h e r F i l t e r ’ ] ;

10
11 −−S t e p 2 : Per form t h e a d a p t a t i o n ( F S c r i p t )

12 s t o p ( $ c u r r e n t ) ;
13 s t o p ( $new ) ;
14 b ind ( $ r e f , $new / i n t e r f a c e : : w e a t h e r F i l t e r ) ;
15 s t a r t ( $ c u r r e n t ) ;
16 s t a r t ( $new ) ;
17}

Figure 9: An FScript equivalent of the weatherFilter advice.

1 p u b l i c vo id changeColdWeather ( )
2{
3 i f ( co l dWea the r . v a l u e ( ) )
4 {
5 addElement ( ) ; / / i n v o k e r e c o n f i g u r a t i o n

6 }
7 i f ( ! co ldWea the r . v a l u e ( ) )
8 {
9 removeElement ( ) ; / / i n v o k e r e c o n f i g u r a t i o n

10 }
11}

Figure 10: A java rule for a context event

the what, the where and the how. In fact, the only key difference comes from the fact

that aspects that can be woven at runtime must have a description of the event: the

when. As a consequence, aspects can be easily reused. Moreover, one can think about

weaving aspects during the design phase, although they have been originally defined

to be woven at runtime. Changing a runtime aspect into a design one is quite easy as it

only consists in removing its event description. Vice versa, one can think about weav-

ing aspects during the runtime phase, although they have been originally defined to be

woven at design. Changing a design aspect into a runtime one is much more complex

as it needs to add an event description.

On the necessity of weaving aspects at design time. One question that may naturally

arise is: why do we need design weaving if we can perform any adaptations at run-

time? Design weaving is important for three main reasons: automation, performance,

and platform independence. Regarding automation, if there is no design weaving, the

initial application have to be built manually. That is because runtime weaving just

modifies an existing application. Regarding performance, it should be noted that all as-

pects that can be woven during the runtime phase need to define an event description.

Regarding our example, it clearly appears that some aspects do not have any event



that motivates their weaving. Those aspects are definitively intrinsic design aspects.

Without design weaving, we could weave them at the beginning of the execution, by

defining a fake runtime event. This may potentially affect the performance of the ap-

plication, while design weaving has no impact on performance. We firmly believe that

intrinsic design aspects have to be woven as early as possible, and that runtime weaving

only has to operate on aspects that depend on runtime events. Regarding platform inde-

pendence, as we have presented in Section 3, obtaining a woven model through design

weaving is only an intermediate step in the derivation of an executable product. The

woven model obtained in our approach completely differs from the woven code pro-

duced by an AOP technology. In the AOP world, the woven code produced is language

and platform-specific, and is not supposed to be further modified. In our approach, the

woven model is a generic artefact that belongs to a high level of abstraction and con-

stitutes a valuable input of a subsequent generation process, where it is still possible to

make design decisions like execution platform and implementation languages.

On the use of aspect models for variability modeling. In our approach the use of aspect

models provides a clear separation of concerns. It separates the core of the application

from optional and possibly crosscutting functionalities. In our example, we have de-

fined a set of variants expressed in a feature model. Each variant (or feature), being

crosscutting or not, is represented through an aspect model. If a feature is not cross-

cutting, then the corresponding aspect pointcut is simple, as it only captures a single

element of the base architecture. In contrast, if the feature is crosscutting, then the

aspect pointcut and the aspect advice become more complex since they have to deal

with multiple elements and different modifications. In summary, our approach allows

aspects to be defined with multiple expressions and multiple modifications. Further-

more, the weavers at design time and at runtime are able to deal with these aspects. We

consider that, regardless of the crosscutting nature of the variants, the proposed aspect

metamodel and the two weaving processes provide the required flexibility for variants

to be realized as aspect models and derivation to be defined as the weaving of such

aspects.

5.2. Advantages

A unified and generic aspect metamodel. The use of a well-defined metamodel en-

hances the integration of aspects within complementary model-driven development

strategies. This permits: (1) to define independent business models that are transformed

into platform-specific models depending on the needs of a particular application, and

(2) to have a unified approach in which software products and related adaptations can

be modeled at the same time and derived from the same type of artifacts (e.g., aspect

models). Furthermore, each aspect model is self-contained, and can be woven by a

generic weaver that resolves the pointcuts, and then executes all modifications defined

in the advice. The specified pointcut may be arbitrary complex to translate, for instance,

a crosscutting feature; or very specific, like in the examples presented in section 4. The

specified advice allows the weaving of both monotonic features (adding some func-



tionalities) and non-monotonic features (adding and removing some functionalities)1.

Besides, since the specification of the reconfiguration actions is based on the aspect

metamodel, we also prevent the execution platform to perform resource-consuming

operations at runtime (like loading and computing a difference between two models).

Furthermore, our approach enables dynamic reconfigurations, thanks to its integration

with FraSCAti.

Graceful integration with (dynamic) software product lines. Finally, as we showed in

Section 4, our approach can be used in the context of (D)SPLs, as a way to realize fea-

tures and obtain assets for both the initial and iterative phases. In such a context, our

approach provides support for product derivation at design time, based on the selection

of optional features, in order to build an initial product. It also supports dynamic prod-

uct reconfiguration at runtime, translating the iterative and automatic (de)selection of

features in reaction to context changes.

5.3. Limitations

Dynamic adaptation of dynamic adaptations. Since we confine the definition of

context-information to the design of an aspect model, new context observables, that

were not initially specified by an aspect model, could not be taken into account. Our

approach does not support (yet) the on-the-fly introduction of new observables and their

corresponding adaptation rules, essentially due to technical limitations of the runtime

platform.

Weaving order at runtime. Another limitation concerns the notion of weaving order. In

the case of design weaving, we have recently proposed a constraint analysis approach

aiming to derive a correct weaving order based on the explicit and implicit dependen-

cies between the composed features [26]. At runtime, however, the weaving strategy

may also depend on the context events triggering dynamic adaptations. More sophis-

ticated techniques are needed to determine the set of aspects that must be (un)woven

and the order according to which the (un)weaving operations must be performed.

Paradigmatic dependence. Finally, our current definition of advice is limited to the

interaction between architecture elements that conform to our metamodel. Since we

based our model in a component-based architecture, we only support coarse-grained

adaptations of software systems following this architectural style, which facilitates

model weaving in general and runtime weaving in particular. In order to support finer-

grained adaptations like, for instance, changing the code inside every Operator of a

given ServiceContractwe would have to extend our model and verify the support

for such operations in the platform level, which remains as future work.

1In the SPL domain, features are usually monotonic, as they are defined as increments in program func-
tionality. However, composing non-monotonic features may also be required in certain cases [25].



6. Related Work

AOM proposes the use of MDE mechanism to describe and weave aspects. In [13],

aspects are models and the weaving is realized thanks to model composition. Several

other weaving mechanisms have been proposed such as Theme/UML [27, 28], compo-

sition directives for aspect-oriented class models [14], or multi-view composition [15].

Our approach does not contribute to this field and reuses existing model composition

and code generation mechanisms.

Several approaches use AOM to express variability in SPL. In Perrouin et al.’s pro-

posal [17], variants are specified by means of model fragments and the product deriva-

tion process consists in merging those fragments together. Voelter and Groher [29]

combine AOM and MDE techniques to achieve an explicit separation of concerns in

SPL context. In [30], variability is expressed by variation points and variants cap-

tured by means of feature models. The authors extend the FODA approach [31] with

additional characteristics like cardinality and attributes. In [32], variability is defined

by cardinality-based feature models. In [33, 34], the variability is both captured and

expressed by cardinality-based feature models and the definition of metamodels.

In our approach, dynamic adaptations are supported thanks to the FraSCAti plat-

form. Other approaches use different platforms such as FAC in [35], SAFRAN [19],

Fractal [23] or OpenCOM [36, 37].

Work on adaptive systems and context awareness in SPL is also prolific. Bastida

et al. [38] develop dynamic self-reconfiguring and context-aware compositions. They

propose a multi-step methodology based on SPL notions of variability management.

Their service composition infrastructure relies on Event-Condition-Action Rules. At

runtime, a BPEL engine and a rule engine compose the middleware part, although the

context information is not explicitly defined in the complete approach.

Bencomo et al. [39] propose software product lines for adaptive systems. In their

approach, the execution context is related to corresponding changes by means of a state

machine. Each state represents a particular variant of the system, while transitions

define dynamic adaptations that are triggered by contextual events.

In [18], Morin et al. propose an approach that deals with dynamic variability in

software product lines. Their approach relies on AOM for specifying variants and

for realizing the binding of variation points. They also claim to propose a context-

aware adaptation model that is in charge of selecting adequate variants depending on

the context. Unfortunately, no detail is provided on how the context is specified and

monitored. Our approach can therefore be considered as an extension of that work.

In [40], Morin et al. propose K@RT, a generic and extensible framework for man-

aging DSPL. K@RT is an aspect-oriented and model-oriented framework for super-

vising component-based systems. It maintains a reference model at runtime allowing

the navigation in the system architecture, and invokes services delegated to the running

system. Each adaptation is supported by a safe reconfiguration script processed at run-

time. In our approach, adaptations can be processed at the design or at the runtime, but

they are prepared before the execution. In [41], Morin et al. go a step further with an

improved AOM approach used to tame the combinatorial explosion of Dynamic Adap-

tive System modes. Using AOM, they compute a wide range of modes by weaving

aspects into an explicit model reflecting the runtime system. Our approach is similar in



the sense that we use AOM and we attack dynamic adaptive systems, although unlike

them, our approach does not use models at runtime as they do to calculate the next

state of the application. All the aspects are defined at design, and runtime weaving

takes place only if context information changes according to the rules defined in the

aspects. In addition to that, we propose a solution for building the applications, our

main goal is to define a unified representation of the adaptation with a single artifact

(aspect model) for both design and runtime.

Zhang and Cheng [42] introduce an approach to create formal models for the be-

havior of adaptive programs. They separate adaptive from non-adaptive behavior of

programs, making the models easier to specify. Our work focuses on architectural

rather than behavioral models.

Finally, in [16], Lundesgaard et al. define how to construct and execute adapt-

able applications using an aspect-oriented and model-driven approach. They focus on

managing multiple interacting cross-cutting Quality of Software (QoS) features. They

propose Aspect-Oriented Modeling techniques and a QoS-aware middleware for exe-

cution of QoS sensitive applications. They specify alternative application variants and

derive their runtime representation using model-driven engineering. The middleware

chooses the best variant according to the current coperation context and available re-

sources. Our approach is similar, although we make emphasis in unifying design and

runtime modifications and we do not deal with QoS.

7. Conclusion

This article has presented an AOM-based approach to unifying design and runtime

adaptations. The approach is made up of three phases: (1) aspect modeling to create

aspects that conform to a generic aspect metamodel, (2) design weaving that links

elements of the aspects at the model level, and (3) runtime weaving that links elements

of the aspects dynamically by means of architectural reconfigurations. The design

weaving phase is implemented by model transformations, while the adaptive platform

FraSCAti supports the runtime weaving phase. To validate the approach we have

used aspect models as a way to deal with variability in a dynamic SPL.

The main benefits of the proposed approach are (1) a clear separation of concerns,

(2) a unified definition of design and runtime adaptations, (3) an explicit link between

software adaptations and their motivations, and (4) a supporting platform that allows

adaptations to be executed in different moments of the software life cycle, from the

initial product configuration to its successive dynamic adaptations. As a result, our

tool-supported approach allows software adaptation processes to reach high levels of

reusability and flexibility.

We anticipate three main directions for future work. First, we would like to allow

the system to process new pieces of context-information at runtime. So far, aspects

are defined before the execution, which limits the adaptation possibilities to the set of

foreseen observables. A second possible improvement concerns the aspect composition

order, especially at runtime. We are currently exploring techniques to derive conflict-

free weaving strategies based on (implicit) feature dependencies. Finally, we intend

to consider finer-grained adaptations by allowing aspects to modify the code inside

Operator elements.
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