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Abstract

A constraint-based data flow analysis is formalised in the specification language of
the Coq proof assistant. This involves defining a dependent type of lattices together
with a library of lattice functors for modular construction of complex abstract do-
mains. Constraints are represented in a way that allows for both efficient constraint
resolution and correctness proof of the analysis with respect to an operational se-
mantics. The proof of existence of a solution to the constraints is constructive which
means that the extraction mechanism of Coq provides a provably correct data flow
analyser in Ocaml from the proof. The library of lattices and the representation of
constraints are defined in an analysis-independent fashion that provides a basis for
a generic framework for proving and extracting static analysers in Coq.

Key words: Program analysis ; constructive logic ; lattices ; theorem proving ;
constraint solving.

1 Introduction

Static program analysis is a fully automatic technique for proving properties
about the run-time behaviour of a program without actually executing it. The
correctness of static analyses can be proved formally by following the theory
of abstract interpretation [9] that provides a theory for relating two seman-
tic interpretations of the same language. These strong semantic foundations
constitute one of the arguments advanced in favor of static program analy-
sis. The implementation of static analyses is usually based on well-understood
constraint-solving techniques and iterative fixpoint algorithms. In spite of the
nice mathematical theory of program analysis and the solid algorithmic tech-
niques available one problematic issue persists, viz., the gap between the anal-
ysis that is proved correct on paper and the analyser that actually runs on the
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machine. While this gap might be small for toy languages, it becomes impor-
tant when it comes to real-life languages for which the implementation and
maintenance of program analysis tools become a software engineering task. To
eliminate this gap, we here propose a technique based on theorem proving in
constructive logic and the program-as-proofs paradigm. This allows to specify
static analyses in a way that ensures their well-formedness and facilitates their
correctness proof. Moreover, the constructive nature of the logic means that it
is possible to extract, from the proof of existence of a correct program analysis
result, a static analyser that maps any given program to their static analysis.

The development of the static analyser is done within the Coq proof assistant.
Proofs in Coq are constructive and correspond, via the Curry-Howard isomor-
phism, to programs in a functional language with a rich type system. The
program extraction mechanism in Coq provides a tool for automatic transla-
tion of these proofs into a functional language with a simpler type system,
namely Ocaml. The extraction mechanism removes those parts of the proof
that are only concerned with proving that the result satisfies its specification
without actually contributing to its construction. In the case of our static
analyser, the constructive part is concerned with calculating a solution to a
system of constraints generated from the program. The other part of the proof
establishes that a solution to the constraints is indeed a correct approximation
of the program’s behaviour but does not contribute to the actual construction
of the solution.

The methodology that we present here is generic but we have chosen to de-
velop it in the concrete setting of a flow analysis for Java Card byte code,
presented in Section 2. The motivation for choosing this particular analysis is
that it deals with a minimalistic, yet representative language with imperative,
object-oriented and higher-order features, guaranteeing that the approach is
transferable to a variety of other analyses. The methodology comprises two
phases:

• the modular definition of a library of abstract domains of properties used in
the analysis (Section 3). The abstract domains are lattices satisfying a finite-
ascending-chains condition which makes it possible to extract a provably
correct, generic constraint solver based on fixpoint iteration ;

• a representation of a constraint-based analysis that allows to extract an
analyser from the proof of the existence of a best solution to the constraints,
using the program extraction mechanism available in Coq (Section 4) and
at the same time allows to prove correctness of the analysis (Section 5).

Section 6 compares with other work on formalizing the correctness of data flow
analyses, and Section 7 concludes. Appendices A–E contain the formalisation
of the analyser and is included as a service to those readers that want to see
the details. However, the paper is written so as to be understandable without
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having to read these appendices. The Coq sources of the development are
available online [20].

Notation: Functions whose type depends on the program being analysed will
have dependent type F : (P : Program) → T (P ) with type T depending
on P . We will write FP for the application of F to a particular program P .
The paper uses a mixture of logic and Coq notation. Java Card byte code
and Coq functions are written using the teletype font (e.g., push in Section 2
and join in Section 3). Lattices and abstract operations on these as well as

their corresponding Coq types are written using the Roman font (e.g., p̂ush

in Section 2 and the domain of abstract states Ŝtate illustrated in Figure 2).

A preliminary version of this article was presented at the European Sympo-
sium on Programming (ESOP) 2004 [5]. The present article is a thoroughly
revised version that contains a more detailed description of the lattice library,
the lattice constructors and the proof of well-foundedness of the lattices, a
simplified representation of the constraints generated by the analysis and a
more detailed presentation of the correctness proofs.

2 A Static Analysis for Carmel

The analysis which serves as a basis for our work is a data flow analysis for the
Carmel intermediate representation of Java Card byte code [15] specified using
the Flow Logic formalism [12] and proved correct on paper with respect to an
operational semantics [22]. The language is a byte code for a stack-oriented
machine, much like the Java Card byte code. Instructions include stack opera-
tions, numeric operations, conditionals, object creation and modification, and
method invocation and return. It is given a small-step operational semantics
with a state of the form 〈〈h, 〈m, pc, l, s〉 :: sf 〉〉, where h is the heap of objects,
and 〈m, pc, l, s〉 :: sf is a call stack consisting of frames of the form 〈m, pc, l, s〉
where each frame contains a method name m and a program point pc within
m, a set of local variables l, and a local operand stack s (see [22] for details).
Here and everywhere in the paper, “::” denotes the “cons” operation on lists.

The transition relation →I describes how an instruction I affects the state.
We give as example the rules defining the instructions push for pushing a
value onto the operand stack, invokevirtual for calling a virtual method, and
return for returning from a virtual method call. The expression instructionAtP (m, pc)
denotes the instruction found at address (m, pc) in the program P .

The rule (1) reads as follows: the instruction push c at address (m, pc) of
state σ = 〈〈h, 〈m, pc, l, s〉 :: sf 〉〉 has the effect of pushing c on the operand
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stack s of σ and advancing to the instruction at pc + 1.

instructionAtP (m, pc) = push c

〈〈h, 〈m, pc, l, s〉 :: sf 〉〉 →push c 〈〈h, 〈m, pc + 1, l, c :: s〉 :: sf 〉〉
(1)

instructionAtP (m, pc) = invokevirtual M

h(loc) = o m′ = lookUp(M, class(o))
f ′ = 〈m′, 1, V, ε〉 f ′′ = 〈m, pc, l, s〉

〈〈h, 〈m, pc, l, loc :: V :: s〉 :: sf 〉〉 →invokevirtual M 〈〈h, f ′ :: f ′′ :: sf 〉〉
(2)

instructionAtP (m, pc) = return f ′ = 〈m′, pc′, l′, s′〉

〈〈h, 〈m, pc, l, v :: s〉 :: f ′ :: sf 〉〉 →return 〈〈h, 〈m′, pc′ + 1, l′, v :: s′〉 :: sf 〉〉
(3)

The rule (2) is slightly more complicated. It reads: for M a method name,
the instruction invokevirtual M at address (m, pc) of state σ = 〈〈h, f :: sf 〉〉
requires that the first frame f on the call stack of σ has an operand stack
of the form loc :: V :: s, i.e., it starts with a heap location denoted by loc,
followed by a vector of argument values V . The actual method that will be
called is determined by the lookUp function that searches upwards in the class
hierarchy for the methond name M , starting from the class of the object o

that resides in the heap h at the location loc. The new method, together with
its starting point pc = 1, its vector V of actual parameters, and an empty
operand stack ε, constitute a new frame f ′ pushed on top of the call stack
of the resulting state σ′ = 〈〈h, f ′ :: f ′′ :: sf 〉〉. Note, however, that the second

frame f ′′ in the call stack is also modified: the sequence loc :: V has been
removed from the operand stack of f . This semantics of the invokevirtual

instruction (which corresponds to the operational definition of the semantics of
Java Card), together with the corresponding rules describing its static analysis,
made for the most challenging part of the correctness proofs (we return to this
point in Section 5).

Finally, the return rule (3) removes the last frame from the call stack, and
transfers the return value v (from the top of the last frame’s operand stack)
to the operand stack of the calling frame f ′.

2.1 Carmel Flow Logic

The Carmel Flow Logic defined by Hansen [12] specifies a constraint-based
data flow analysis for Carmel. This analysis computes a safe approximation
of the states that can occur at any program point during execution of a pro-
gram. This information can then be used to optimize virtual method calls
or verify specific properties on the control flow graph (see e.g. [4]). Programs
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may contain virtual method calls, which are dynamically resolved at execution
time ; the analysis reflects this behaviour, and attempts to compute a precise
approximation of the called methods and their return values.

Concrete semantic values are either integers or object references. Object ref-
erences are abstracted by the classes of the objects they refer to, thus, an
abstract value is either a subset of the set of classes of the program P or a
numerical abstraction. This means that the type V̂alP of abstract values de-
pends on the program P being analysed. This is an example of a dependency
that it is important to make explicit because it ensures the finiteness of the
abstract domain which would otherwise have an infinite number of subsets
of classes. The abstract domain of local variables is another example of an
abstract domain that depends on the actual program being analysed (namely,
on the number of local variables of the program).

For each program point in P , of the form (methodNameP ×progCountP ), the
local variables (resp. the operand stack) are abstracted by an array of type

̂LocalVarP (resp. a stack of type ŜtackP ) of abstract values. Then, the abstract

state domain:

ŜtateP = ĤeapP ×
(
methodNameP × progCountP → ̂LocalVarP

)

×
(
methodNameP × progCountP → ŜtackP

)

contains an over-approximation of all possible concrete heaps 1 and, for each
program point, an over-approximation of the local variables and of the operand
stack. These approximations are formalised by a relation ∼ that connects the
concrete domains of the operational semantics and the abstract domains. In
logical terms, s ∼ a if a is a property of s. In set-theoretic terms, s ∼ a if
s is a member of the set of states described by a. The formal definition of
the ∼ relation can be found in the Appendix. Here, we only give an intuitive
description:

• a reference to object o is approximated by an abstract value V̂ (written
ref (o) ∼ V̂ ) whenever V̂ is a set of classes that contains the class of o,

• the vector of local variables l and operand stack s at a given program address
(m, pc), are approximated pointwise,

• a concrete state 〈〈h, 〈m, pc, l, s〉 :: sf〉〉 is approximated by an abstract state
Σ̂ = (Ĥ, (L̂, Ŝ)) whenever h ∼ Ĥ, l ∼ L̂(m, pc), and s ∼ Ŝ(m, pc).

The abstract domains are further described in Section 3. An important prop-
erty of the approximation relation ∼ is the monotonicity with respect to the

1 The precise descriptions of the concrete and abstract heap domains are not es-
sential for understanding the rest of the paper; they can be found in the Appendix.
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abstract order v. It says that, for each concrete value a (be it a heap, a stack,
or a vector of local variables) and abstract values Â, Â′ in the corresponding
abstract domain, if a ∼ Â and Â v Â′ then a ∼ Â′ holds as well. This
property of ∼ is proved in Coq once and for all for each concrete and cor-
responding abstract domain. The relation ∼ is used extensively in Section 5
where we show how to prove correctness of the analysis in Coq.

The specification of the flow logic consists of a set of inference rules that for

each Carmel instruction define a constraint over an abstract state Σ̂ ∈ Ŝtate.
For Σ̂ =

(
Ĥ, L̂, Ŝ

)
to be a correct abstraction of program P , Σ̂ must satisfy

the constraints of the instructions of P . For example, if a push instruction is
present at address (m, pc), the following constraints should be satisfied:

p̂ush
(
c, Ŝ (m, pc)

)
v Ŝ (m, pc + 1) (4)

L̂ (m, pc) v L̂ (m, pc + 1) (5)

where p̂ush is the abstract push operation from the abstract domain of stacks.

The constraints (6) and (7) below are attached to the invokevirtual in-
struction. Other constraints attached to this instruction can be found in the
Appendix. Together, the constraints (6) and (7) describe the relation between
the value of the abstract stack Ŝ at an address (m, pc) where a method named
M is called by an invokevirtual instruction, and the value of Ŝ at the address
(m, pc + 1) that follows the method’s return.

p̂opn

(
Ŝ(m, pc), 1 + nbArgs(M)

)
v p̂op

(
Ŝ(m, pc + 1)

)
(6)

∀cl ∈ t̂op
(
Ŝ(m, pc)

)
, ∀m′ ∈ lookUp(M, cl). (a) (7)

t̂op
(
Ŝ(m′, Ret(m′))

)
v t̂op

(
Ŝ(m, pc + 1)

)
(b)

In particular, the constraint (7), explained below, plays a particular role in the
correctness proof described in Section 5. Assume that the program performs
an invokevirtual M instruction at an address (m, pc). The constraint (7)
computes both (a) a set of methods that contains the method actually called
by invokevirtual, and (b) an over-approximation of the return values of all
the methods computed at Step (a).

• Step (a) simulates the semantics of invokevirtual (rule (2)). The rule says
that the method actually called is found by looking up for methods named
M , in the class of the object referenced by the top of the concrete operand
stack when the execution is at address (m, pc). The constraint (7) simulates
this behaviour at the abstract level: it searches the class hierarchy for meth-
ods called M starting from all the classes contained in the corresponding
abstract value t̂op

(
Ŝ(m, pc)

)
.

• Step (b) is performed by simulating the semantics of the return instruction.
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By the semantics rule (3), the return value of the method m′ actually called
is placed on the top of the operand stack at address (m, pc + 1). Hence, the

constraint (7) imposes that t̂op
(
Ŝ(m, pc + 1)

)
is greater than the abstract

return values t̂op
(
Ŝ(m′, Ret(m′))

)
of all methods m′ computed at Step (a),

where Ret(m′) is a virtual program point used for collecting abstract results
of each method m′.

Note that Step (a) implicitly assumes that the abstract value t̂op
(
Ŝ(m, pc)

)

correctly approximates the top of the concrete operand stack when execution
is at address (m, pc), i.e., before the invokevirtual instruction. That is, the

abstract value t̂op
(
Ŝ(m, pc)

)
is a set of classes which contains the class of

the object o that is referenced by the top of the concrete operand stack when
execution is at address (m, pc). This assumption becomes a proof obligation,
to be discharged when proving the correctness of the analysis (cf. Section 5).

3 Constructing abstract domains

In this section we define a data type for lattices (lattice A), parameterised
by the type of elements of the lattice. We also define higher-order functions
which build a lattice object from other lattice objects. This allows to construct
the abstract domains (of local variables, stacks, etc.) in a compositional fashion
from a collection of base abstract domains. The advantage of this modular
technique of combining and building lattices is that we do not have to prove
properties (such as the finite ascending chain condition, see below) for one
big, final lattice, but can do so in a modular fashion for every type of lattice
used. Furthermore, local changes to the lattice structure do not invalidate the
overall proof.

A lattice object is a record structure with two families of fields: the functional
fields which are the operations that will remain in the extracted Ocaml code,
and the logical fields that contain properties about the lattice. E.g., the field
join is a functional field that contains the least upper bound operator of the
lattice, whereas the field acc property is a logical field stating that the lattice
satisfies the ascending chain condition. The lattice type is conveniently defined
as a record type in Coq, as shown in the following Coq declaration, where only
details for the order relation, the join operation and the well-foundedness of
the lattice are given. The well-foundedness field will be explained in detail in
Section 3.1.
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Record Lattice [A: Set]: Type := {
eq : A → A → Prop;

eq prop : ... ;; eq is an equivalence relation

order : A → A → Prop;

order refl : ∀x, y :A (eq x y) ⇒ (order x y);

order antisym : ∀x, y :A (order x y) ⇒ (order y x) ⇒ (eq x y);

order trans : ∀x, y, z :A (order x y) ⇒ (order y z)

⇒ (order x z);

join : A → A → A;

join bound1 : ∀x, y :A (order x (join x y));

join bound2 : ∀x, y :A (order y (join x y));

join least : ∀x, y, z :A (order x z) ⇒ (order y z)

⇒ (order (join x y) z);

eq dec : A → A → bool

eq dec prop : ... ;; eq dec is a correct test of equality

bottom : A;

bottom_prop : ... ;; bottom is the least element

top : A;

top_prop : ... ;; top is the greatest element

acc property : (well founded A (λx, y :A, ¬(eq y x)∧(order y x)))

}

In this large object, the properties in the logical fields are only necessary
during the Coq development to ensure the logical coherence of the structure.
Hence only the four functional fields appear in the extracted Ocaml lattice
type:

type ’a lattice = { join : (’a → ’a → ’a);

eq_dec : (’a → ’a → bool);

bottom : ’a;

top : ’a }

Declaring a structure of Lattice type will result in a series of proof obliga-
tions, one for each of the logical fields. Of these, the last property acc property

is the most difficult to establish. It expresses that the strict dual order is well-
founded, or, in other words, that there are no infinite, ascending chains. It is
the key property used to prove the termination of the final analyser. Thus,
strictly speaking we are dealing with lattices satisfying the finite ascending
chain-condition but we will for convenience use the general term lattice in the
rest of this document.
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3.1 Lattice constructors and proof of well-foundedness

The lattices are built from two base lattices using four lattice constructors.
These constructors are not tied to this particular analysis and can be reused
in other contexts.

prodLattice : (Lattice A) → (Lattice B) → (Lattice A*B)

sumLattice : (Lattice A) → (Lattice B) → (Lattice (lift A+B))

stackLattice : (Lattice A) → (Lattice (stack A))

arrayLattice : (max:nat) → (Lattice A) → (Lattice (array max A))

The most difficult part of each lattice construction is the proof of preserva-
tion of acc property (the ascending chain condition), which is essential for
defining an analyser that terminates. This is essentially a termination proof
which is typically hard to conduct in a proof assistant because the standard
techniques of structural orders or well-chosen measures do not apply in the
case of lattice orders. The proof has to operate directly with the definition of a
well-founded order. We use the standard inductive definition of a well-founded
relation, as used in the built-in Coq predicate well founded:

Definition 1 Let A be a type and ≺ a binary relation on A.

• The accessibility predicat is inductively defined by: an element x of type A

is accessible if and only if all the predecessors of x are accessible,
• a binary predicate ≺ on a type A is well-founded if all the elements of A

are accessible for ≺.

The prodLattice function is the standard cartesian product with the point-
wise order

(x1, y1) vA×B (x2, y2) iff x1 vA x2 ∧ y1 vB y2

The ascending chain condition of this structure is proved using the fact that
the strict reverse order is a sub-relation of the lexicographic product

(x1, y1) AA×B (x2, y2) =⇒ x1 AA x2 ∨ (x1 =A x2 ∧ y1 AB y2)

The sumLattice function builds the separate sum of two lattices A and B

according to the Hasse diagram of Figure 1(a). The acc property proof of
this lattice is done following the different layers of the diagram: first, we prove
that the top element is accessible (no predecessor); then, that all the elements
of A, B are accessible (using the fact that > is accessible and AA well-founded).
Finally, we prove that ⊥ is accessible because all its predecessors are accessible
(they are elements of A ∪ B ∪ {>}).

The stackLattice constructor builds the lattice of stacks of elements of type
A. In this lattice, stacks with different sizes are incomparable, according to
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>

A B

⊥

(a)

>

<> stacks of

size 1
· · · stacks of

size n
· · ·

⊥

(b)

>

⊥

(c)

Fig. 1. Hasse diagrams of lattices

the Hasse diagram of Figure 1(b). The ascending chain condition proof again
follows the layers of the Hasse diagram but is more technical because of the
infinite width of the lattice: for the middle layer, that is, the level of stacks, we
use an induction on the stack size. The case of the empty stack is trivial (no
predecessor) and for the induction step, we observe that strict inverse order
for stacks of size n + 1 is a sub-relation of the lexicographic product between
(A, A) (which is supposed well-founded) and the set of stacks of size n (which
is well-founded for the strict inverse order by induction hypothesis).

(x1 :: l1) An+1 (x2 :: l2) =⇒ x1 AA x2 ∨ (x1 =A x2 ∧ l1 An l2)

The fourth constructor arrayLattice builds the type of arrays whose ele-
ments live in a lattice and whose size is bounded by a parameter max, using
a pointwise order. Notice that arrays of different sizes may be comparable
whereas this is not the case for the order we have defined on stacks.

t1 v t2 iff ∀i ∈ {1, . . . , max}, t1[i] vA t2[i]

The array lattice frequently occurs in flow-sensitive analyses where the num-
ber of abstract variables depends on the program to analyse—these are then
conveniently collected in an array. An efficient implementation of arrays is
therefore crucial for obtaining an efficient extracted code, and we have opti-
mized it by using an efficient tree representation of integer maps in the spirit
of [19]. The crucial ideas of this implementation are

• to represent arrays using binary trees whose nodes are elements of the array
• to represent indexes using a binary notation; an element at position i in

an array is found by interpreting the binary notation of i as the ”path” to
follow from the root

• to have a lazy structure: if a searched node is missing, its value is by con-
vention ⊥A, which allows to represent an array whose elements are all ⊥A

by an empty leaf.
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Ŝtate = product

array[classNameP ] array[methodNameP ] array[methodNameP ]

array[fieldNameP ] array[progCountP ] array[progCountP ]

V̂al array[varNameP ] stack

V̂al V̂al

where

V̂al = sum

finiteSet[classNameP ] lattice of integer constants

Fig. 2. The lattice of abstract states (each xXP represents the number of distinct
xX elements in program P ).

The acc property proof of this lattice is performed by defining an order on
trees (a leaf is smaller that any tree; two nodes are smaller if their heads are
in the vA relation and if their descendents are smaller as well), proving its
well-foundedness, and, finally, connecting this order to the array order. It is
certainly the most technical of this library. More details on this proof can be
found in the corresponding Coq development.

In addition to these four functors, two base lattices are defined:

• the flat lattice of integer constants (as used e.g., in constant propagation
analysis),

• the lattice of finite sets over a subset {0, . . . , max} of integers: again, an
efficient implementation is proposed, by encoding sets using boolean ar-
rays, hence based on the arrayLattice functor and two-valued lattice of
Figure 1(c).

The lattice employed in our particular analysis is given a graphical representa-
tion in Figure 2 (see Appendix for a mathematical description of the lattice).
In this diagram, each node represents a lattice functor whose parameters are
the sons of the node. For the array functor and the finite-set lattice we write
the index domain inside brackets. The modular construction saves a consider-
able amount of time and effort, e.g., compared to proving acc property for
the lattice in Figure 2 as a whole.

11



3.2 Iterative constraint solving over lattices

Implementing a static program analyser involves building a constraint solver
that can compute a solution to constraints like the flow logic constraints shown
in Section 2 [17]. The problem of solving a set of constraints over a lattice L of
abstract values can be transformed into calculating a fixpoint of a monotone
function over L—a fixpoint that for reasons of precision should be as small as
possible. More precisely, let f : L → L be a monotone function over L. The
basic fixpoint operator lfp takes such a monotone function f and computes
the least element x of L verifying f(x) = x. Furthermore, by a corollary of
the Tarski’s Fixed Point Theorem, this element can be iteratively calculated
as the limit of the (stabilizing) sequence (fn(⊥))n∈N

. Formally, we define the
operator lfp of type

(A:Set) → (L:(Lattice A)) → (f:(A→A)) → (monotone L f) →
∃x:A, (eq L x (f x)) ∧ (∀y:A (eq L y (f y)) ⇒ (order L x y))

That is, lfp takes four arguments : a data type A, a lattice L on A, a function
f on A and a proof that f is monotone. It returns the least fixed point of f .
We prove in Coq that this type is non-empty, which here consists in instan-
tiating the existentially quantified x in the type definition by limn→∞ fn (⊥).
The extraction mechanism of programs from proofs generates for lfp the fol-
lowing Ocaml code, in which the purely logical part of the proof (i.e., the part
concerned with proving that the chosen witness verifies the fixpoint equation)
has been removed:

let lfp L f =

let rec aux x =

if (L.eq_dec x (f x)) then x else aux (f x)

in aux L.bottom

We use x = f(x) as halting condition here, but, as is well known from the fixed
point theory, we could equally well have used the post-fixed point condition
f(x) v x. The equality test appears to be more efficient for the majority of
lattices used in our case study.

In order to use the lfp operator to solve the constraints arising from the Java
Card flow analysis it must be extended to a function lfp list that can deal
with systems of the form

{fi(x) v x}i=1,...,n

Given a list f1, . . . , fn of monotone functions of type L → L, the operator
lfp list computes the least solution x of the system by a round-robin iter-
ation strategy in which the constraints are iterated in increasing order. This
computation is implemented by applying the lfp operator on the monotone
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function f̃n ◦ · · · ◦ f̃1, where f̃i(x) = x t fi(x) for every index i. The fact that
this computes a solution to the constraint system is formalised in the type of
lfp list, which is expressed in Coq as follows:

(l: (L → L) list) → (∀f ∈ l, (monotone L f)) →

∃x:A, (∀f ∈ l, (order L (f x) x)) ∧

(∀ y:A (∀f ∈ l, (order L (f y) y)) ⇒ (order L x y))

(8)

This type means that any application of lfp list to a list of functions fi

must be accompanied by a proof of the monotonicity of each fi. Read at a
proof-theoretic level, it states that from the proofs of monotonicity of the fi

we can prove the existence of a least common post-fixpoint for all of the fi.
This function will be used as a generic constraint solver in Section 4.

4 Constructive Constraints

We now turn to the problem of building an analyser that implements the flow
analysis from Section 2. The development will be structured into three phases:

(1) The generation of a set of constraints for each instruction.
(2) The building of an analyser analyse that computes an abstract state

verifying all the constraints generated for a given program.
(3) The proof of correctness of these constraints wrt. the Carmel semantics.

In the rest of this section, we focus on the constraint generation and resolution
(Phases 1 and 2). In Section 5 we describe the proof of correctness (Phase 3).

Let P ` Σ̂ be the predicate meaning that the abstract state Σ̂ verifies all
constraints of program P (this predicate is defined formally in Definition 5
below). Phases 2 and 3 correspond to proving the following two theorems:

Theorem 2 For each program P , there exists an abstract state Σ̂ satisfying

all constraints of P :

∀P : Program, ∃Σ̂ : ŜtateP . P ` Σ̂

The constructive proof of this theorem provides the analyser itself: the abstract
state Σ̂ we construct corresponds to analyse(P ).

Theorem 3 An abstract state verifying all the constraints of a program P is
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a correct approximation of the operational semantics of P :

∀P : Program, Σ̂ : ŜtateP . P ` Σ̂ ⇒ [[P ]] ∼ Σ̂

where [[P ]] denotes the set of reachable states of program P and ∼ is the cor-

rectness relation between concrete domains of the operational semantics and

the abstract domains.

Putting these two theorems together, we get the correctness of the analyser:

Theorem 4 (Global Correctness)

[[P ]] ∼ analyse(P )

4.1 Generating the constraints

When formalising the analysis, several representations of the constraints are
possible.

• For the correctness proof (Phase 3), it is sufficient to know which order
relation is induced by the constraints on a given set of components of the
abstract state. Using an inductive definition for constraints would naturally
provide the necessary predicates for this phase. Relational constraints writ-
ten as (4)–(7) could be translated in Coq in a straightforward manner using
inductive definitions.

• On the other hand, the construction of an effective analyser (Phase 2) re-
quires to represent constraints in a functional form like f(X) v X. This
representation is typically difficult to extract directly from inductive defini-
tions. 2

This is why an internal representation of constraints is defined in Phase 1,
which allows for both interpretations and leaves room for reuse in other anal-
yses.

Looking at Formulas (4) and (5) for the push instruction (Section 2.1), we note
that the representation of constraints must contain the following informations:
(i) the components of the abstract state that are involved in the constraint,
(ii) a start address ad1 and an end address ad2 of the data flow, and (iii)
the transformation F that is applied to the data that flows. For example,
constraint (4) only affects the abstract state Ŝ, and we have ad1 = pc, ad2 =

pc+1, and F = λŜ.p̂ush(c, Ŝ). This naturally leads to an inductive data type
of the form

2 Cognoscenti will know that the Coq extraction mechanism is not able to extract
computational content of inductive definition made in the sort Prop.
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type ConstraintP =

| S2S of Address * Address * (ŜtackP → ŜtackP )

| L2L of Address * Address * ( ̂LocalVarP → ̂LocalVarP )

...

(9)

where each constructor represents a type of dependency between components
of the abstract state. For example, S2S is a constructor to express a con-
straint on an abstract stack which depends on another abstract stack. For the
particular analysis discussed here eleven constructors were employed.

Each constraint, initially acting on a part of the abstract state, is extended to
a function on the whole abstract state, using a mapping

F [[·]] : ConstraintP →
(
ŜtateP → ŜtateP

)

for which we prove that it preserves the monotonicity of constraints. E.g., for
the push instruction

F [[(S2S ad1 ad2 F)]] := λ(H, L, S). (H, L, S[ad2 7→ F (S(ad1))])

F [[(L2L ad1 ad2 F)]] := λ(H, L, S). (H, L[ad2 7→ F (L(ad1))], S)

Based on this definition of the constraints we define a function cst gen, which
for each address, returns the list of constraints for the corresponding instruc-
tion in a syntax of the form (9). Continuing with the push instruction, the
corresponding code part is:

cst genP := λ(m,pc)

Case instructionAtP (m,pc) of

| (push c) → (S2S (m,pc) (m,pc+1) λŜ. p̂ush
(
ĉ, Ŝ

)
) ::

(L2L (m,pc) (m,pc+1) λL̂. L̂)
...

The well-formedness of this function depends on the actual program P be-
ing analysed because every instance of (m, pc) must be shown to refer to a
valid program point of P . In a paper-and-pencil proof, this is often left as an
implicit hypothesis. In a formal proof however, this fact must be stated explic-
itly. In a dependently-typed framework, the constraint generation will thus be
parameterised by the program being analysed, yielding a function cst genP

which takes as argument an address (m, pc) in the program P and generates
the constraints corresponding to the type of instruction at (m, pc).

We now can formally define what it means for an abstract state Σ̂ to verify
all the constraints of a program P .
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Definition 5 Let AddrP denote the set of addresses appearing in P :

P ` Σ̂ ≡ ∀(m, pc) : AddrP , ∀c ∈ cst genP (m, pc). F [[c]](Σ̂) v Σ̂

4.2 Construction of the analyser

Recall that the goal is to build an analyser that, given an input program,
computes an abstract state that verifies all the constraints of the program.

We construct a function analyse of dependent type (P : Program) → ŜtateP

which must verify
∀P : Program, P ` analyse(P ) (10)

In addition, we want to obtain a non-trivial solution of the constraint system:
e.g., an analyser returning the top element of the lattice for any input is a
correct solution, but of poor interest. We thus add the requirement that our
solution is the least solution of the constraint system:

∀P : Program, Σ̂ : ŜtateP P ` Σ̂ ⇒ analyse(P ) v Σ̂ (11)

The constraint resolution tool is based on the generic solver lfp list (8) de-
scribed in Section 3.2. The most difficult part of the work has already be done
during the definition of the solver, i.e., proof of termination and correctness.
It is instantiated here with the particular abstract state lattice of the analysis
(depicted in Figure 2); then,

• For each instruction of program P , the constraints are collected from the
lists defined by cst genP (cf. Section 4.1).

• Each constraint is translated into a function on abstract states using the
mapping F . The resulting list of functional constraints is called collect funcP .
As F preserves the monotonicity of constraints, we conclude that

∀f ∈ collect funcP f is monotone (12)

We now have all the ingredients to define the constraint solver:

analyse(P ) = lfp list(ŜtateP , collect funcP , collect func monotone)

where collect func monotone is the name given to the proof of (12).

By the properties of lfp list (defined by Formula (8)) we know that analyse(P )

is the least abstract state Σ̂ in ŜtateP verifying

∀f ∈ collect funcP f(Σ̂) v Σ̂ (13)

Thus, analyse(P ) is the least Σ̂ satisfying P ` Σ̂.
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We stress that this approach defines a methodology that remains valid for
other analyses. Indeed, all proofs in this section are independent of the system
of constraints defined by the user. They only depend on the different types of
constraints introduced as in (9) (S2S, L2L,...). As a consequence, modifications
to the system of constraints only affect proofs made about the monotonicity
of constraints and during Section 5, rather than the construction and the
correctness of the solver itself.

5 Correctness

Section 4 has shown that an effective solver for the constraints of a program ex-
ists. We now show that the solver is indeed a correct analyser for the program.
The analysis is correct if every abstract state Σ̂ satisfying all the constraints
of the analysis is an approximation of the reachable states [[P ]] of the program:

∀P : Program, Σ̂ : ŜtateP . P ` Σ̂ ⇒ [[P ]] ∼ Σ̂ (14)

The implication (14) has been proved in Coq by well-founded induction on the
length of the program executions. The base step is trivial. The induction step
depends on whether the last instruction is return or some other instruction.

5.1 Induction Step: the non-return Instructions

For I an instruction, let →I denote the transition relation of I (examples of
which have been given in Section 2). The general form of the induction step
for any Carmel instruction I 6= return is of the following form.

P ` Σ̂ =⇒ ∀σ, σ′ ∈ [[P ]], σ ∼ Σ̂ ∧ σ →I σ′ ⇒ σ′ ∼ Σ̂ (15)

That is, if a state σ is approximated by an abstract state Σ̂ that satisfies the
constraints of program P , and if, by performing instruction I, the state σ

becomes σ′, then σ′ is approximated by Σ̂ as well. We now sketch the proof
of (15).

(1) A Coq script unfolds the definition of the transition rule for instruction I.
(2) Then, another script unfolds the definitions of σ ∼ Σ̂ and P ` Σ and

automatically turns them into hypotheses of the current Coq goal 3 . For
example, if σ = 〈〈h, 〈m, pc, l, s〉 :: sf〉〉, Σ̂ = (Ĥ, L̂, Ŝ), and I = push c then
the following hypotheses are generated:

s ∼ Ŝ(m, pc), p̂ush
(
c, Ŝ (m, pc)

)
v Ŝ (m, pc + 1) (16)

3 This script simulates the standard Coq inversion tactic for inductive datatypes.
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(3) Next, the conclusion of the Coq goal: σ′ ∼ Σ̂ — i.e., the new state σ′ is
approximated by the abstract state Σ̂ = (Ĥ, L̂, Ŝ) — is split into three
subgoals, one for each of the components (Ĥ, L̂, Ŝ) of Σ̂.

For I = push c, the subgoal corresponding to the abstract stack Ŝ is

c :: s ∼ Ŝ(m, pc + 1) (17)

(4) Finally, the subgoals generated at Step 3 are proved using the hypotheses
generated at Step 2 and monotonicity of ∼ with respect to v (cf. Sec-
tion 2). For I = push c, the only non-trivial subgoal is represented by

Formula (17). It is proved using the fact that p̂ush is a correct abstraction

of the concrete push operator “::”, i.e., c :: s ∼ p̂ush
(
c, Ŝ (m, pc)

)
. This,

together with the hypothesis (16) and the monotonicity of the ∼ relation
for stacks, implies the subgoal (17), and the proof is done.

5.2 Induction Step: the Case of the return Instruction

Formula (15) above has the general aspect of the induction step in a proof by
simple induction. That is, if the abstract state Σ̂ approximates the concrete
state σ, then Σ̂ also correctly approximates all immediate successors σ′ of σ.
However, this simple implication could not be proved for the return instruc-
tion. This is because the effect of the return is simulated by a constraint (cf.
Formula (7)) attached to a different instruction: the invokevirtual instruc-
tion that called the method now performing the return. As seen in Section 2.1,
in order to evaluate which methods may have been called, the constraint (7)
must be used together with the assumption that the top of the concrete stack at

the address (m, pc) where the invokevirtual instruction has been performed,

is correctly approximated by the top of the abstract stack t̂op
(
Ŝ(m, pc)

)
.

More generally, we need to assume that the concrete state σ′′ where the
invokevirtual instruction has been performed, was correctly approximated
by the abstract state Σ̂ as well. But σ′′ may have been encountered arbitrarily
far in the past. Hence, our proof of the induction step for the return instruc-
tion uses a well-founded induction hypothesis, which imposes that the whole
proof of correctness be done by well-founded induction.

Let [[P ]]<n denote the set of states of program P that are reachable using less
than n instructions. The induction step for I = return is:

∀n ∈ N.[∀σ′′ ∈ [[P ]]<n. σ′′ ∼ Σ̂] ⇒ ∀σ ∈ [[P ]]<n, ∀σ′.[ σ →I σ′ ⇒ σ′ ∼ Σ̂]
(18)

Formula (18) reads: if the abstract state Σ̂ approximate all earlier states σ′′

(well-founded induction hypothesis); and σ evolves, by performing a return

instruction, into σ′; then, Σ̂ approximates σ′ as well.
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The proof of Theorem (18) is substantially more involved than the proofs of
Theorems (15). It should be pointed out that this difficulty had been avoided
by a previous pencil-and-paper proof [12], where some details - the actual
JavaCard semantics of the invokevirtual instruction - have been overlooked.

6 Related work

Proving correctness of program analyses is one of the main applications of
the theory of abstract interpretation [9]. However, most of the existing proofs
are pencil-and-paper proofs of analyses (formal specifications) and not mech-
anised proofs of analysers (implementations of analyses). The only attempt of
formalising the theory of abstract interpretation with a proof assistant is that
of Monniaux [16] who has built a Coq theory of Galois connections. Prost in
his thesis [21] conduces a theoretical study of the relation between type theory
and program analysis, but this work did not lead to an implementation of a
concrete analysis.

Mechanical verification of program processing tools has so far mainly focussed
on the correctness of optimising compilers. Genet et al. [11] use the generic
proof assistant PVS for proving the correctness of algorithms for transform-
ing Java Card byte code into the more compact CAP format. Similar work
was done by Denney [10], using the program extraction mechanism of Coq.
These optimisations do not involve any sophisticated static analysis. Lerner
et al. [14] have developed Cobalt, a dedicated programming language for writ-
ing C program optimisers and automatically proving their soundness. This
language allow to define statement transformation guarded by predicates on
execution traces. To prove the correctness of the optimisation, these transfor-

mation patterns produce proof-obligations to be discharged by an automatic
theorem prover. The authors propose an execution engine to compile Cobalt
descriptions in an executable form. The framework allows to write several op-
timisations whose correctness is automatically proved by the Simplify theorem
prover. The scope of this work seem currently restricted to intra-procedural
analysis with simple lattices of approximations. Finally, ongoing work in the
French research action ”Concert” [8] currently explores the feasibility of devel-
oping a realistic certified compiler in Coq. First results concern the certification
of three classical low-level optimizations based on dataflow analysis and some
first experiments in program transformation.

Previous formalisations of static analyses for Java (Card) byte code have all
dealt with intra-procedural type verification. In contrast, we have also shown
how to handle inter-procedural data flow analysis in a natural manner; this
is due to the fact that we use the general setting of Flow Logic [18] and
constraint-based analysis. Research on mechanical verification of the Java byte
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code verifier includes that of Barthe et al. [2] who have shown how to formalise
the Java Card byte code verification in the proof assistant Coq by isolating the
byte code verification in an executable semantics of the language. In [1], they
propose to automate the derivation of a certified verifier from a formalisation of
the JCVM. Their approach does not rely on a general theory of static analysis,
and is oriented towards type verification. Bertot [3] used the Coq system to
extract a certified bytecode analyser specialized for object initialization, but
no attention has been paid to the efficiency of the analyser. In [7], Coglio et al.

described their ongoing efforts to implement a bytecode verifier by refinement
from the specification of a constraint-solving problem on lattices. Klein and
Nipkow [13] have proved the correctness of a Java byte code verifier using the
proof assistant Isabelle/HOL. In particular their work includes a correctness
proof of Kildall’s iterative workset algorithm for solving data flow equations.
They also provide a modular construction of lattices. The major difference
with our approach is the use of abstract data types that are not implementable
as such.

An alternative to the Coq proof extraction mechanism is the B method that
has had considerable industrial success. Casset et al. [6] have extracted a proof-
carrying code-based on-card bytecode verifier for Java Card from a high-level
specification by a succession of refinement steps using the B technique. The
development required the proof of thousands of proof obligations, of which
several hundreds could not be dealt with automatically by the B prover. The
B tool could most probably be used for building an analyzer like ours but
we doubt that using B would lead to a simpler proof effort. In addition, the
program extraction mechanism in B does not enjoy the same solid foundations
as that of Coq. Hence our decision to base our development on Coq.

7 Conclusion

The results presented in this article demonstrates that it is feasible to construct
a non-trivial, provably correct data flow analyzer using the program extraction
mechanism of constructive logic implemented in Coq. This bridges the gap that
often exists between a paper-specification of an analysis and the analyser that
is actually implemented. Our approach applies to analyses expressed in the
constraint-based Flow Logic specification framework and is hence applicable
to a large variety of program analyses for different language paradigms. We
have instantiated it to a data flow analysis for Java Card. To the best of our
knowledge, it is the first formal construction (with proof of correctness) of a
data flow analysis other than the Java byte code verifier.

Formalising a program analyser in a proof assistant imposes a strict discipline
that catches a certain number of bugs, including typing errors in the spec-
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ification. The present development revealed several (innocuous) inaccuracies
in the pencil-and-paper specifications and proof of correctness. Moreover, it
pinpointed the adjustment that had been made of the actual semantics of
Java Card in the correctness proof on paper—an adjustment that (as argued
in Section 5.2) made the proof far simpler than a proof done against a more
accurate semantics.

Our methodology makes use of the proof-as-programs paradigm. This paradigm
is sometimes presented as developing programs as a by-product of building a
constructive proof interactively and incrementally for an “existential” theo-
rem with a proof assistant. While this presentation is conceptually simple and
appealing, the development of any non-trivial piece of software (including the
present analyser) rather tends to be done by defining (most of) the function
and then showing that it is indeed a witness to the theorem. This technique
has the further advantage that it is simpler to control the efficiency of the
resulting program. In our case, the provably correct analyser was developed
by splitting the correctness proof into

• an existential proof of a solution to a constraint system from which a con-
straint solver can be extracted and,

• a proof that the solutions to the constraint system are correct approxima-
tions of the semantics of the analysed program; this proof does not con-
tribute to the actual construction of the solution.

The methodology includes several steps of varying complexity. The develop-
ment of the lattice library required a Coq expert to structure the proofs of the
properties associated with the lattice constructors. Once this library in place,
it turned out to be a relatively straightforward task to prove correctness of
the constraint generation and to extend the constraint generation to instruc-
tions others than those originally studied. It took a Coq neophyte less than
two months to complete the correctness proof, including the time and effort
needed to understand the general framework of the project. Only basic fea-
tures of the tool, those available in any other general-purpose theorem prover,
have been employed in the correctness proof.

The program extraction mechanism has a reputation for producing inefficient
programs. This is not the case with our methodology: the extracted analyser
is about 2000 lines of Ocaml code and takes only a few seconds to analyse
1000 lines of bytecode. The extracted version of analyse has now a type

Program → Ŝtate because Ocaml does not have dependent types. As men-
tioned above, the methodology leaves some possibilities for programming the
resolution mechanism. This, and the inclusion of widening operators, is one
important step forward to be accomplished. Another is further automation of
the proof obligations arising during the development of the analyser in order
to make the methodology the standard way of implementing static analysers.
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A Syntax

Instruction ::= nop

push c

pop

dup

dup2

swap

numop op





stack manipulation

load x

store x

}
local variables manipulation

if pc

goto pc

}
jump

new cl

putfield f

getfield f





heap manipulation

invokevirtual mid

return

}
method call and return

B Semantics

Value = num n n ∈ N

ref r r ∈ Reference
null

Stack = Value∗

LocalVar = Var → Value
Frame = ProgCount × nameMethod × LocalVar × Stack

CallStack = Frame∗

Object = nameClass × (FieldName → Value)
Heap = Reference → Object⊥
State = Heap × CallStack
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instructionAtP (m, pc) = nop

〈〈h, 〈m, pc, l, s〉 :: sf〉〉 →nop 〈〈h, 〈m, pc + 1, l, s〉 :: sf〉〉

instructionAtP (m, pc) = push c

〈〈h, 〈m, pc, l, s〉 :: sf〉〉 →push c 〈〈h, 〈m, pc + 1, l, c :: s〉 :: sf〉〉

instructionAtP (m, pc) = pop

〈〈h, 〈m, pc, l, v :: s〉 :: sf〉〉 →pop 〈〈h, 〈m, pc + 1, l, s〉 :: sf〉〉

instructionAtP (m, pc) = dup

〈〈h, 〈m, pc, l, v :: s〉 :: sf〉〉 →dup 〈〈h, 〈m, pc + 1, l, v :: v :: s〉 :: sf〉〉

instructionAtP (m, pc) = dup2

〈〈h, 〈m, pc, l, v1 :: v2 :: s〉 :: sf〉〉 →dup2 〈〈h, 〈m, pc + 1, l, v1 :: v2 :: v1 :: v2 :: s〉 :: sf〉〉

instructionAtP (m, pc) = swap

〈〈h, 〈m, pc, l, v1 :: v2 :: s〉 :: sf〉〉 →swap 〈〈h, 〈m, pc + 1, l, v2 :: v1 :: s〉 :: sf〉〉

instructionAtP (m, pc) = numop op

〈〈h, 〈m, pc, l, n1 :: n2 :: s〉 :: sf〉〉 →numop op 〈〈h, 〈m, pc + 1, l, [[op]](n1, n2) :: s〉 :: sf〉〉

instructionAtP (m, pc) = load x

〈〈h, 〈m, pc, l, s〉 :: sf〉〉 →load x 〈〈h, 〈m, pc + 1, l, l[x] :: s〉 :: sf〉〉

instructionAtP (m, pc) = store x

〈〈h, 〈m, pc, l, v :: s〉 :: sf〉〉 →store x 〈〈h, 〈m, pc + 1, l[x 7→ v], s〉 :: sf〉〉

instructionAtP (m, pc) = if pc′ n = 0

〈〈h, 〈m, pc, l, n :: s〉 :: sf〉〉 →if pc′ 〈〈h, 〈m, pc′, l, s〉 :: sf〉〉

instructionAtP (m, pc) = if pc′ n 6= 0

〈〈h, 〈m, pc, l, n :: s〉 :: sf〉〉 →if pc′ 〈〈h, 〈m, pc + 1, l, s〉 :: sf〉〉

instructionAtP (m, pc) = goto pc′

〈〈h, 〈m, pc, l, s〉 :: sf〉〉 →goto pc′ 〈〈h, 〈m, pc′, l, s〉 :: sf〉〉

instructionAtP (m, pc) = new cl
∃c ∈ classes(P ) with nameClass(c) = cl (h′, loc) = newObject(cl, h)

〈〈h, 〈m, pc, l, s〉 :: sf〉〉 →new cl 〈〈h′, 〈m, pc + 1, l, loc :: s〉 :: sf〉〉

instructionAtP (m, pc) = putfield f h(loc) = o o′ = o[f 7→ v]

〈〈h, 〈m, pc, l, v :: loc :: s〉 :: sf〉〉 →putfield f 〈〈h[loc 7→ o′], 〈m, pc + 1, l, s〉 :: sf〉〉

instructionAtP (m, pc) = getfield f h(loc) = o

〈〈h, 〈m, pc, l, loc :: s〉 :: sf〉〉 →getfield f 〈〈h, 〈m, pc + 1, l, fieldValue(o, f) :: s〉 :: sf〉〉

instructionAtP (m, pc) = invokevirtual M

h(loc) = o m′ = lookUp(M, class(o))
f ′ = 〈m′, 1, V, ε〉 f ′′ = 〈m, pc, l, s〉

〈〈h, 〈m, pc, l, loc :: V :: s〉 :: sf 〉〉 →invokevirtual M 〈〈h, f ′ :: f ′′ :: sf 〉〉

instructionAtP (m, pc) = return f ′ = 〈m′, pc′, l′, s′〉

〈〈h, 〈m, pc, l, v :: s〉 :: f ′ :: sf 〉〉 →return 〈〈h, 〈m′, pc′ + 1, l′, v :: s′〉 :: sf 〉〉
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C Abstract lattices

N̂um := N>
⊥ R̂efP := P(ClassNameP )

V̂alP :=
(
R̂efP + N̂um

)>

⊥
ŜtackP :=

(
V̂al

∗

P

)>

⊥

̂LocalVarP := VarP → V̂alP ÔbjectP := FieldNameP → V̂alP

ĤeapP := ClassNameP → ÔbjectP

ŜtateP := ĤeapP ×
(
nameMethodP × ProgCountP → ̂LocalVarP

)

×
(
nameMethodP × ProgCountP → ŜtackP

)

with

VarP := {x ∈ Var | x appears in P}

FieldNameP := {f ∈ FieldName | f appears in P}

ClassNameP := {cl ∈ ClassName | cl appears in P}

D Correctness relations

n ∼Num N̂ iff N̂ = {n} ∨ N̂ = >

r ∼h
Ref R̂ iff

(
h(r) = o ⇒ {class(o)} vRef R̂

)

v ∼h
Val V̂ iff v = null ∨ V̂ = >Val ∨

(
v ∈ Reference ∧ V̂ ∈ R̂ef ∧ v ∼h

Ref V̂
)
∨

(
v ∈ Num ∧ V̂ ∈ N̂um ∧ v ∼Num V̂

)

v1 :: · · · :: vn ∼h
Stack Ŝ iff Ŝ = >Stack ∨


Ŝ = V̂1 :: · · · :: V̂n∧

v1 ∼
h
Val V̂1 ∧ · · · ∧ vn ∼h

Val V̂n




l∼h
LocalVar L̂ iff ∀x ∈ Var, l(x) ∼h

Val L̂ (x)

o ∼h
Object Ô iff ∀f ∈ FieldName, fieldValue(o, f) ∼h

Val Ô (f)

h ∼Heap Ĥ iff ∀r ∈ Reference,

h(r) = o ⇒ o ∼h
Object Ĥ (class(o))
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〈〈h, 〈m, pc, l, s〉 :: sf〉〉 ∼State

(
Ĥ, Ŝ, L̂

)
iff h ∼Heap Ŝ ∧

l ∼h
LocalVar L̂ (m, pc) ∧

s ∼h
Stack Ŝ (m, pc)

E Constraints

(
Ĥ, L̂, Ŝ

)
|= (m, pc) : nop

iff Ŝ (m, pc) v Ŝ (m, pc + 1)
L̂ (m, pc) v L̂ (m, pc + 1)

(
Ĥ, L̂, Ŝ

)
|= (m, pc) : push c

iff p̂ush
(
ĉ, Ŝ (m, pc)

)
v Ŝ (m, pc + 1)

L̂ (m, pc) v L̂ (m, pc + 1)(
Ĥ, L̂, Ŝ

)
|= (m, pc) : pop

iff p̂op
(
Ŝ (m, pc)

)
v Ŝ (m, pc + 1)

L̂ (m, pc) v L̂ (m, pc + 1)

(
Ĥ, L̂, Ŝ

)
|= (m, pc) : numop op

iff b̂inop
(
op, Ŝ (m, pc)

)
v Ŝ (m, pc + 1)

L̂ (m, pc) v L̂ (m, pc + 1)

(
Ĥ, L̂, Ŝ

)
|= (m, pc) : dup

iff p̂ush
(
t̂op

(
Ŝ (m, pc)

)
, Ŝ (m, pc)

)
v Ŝ (m, pc + 1)

L̂ (m, pc) v L̂ (m, pc + 1)

(
Ĥ, L̂, Ŝ

)
|= (m, pc) : dup2

iff p̂ush
(
t̂op

(
Ŝ (m, pc)

)
, p̂ush

(
t̂op

(
p̂op

(
Ŝ (m, pc)

))
, Ŝ (m, pc)

))
v Ŝ (m, pc + 1)

L̂ (m, pc) v L̂ (m, pc + 1)

(
Ĥ, L̂, Ŝ

)
|= (m, pc) : swap

iff p̂ush
(
t̂op

(
p̂op

(
Ŝ (m, pc)

))
, p̂ush

(
t̂op

(
Ŝ (m, pc)

)
, p̂op

(
p̂op

(
Ŝ (m, pc)

))))

v Ŝ (m, pc + 1)
L̂ (m, pc) v L̂ (m, pc + 1)

(
Ĥ, L̂, Ŝ

)
|= (m, pc) : load x

iff p̂ush
(
âpply

(
L̂ (m, pc) , x

)
, Ŝ (m, pc)

)
v Ŝ (m, pc + 1)

L̂ (m, pc) v L̂ (m, pc + 1)

(
Ĥ, L̂, Ŝ

)
|= (m, pc) : store x

iff p̂op
(
Ŝ (m, pc)

)
v Ŝ (m, pc + 1)

ŝubst
(
L̂ (m, pc) , x, t̂op

(
Ŝ (m, pc)

))
v L̂ (m, pc + 1)
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(
Ĥ, L̂, Ŝ

)
|= (m, pc) : if pc′

iff t̂est=0

(
t̂op

(
Ŝ (m, pc)

)
, p̂op

(
Ŝ (m, pc)

))
v Ŝ (m, pc′)

t̂est=0

(
t̂op

(
Ŝ (m, pc)

)
, L̂ (m, pc)

)
v L̂ (m, pc′)

t̂est 6=0

(
t̂op

(
Ŝ (m, pc)

)
, p̂op

(
Ŝ (m, pc)

))
v Ŝ (m, pc + 1)

t̂est 6=0

(
t̂op

(
Ŝ (m, pc)

)
, L̂ (m, pc)

)
v L̂ (m, pc + 1)

(
Ĥ, L̂, Ŝ

)
|= (m, pc) : new cl

iff p̂ush
(
{cl} , Ŝ (m, pc)

)
v Ŝ (m, pc + 1)

L̂ (m, pc) v L̂ (m, pc + 1)

d̂efault(cl) v âpply
(
Ĥ, cl

)

(
Ĥ, L̂, Ŝ

)
|= (m, pc) : getfield f

iff ∀cl ∈ t̂op
(
Ŝ (m, pc)

)
:

p̂ush
(
âpply

(
âpply

(
Ĥ, cl

)
, f

)
, p̂op

(
Ŝ (m, pc)

))
v Ŝ (m, pc + 1)

L̂ (m, pc) v L̂ (m, pc + 1)

(
Ĥ, L̂, Ŝ

)
|= (m, pc) : putfield f

iff p̂op
(
p̂op

(
Ŝ (m, pc)

))
v Ŝ (m, pc + 1)

L̂ (m, pc) v L̂ (m, pc + 1)

∀cl ∈ t̂op
(
p̂op

(
Ŝ (m, pc)

))
:

t̂op
(
Ŝ (m, pc)

)
v âpply

(
âpply

(
Ĥ, cl

)
, f

)

(
Ĥ, L̂, Ŝ

)
|= (m, pc) : invokevirtual M

iff L̂ (m, pc) v L̂ (m, pc + 1)

p̂opn

(
Ŝ(m, pc), 1 + nbArgs(M)

)
v p̂op

(
Ŝ(m, pc + 1)

)

∀cl ∈ t̂op
(
Ŝ(m, pc)

)
,∀m′ ∈ lookUp(M, cl),

t̂op
(
Ŝ(m′,Ret(m′))

)
v t̂op

(
Ŝ(m, pc + 1)

)

{cl} :: p̂opn

(
Ŝ (m, pc) ,nbArgs(M)

)
v L̂ (m′, 1) [0..n]

n̂il v Ŝ (m′, 1)

(
Ĥ, L̂, Ŝ

)
|= (m, pc) : return

iff Ŝ (m, pc) v Ŝ (m,Ret(m))
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