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Convergence temporelle d’une méthode Galerkin discontinue
localement implicite pour les équations de Maxwell

Résumé : Nous étudions la convergence temporelle d’une méthode Galerkin discontinue localement
implicite pour la résolution des équations de Maxwell en domaine temporel modélisant la propagation
des ondes électromagnétiques. En particulier, nous nous demandons si pour un raffinement du maillage,
simultané et stable en espace-temps, le second ordre de convergence au sens des EDO est conservé pour
la solution exacte de l’EDP. Cela n’est pas a priori clair en raison de la décomposition des éléments qui
peut introduire une réduction d’ordre.

Mots-clés : convergence temporelle, méthode Galerkin discontinue, équations de Maxwell, décomposi-
tion des éléments, réduction d’ordre
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Introduction

Nowadays, many different types of methods exist for the numerical resolution of time-domain Maxwell’s
equations modeling electromagnetic wave propagation. The most prominent method among physicists
and engineers is still the finite difference time-domain (FDTD) method based on Yee’s scheme [31].
This popularity is mainly due to its simplicity and efficiency in discretising simple domain problems.
However, its inability to effectively handle complex geometries has prompted to search for alternatives
methods. Also one of the main features of numerical methods based on finite element meshes like finite
element time-domain (FETD) [17], finite volume time-domain (FVTD) [24] or discontinuous Galerkin
time-domain (DGTD) [5, 10, 14, 15] methods is the possibility of using locally refined and non-conformal
space grids to easily deal with complex geometries. In recent years there has been an increasing interest in
the DGTD method. The latter is particularly well suited to the design of hp-adaptive strategies (i.e. where
the characteristic mesh size h and the interpolation degree p change locally wherever it is needed) [8].
Thus the DGTD method can achieve a high order of accuracy and is used in many applications [4, 15].

In the same time the choice of the temporal integration method is a crucial step for the global effi-
ciency of the numerical method. We distinguish two major families for the temporal integration: implicit
and explicit methods. An implicit integration method to numerically solve a time-dependent PDE leads
in general to unconditional stability. Then the time step can be chosen arbitrarily large. However, implicit
methods require the solution of large linear systems resulting in a high computational effort. An explicit
integration method results in less computational effort per time step, but readily leads to unduly step
size restrictions caused by the smallest grid elements. For examples of implicit and explicit integration
methods for the semi-discrete Maxwell’s equations we refer to [3, 29] and [1, 10], respectively. A possi-
ble alternative to overcome step size limitation, induced by local mesh refinements in explicit methods,
is to use smaller time steps precisely where the smallest elements are located, given by a local stabil-
ity criterion. These local time-stepping techniques have been recently studied for second-order wave
equations discretized in space by continuous or discontinuous finite element methods in [6] and more
specifically for the time-domain Maxwell’s equations discretized in space by a discontinuous Galerkin
method in [11, 20, 26]. Considering the strengths of implicit and explicit methods, the authors of [7, 23]
and [27] have proposed another alternative: locally implicit time integration methods. More precisely, the
smallest grid elements are treated implicitly and the remaining elements explicitly by a technique we call
component splitting. If the ratio of fine to coarse elements is small, the most severe step size restrictions
are overcome. The counterpart of this approach is having to solve per time step a linear system. But due
to the assumed small fine to coarse cell size ratio, the overhead will also be small while the solution can
be advanced in time with step sizes determined by the coarse elements. Consequently, these methods are
particularly well suited if the local refinement is strongly localized. Note that the method from [7, 23]
has been especially designed for a discontinuous Galerkin discretization, while that from [27] covers the
common spatial discretizations like finite-difference and various finite-element discretizations.

In this paper we study the temporal convergence of the locally implicit DGTD method for Maxwell’s
equations initially proposed by Piperno in [23]. In particular we examine whether the method retains its
second-order ODE convergence towards the true PDE solution under stable simultaneous space-time grid
refinement. This question is legitimate because component splitting can cause order reduction.

The paper is organized as follows. Section 1 presents the problem and the notations. In Section 2 we
introduce the component splitting and the implicit-explicit method for time-domain Maxwell’s equations
spatially discretized with a discontinuous Galerkin method. This implicit-explicit integration method is
a blend of the explicit one-step second-order Leap-Frog scheme (LF2) and the implicit one-step second-
order Crank-Nicolson scheme (CN2). Next we study the temporal convergence order. The different steps
of this convergence analysis are the same as in [27] where the author proposes another implicit-explicit
integration method for the semi-discrete Maxwell’s equations. The latter method is also a blend of LF2
and CN2 and retains its second-order ODE convergence towards the true PDE solution under stable si-
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4 L. Moya & J.G. Verwer

multaneous space-time grid refinement [27]. In Section 3 we give some numerical results for 2D Maxwell
problems to illustrate the previous convergence analysis. Section 4 concludes the paper with final remarks
and future plans.

1 Problem statement
We consider time-domain Maxwell’s equations ε ∂tE = curl H−σE− JE ,

µ ∂tH = −curl E,
(1)

where E and H denote the electric and magnetic field, respectively. JE is the given source current and
ε , µ and σ are coefficients representing dielectric permittivity, magnetic permeability and conductivity,
respectively. After discretization in space by a DG method we obtain the semi-discrete Maxwell system Mε ∂tE = SH−DE +Mε f E ,

Mµ ∂tH = −ST E +Mµ f H ,
(2)

where, for convenience, we use the same notation for the electric and magnetic fields E and H as in
the space-continuous case. For more details on DG spatial discretization we refer to [7]. The matrices
Mε , Mµ are the DG mass matrices which contain the values of the dielectric permittivity and magnetic
permeability coefficient. The matrix S emanates from the discretization of the curl operator. The matrix
D is associated with the dissipative conduction term −σE. Throughout D may be assumed symmetric
positive semi-definite. The functions f E and f H are associated with source terms. More precisely f E

represents the given source current −JE , but f E and f H may also contain Dirichlet boundary data.
We can give an equivalent formulation of (2) without mass matrix. As in [1] we introduce the

Cholesky factorizations
Mε = LMε LT

Mε and Mµ = LMµ LT
Mµ , (3)

where LMε and LMµ are triangular matrices. Then with (2) we have LMε LT
Mε ∂tE = SH−DE +LMε LT

Mε f E ,

LMµ LT
Mµ ∂tH = −ST E +LMµ LT

Mµ f H .
(4)

Introducing Ẽ = LT
Mε E and H̃ = LT

Mµ H, we get ∂t Ẽ = L−1
Mε S

(
LT

Mµ

)−1 H̃−L−1
Mε D

(
LT

Mε

)−1 Ẽ +LT
Mε f E ,

∂tH̃ = −L−1
Mµ ST

(
LT

Mε

)−1 Ẽ +LT
Mµ f H .

(5)

Next we write
S̃ = L−1

Mε S
(
L−1

Mµ

)T
, D̃ = L−1

Mε D
(
L−1

Mε

)T
,

f̃ E = LT
Mε f E , f̃ H = LT

Mµ f H ,
(6)

and note that
S̃T =

[
L−1

Mε S
(
L−1

Mµ

)T
]T

= L−1
Mµ

[
L−1

Mε S
]T

= L−1
Mµ ST

(
L−1

Mε

)T
. (7)

Inria



Temporal convergence of a locally implicit DG method for Maxwell’s equations 5

Thus we can write the semi-discrete Maxwell system equivalent to (2) as ∂t Ẽ = S̃H̃− D̃Ẽ + f̃ E ,

∂tH̃ = −S̃T Ẽ + f̃ H .
(8)

For convenience of notation and presentation we use the same notation in (2) and (8) i.e. ∂tE = SH−DE + f E ,

∂tH = −ST E + f H .
(9)

We will proceed with (9), the meaning of E, H, S, D, f E and f H will always be clear from the context or
will be precised. In particular results obtained for (9) apply to (2) and vice versa. Note that S emanates
from an appropriate DG discretization for the Maxwell problem under consideration and further on we
will prove that

S∼ 1
h
, for h→ 0, (10)

where the parameter h denotes the maximum diameter of the (non-uniform) grid elements. Throughout
the remainder we will assume initial values at time t = 0 and the source functions f E (t), f H (t)∈C2 [0,T ]
for an interval [0,T ], so that E (t), H (t) ∈C3 [0,T ].

2 The implicit-explicit DGTD method

The implicit-explicit integration considered in this note is issued from [7, 23]. As we have previously
mentioned it is a blend of the second order LF2 scheme that we write in the three-stage form, emanating
from Verlet’s method, see [23]

Hn+ 1
2 −Hn

∆t/2
= −ST En + f H (tn) ,

En+1−En

∆t
= SHn+ 1

2 − 1
2

D
(
En+1 +En

)
+

1
2
(

f E (tn+1)+ f E (tn)
)
,

Hn+1−Hn+ 1
2

∆t/2
= −ST En+1 + f H (tn+1) ,

(11)

and the second order, unconditionally stable CN2 scheme that we also write in the three-stage form

Hn+ 1
2 −Hn

∆t/2
= −ST En + f H (tn) ,

En+1−En

∆t
=

1
2

S
(
Hn+1 +Hn

)
− 1

2
D
(
En+1 +En

)
+

1
2
(

f E (tn+1)+ f E (tn)
)
,

Hn+1−Hn+ 1
2

∆t/2
= −ST En+1 + f H (tn+1) .

(12)

which only differ in the middle stage in the time level for H (see [27]). Herein ∆t = tn+1− tn denotes the
step size and upper indices time levels, as usual.
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6 L. Moya & J.G. Verwer

2.1 Component splitting

The set of grid elements is assumed to be partitioned into two subsets: one made of the smallest elements
that will be treated implicitly using the CN2 method and the other one of the remaining elements that will
be treated explicitly with the LF2 method. In line with this splitting the problem unknowns are reordered
as

E =

 Ee

Ei

 and H =

 He

Hi

 , (13)

where the indices i and e are associated to the elements of the subset treated implicitly and explicitly,
respectively. Likewise the semi-discrete curl operator S is split into the block form

S =

 Se −Aei

−Aie Si

 , (14)

for the specific meaning of the block-entries of S we refer to [7]. D is supposed to be split accordingly
into

D =

 De 0

0 Di

 , (15)

and we write

f E =

 f E
e

f E
i

 , f H =

 f H
e

f H
i

 . (16)

Inserting this splitting into (9) we obtain the system of ODEs



∂tEe = SeHe−AeiHi−DeEe + f E
e (t) ,

∂tEi = SiHi−AieHe−DiEi + f E
i (t) ,

∂tHe = −ST
e Ee +AT

ieEi + f H
e (t) ,

∂tHi = −ST
i Ei +AT

eiEe + f H
i (t) .

(17)

Inria



Temporal convergence of a locally implicit DG method for Maxwell’s equations 7

2.2 The implicit-explicit time integration method
The implicit-explicit method proposed in [7, 23] is a blend of LF2 and CN2 applied to (17). It reads

Hn+1/2
e −Hn

e

∆t/2
= −ST

e En
e +AT

ieEn
i + f H

e (tn) ,

En+1/2
e −En

e

∆t/2
= SeHn+1/2

e −AeiHn
i −DeEn

e + f E
e (tn) ,



En+1
i −En

i
∆t

= Si

(
Hn+1

i +Hn
i

2

)
−AieHn+1/2

e

− Di

(
En+1

i +En
i

2

)
+

f E
i (tn+1)+ f E

i (tn)
2

,

Hn+1
i −Hn

i
∆t

= −ST
i

(
En+1

i +En
i

2

)
+AT

eiE
n+1/2
e +

f H
i (tn+1)+ f H

i (tn)
2

,


En+1

e −En+1/2
e

∆t/2
= SeHn+1/2

e −AeiHn+1
i −DeEn+1

e + f E
e (tn+1) ,

Hn+1
e −Hn+1/2

e

∆t/2
= −ST

e En+1
e +AT

ieEn+1
i + f H

e (tn+1) .

(18)

For the stability analysis of this method we refer to [7]. The proof is based on the conservation of a
discrete electromagnetic energy. It is proved that this energy is a positive quadratic form of the numerical
unknowns En

e , En
i , Hn

e and Hn
i under a condition on the time step size. Consequently the non-dissipative

nature of the method yields to the stability of the method.

2.3 Matrix behavior for h→ 0

In this subsection we are interested in the behavior of the matrices in (18) for h→ 0. This is an essential
point for convergence analysis because some of these matrices can lie at the origin of order reduction.
Let us consider the general case of dimension d (d = 1, 2 or 3). First we investigate the behavior of the
matrices in the formulation with the mass matrices. Thereafter we will be able to deduce the behavior of
the matrices in (18).

We reintroduce the notation with a tilde for the elements involved in the formulation without mass
matrix (see (8)) in order to avoid confusion. The specific meaning of the block-entries of the different
matrices involved in the formulation with mass matrices can be found in [7]. First we observe that the
mass matrices are only composed of volumic terms, hence we have

Mε , Mµ v hd , for h→ 0. (19)

Thus
LMε , LT

Mε , LMµ and LT
Mµ v h

d
2 , for h→ 0. (20)

The matrices Se and Si are composed of volumic and surfacic terms, hence

Se and Si v hd−1, for h→ 0. (21)

The matrices Aei and Aie represent surfacic terms (interface matrices). Hence

Aei and Aie v hd−1, for h→ 0 (22)
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8 L. Moya & J.G. Verwer

and from the block form of the matrix S (see (14)) we deduce with (21) and (22) that

S v hd−1, for h→ 0. (23)

From (6) we get

S̃ = L−1
Mε S

(
L−1

Mµ

)T
, (24)

then with the behaviors above we deduce that for h→ 0

S̃e, S̃i = O

(
1
h

)
,

Ãei, Ãie = O

(
1
h

)
,

(25)

and we have the expected behavior (10) for S̃.

2.4 Temporal convergence

In this section we are interested in the PDE convergence of method (18). More precisely, we will examine
whether the method retains its second-order ODE convergence under stable simultaneous space-time grid
refinement ∆t v h, h→ 0 towards the true PDE solution. This is not a priori clear due to the component
splitting which can introduce order reduction through error constants which grow with h−1, for h→ 0.

This section is organized in four subsections. In Subsection 2.4.1 we will eliminate the intermediate
values of (18) to get an equivalent one step formula from tn to tn+1 that we will use for our convergence
analysis. In Subsection 2.4.2 we will introduce the perturbed method obtained by substituting the true
PDE solution restricted to the assumed space grid into (17), and defects (space-time truncation errors)
obtained by substituting this true PDE solution into the equivalent one step formula of our method. In
Subsection 2.4.3 we will define the common one-step recurrence relation for the global error. In Subsec-
tion 2.4.4 we will point out the order reduction mentioned above. Finally in Subsection 2.4.5 we will see
that this order reduction, affecting the local error, may (partly) cancel in the transition from the local to
the global error.

2.4.1 Elimination of intermediates values

First we treat He. From the first and last equations of (18) we get

H
n+ 1

2
e = Hn

e −
∆t
2

ST
e En

e +
∆t
2

AT
ieEn

i +
∆t
2

f H
e (tn) ,

H
n+ 1

2
e = Hn+1

e +
∆t
2

ST
e En+1

e − ∆t
2

AT
ieEn+1

i +
∆t
2

f H
e (tn+1) .

(26)

Inserting the first equation of (26) into the last equation of (18) yields

Hn+1
e = Hn

e −
∆t
2

ST
e
(
En

e +En+1
e
)
+

∆t
2

AT
ie
(
En

i +En+1
i

)
+

∆t
2
(

f H
e (tn)+ f H

e (tn+1)
)
. (27)

Next we treat Ee. From the second and fifth equations of (18) we get

E
n+ 1

2
e = En

e +
∆t
2

SeH
n+ 1

2
e − ∆t

2
AeiHn

i −
∆t
2

DeEn
e +

∆t
2

f E
e (tn) ,

E
n+ 1

2
e = En+1

e − ∆t
2

SeH
n+ 1

2
e +

∆t
2

AeiHn+1
i +

∆t
2

DeEn+1
e − ∆t

2
f E
e (tn+1) .

(28)

Inria



Temporal convergence of a locally implicit DG method for Maxwell’s equations 9

Inserting the first equation of (28) and half of each expression of (26) for H
n+ 1

2
e into the fifth equation

of (18) yields

En+1
e = En

e +
∆t
2

Se
(
Hn

e +Hn+1
e
)
− ∆t

2
Aei
(
Hn

i +Hn+1
i
)
− ∆t

2
De
(
En

e +En+1
e
)
+

∆t
2
(

f E
e (tn)+ f E

e (tn+1)
)

+
∆t2

4
Se
(
−ST

e En
e +AT

ieEn
i
)
+

∆t2

4
Se
(
ST

e En+1
e −AT

ieEn+1
i
)
+

∆t2

4
Se
(

f H
e (tn)+ f H

e (tn+1)
)
. (29)

Now we consider Hi. Inserting half of each expression of (28) for E
n+ 1

2
e in the fourth equation of (18)

gives

Hn+1
i = Hn

i −
∆t
2

ST
i
(
En

i +En+1
i

)
+

∆t
2

AT
ei
(
En

e +En+1
e
)
+

∆t
2
(

f H
i (tn)+ f H

i (tn+1)
)

+
∆t2

4
AT

eiAei
(
Hn+1

i −Hn
i
)
+

∆t2

4
AT

eiDe
(
En+1

e −En
e
)
+

∆t2

4
AT

ei
(

f E
e (tn)+ f E

e (tn+1)
)
.

(30)

Finally we treat Ei. Inserting half of each expression of (26) for H
n+ 1

2
e in the third equation of (18) yields

En+1
i = En

i +
∆t
2

Si
(
Hn

i +Hn+1
i
)
− ∆t

2
Aie
(
Hn

e +Hn+1
e
)
− ∆t

2
Di
(
En

i +En+1
i
)
+

∆t
2
(

f E
i (tn)+ f E

i (tn+1)
)

− ∆t2

4
Aie
(
−ST

e En
e +AT

ieEn
i
)
− ∆t2

4
Aie
(
ST

e En+1
e −AT

ieEn+1
i
)
− ∆t2

4
Aie
(

f H
e (tn)+ f H

e (tn+1)
)
. (31)

The equivalent method of (18) with its intermediate values eliminated thus reads

En+1
e = En

e +
∆t
2

Se
(
Hn

e +Hn+1
e
)
− ∆t

2
Aei
(
Hn

i +Hn+1
i
)
− ∆t

2
De
(
En

e +En+1
e
)
+

∆t
2
(

f E
e (tn)+ f E

e (tn+1)
)

+
∆t2

4
Se
[(
−ST

e En
e +AT

ieEn
i
)
−
(
ST

e En+1
e −AT

ieEn+1
i
)]

+
∆t2

4
Se
(

f H
e (tn)+ f H

e (tn+1)
)
,

En+1
i = En

i +
∆t
2

Si
(
Hn

i +Hn+1
i
)
− ∆t

2
Aie
(
Hn

e +Hn+1
e
)
− ∆t

2
Di
(
En

i +En+1
i
)
+

∆t
2
(

f E
i (tn)+ f E

i (tn+1)
)

− ∆t2

4
Aie
[(
−ST

e En
e +AT

ieEn
i
)
−
(
ST

e En+1
e −AT

ieEn+1
i
)]
− ∆t2

4
Aie
(

f H
e (tn)+ f H

e (tn+1)
)
, (32)

Hn+1
e = Hn

e −
∆t
2

ST
e
(
En

e +En+1
e
)
+

∆t
2

AT
ie
(
En

i +En+1
i
)
+

∆t
2
(

f H
e (tn)+ f H

e (tn+1)
)
,

Hn+1
i = Hn

i −
∆t
2

ST
i
(
En

i +En+1
i
)
+

∆t
2

AT
ei
(
En

e +En+1
e
)
+

∆t
2
(

f H
i (tn)+ f H

i (tn+1)
)

+
∆t2

4
AT

eiAei
(
Hn+1

i −Hn
i
)
+

∆t2

4
AT

ei
[
De
(
En+1

e −En
e
)
+
(

f E
e (tn)+ f E

e (tn+1)
)]

.

2.4.2 The perturbed method and defects for the PDE solution

Let Eh
e (t) denote at time t the true solution of the PDE problem restricted to the assumed space grid

that we have approximated with the semi-discrete system (17). Eh
e (tn) thus represents the vector that is

approximated by En
e . Assume the same notation for Ei, He and Hi. Substituting Eh

e (t), Eh
i (t), Hh

e (t) and
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Hh
i (t) into (17) reveals the spatial truncation errors

d
dt

Eh
e (t) = SeHh

e (t)−AeiHh
i (t)−DeEh

e (t)+ f E
e (t)+σE

e (t) ,

d
dt

Eh
i (t) = SiHh

i (t)−AieHh
e (t)−DiEh

i (t)+ f E
i (t)+σE

i (t) ,

d
dt

Hh
e (t) = −ST

e Eh
e (t)+AT

ieEh
i (t)+ f H

e (t)+σH
e (t) ,

d
dt

Hh
i (t) = −ST

i Eh
i +AT

eiE
h
e (t)+ f H

i (t)+σH
i (t) ,

(33)

where σE
e (t), σE

i (t), σH
e (t) and σH

i (t) denote the spatial truncation errors.
Substituting Eh

e (t), Eh
i (t), Hh

e (t) and Hh
i (t) into (33) reveals the defects for the PDE solution (space-

time truncation errors) and gives what we call the perturbed method

Eh
e (tn+1) = Eh

e (tn)+
∆t
2

Se
(
Hh

e (tn)+Hh
e (tn+1)

)
− ∆t

2
Aei
(
Hh

i (tn)+Hh
i (tn+1)

)
− ∆t

2
De
(
Eh

e (tn)+Eh
e (tn+1)

)
+

∆t
2
(

f E
e (tn)+ f E

e (tn+1)
)

+
∆t2

4
Se
[(
−ST

e Eh
e (tn)+AT

ieEh
i (tn)

)
−
(
ST

e Eh
e (tn+1)−AT

ieEh
i (tn+1)

)]
+

∆t2

4
Se
(

f H
e (tn)+ f H

e (tn+1)
)
+∆t δ E

e,n,

Eh
i (tn+1) = Eh

i (tn)+
∆t
2

Si
(
Hh

i (tn)+Hh
i (tn+1)

)
− ∆t

2
Aie
(
Hh

e (tn)+Hh
e (tn+1)

)
− ∆t

2
Di
(
Eh

i (tn)+Eh
i (tn+1)

)
+

∆t
2
(

f E
i (tn)+ f E

i (tn+1)
)

− ∆t2

4
Aie
[(
−ST

e Eh
e (tn)+AT

ieEh
i (tn)

)
−
(
ST

e Eh
e (tn+1)−AT

ieEh
i (tn+1)

)]
− ∆t2

4
Aie
(

f H
e (tn)+ f H

e (tn+1)
)
+∆t δ E

i,n,

Hh
e (tn+1) = Hh

e (tn)−
∆t
2

ST
e
(
Eh

e (tn)+Eh
e (tn+1)

)
+

∆t
2

AT
ie
(
Eh

i (tn)+Eh
i (tn+1)

)
+

∆t
2
(

f H
e (tn)+ f H

e (tn+1)
)
+∆t δ H

e,n,

Hh
i (tn+1) = Hh

i (tn)−
∆t
2

ST
i
(
Eh

i (tn)+Eh
i (tn+1)

)
+

∆t
2

AT
ei
(
Eh

e (tn)+Eh
e (tn+1)

)
+

∆t
2
(

f H
i (tn)+ f H

i (tn+1)
)

+
∆t2

4
AT

eiAei
(
Hh

i (tn+1)−Hh
i (tn)

)
+

∆t2

4
AT

ei
[
De
(
Eh

e (tn+1)−Eh
e (tn)

)
+
(

f E
e (tn)+ f E

e (tn+1)
)]

+∆t δ H
i,n,

(34)

where δ E
e,n, δ E

i,n, δ H
e,n and δ H

i,n denote the defects for the PDE solution.

Inria



Temporal convergence of a locally implicit DG method for Maxwell’s equations 11

Eliminating all source term contributions f E
e , f E

i , f H
e and f H

i (33) yields

δ
E
e,n = δEh

e
+

∆t
4

Se
d
dt

(
Hh

e (tn+1)−Hh
e (tn)

)
+

1
2
(
σ

E
e (tn)+σ

E
e (tn+1)

)
+

∆t
4

Se
(
σ

H
e (tn)+σ

H
e (tn+1)

)
,

δ
E
i,n = δEh

i
− ∆t

4
Aie

d
dt

(
Hh

e (tn+1)−Hh
e (tn)

)
+

1
2
(
σ

E
i (tn)+σ

E
i (tn+1)

)
− ∆t

4
Aie
(
σ

H
e (tn)+σ

H
e (tn+1)

)
,

δ
H
e,n = δHh

e
+

1
2
(
σ

H
e (tn)+σ

H
e (tn+1)

)
(35)

δ
H
i,n = δHh

i
− ∆t

4
AT

eiSe

(
Hh

e (tn+1)−Hh
e (tn)

)
+

∆t
4

AT
ei

d
dt

(
Eh

e (tn+1)−Eh
e (tn)

)
+

1
2
(
σ

H
i (tn)+σ

H
i (tn+1)

)
+

∆t
4

AT
ei
(
σ

E
e (tn)+σ

E
e (tn+1)

)
,

where δEh
e

denotes the implicit trapezoidal (CN) rule defect (see [27]) for variable Eh
e (similarly for Eh

i ,
Hh

e and Hh
i ), i.e.

δEh
e
(t) =

Eh
e (t +∆t)−Eh

e (t)
∆t

− 1
2

d
dt

(
Eh

e (t +∆t)+Eh
e (t)

)
. (36)

2.4.3 The error scheme

Let εE
e,n = Eh

e (tn)−En
e denote the global error (similarly we introduce εE

i,n, εH
e,n and εH

i,n). Substracting (33)
and (34) we obtain the error scheme

εE
e,n+1 = εE

e,n +
∆t
2

Se

(
εH

e,n + εH
e,n+1

)
− ∆t

2
Aei

(
εH

i,n + εH
i,n+1

)
− ∆t

2
De

(
εE

e,n + εE
e,n+1

)
+

∆t2

4
Se

[(
−ST

e εE
e,n +AT

ieεE
i,n

)
−
(

ST
e εE

e,n+1−AT
ieεE

i,n+1

)]
+∆t δ E

e,n,

εE
i,n+1 = εE

i,n +
∆t
2

Si

(
εH

i,n + εH
i,n+1

)
− ∆t

2
Aie

(
εH

e,n + εH
e,n+1

)
− ∆t

2
Di

(
εE

i,n + εE
i,n+1

)
− ∆t2

4
Aie

[(
−ST

e εE
e,n +AT

ieεE
i,n

)
−
(

ST
e εE

e,n+1−AT
ieεE

i,n+1

)]
+∆t δ E

i,n,

εH
e,n+1 = εH

e,n−
∆t
2

ST
e

(
εE

e,n + εE
e,n+1

)
+

∆t
2

AT
ie

(
εE

i,n + εE
i,n+1

)
+∆t δ H

e,n,

εH
i,n+1 = εH

i,n−
∆t
2

ST
i

(
εE

i,n + εE
i,n+1

)
+

∆t
2

AT
ei

(
εE

e,n + εE
e,n+1

)
+

∆t2

4
AT

eiAei

(
εH

i,n+1− εH
i,n

)
+

∆t2

4
AT

eiDe

(
εE

e,n+1− εE
e,n

)
+∆t δ H

i,n.

(37)

Let

εn =



εE
e,n

εE
i,n

εH
e,n

εH
i,n


and δn =



δ E
e,n

δ E
i,n

δ H
e,n

δ H
i,n


, (38)

then from (37) we can write the global error in a more compact form (one-step recurrence relation)

εn+1 = Rεn +∆tρn, R = R−1
L RR, ρn = R−1

L δn, (39)
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where

RL =



I +
∆t
2

De−
∆t2

4
SeST

e
∆t2

4
SeAT

ie −∆t
2

Se
∆t
2

Aei

∆t2

4
AieST

e I +
∆t
2

Di−
∆t2

4
AieAT

ie
∆t
2

Aie −∆t
2

Si

∆t
2

ST
e −∆t

2
AT

ie I 0

−∆t
2

AT
ei−

∆t2

4
AT

eiDe
∆t
2

ST
i 0 I− ∆t2

4
AT

eiAei


, (40)

RR =



I− ∆t
2

De−
∆t2

4
SeST

e
∆t2

4
SeAT

ie
∆t
2

Se −∆t
2

Aei

∆t2

4
AieST

e I− ∆t
2

Di−
∆t2

4
AieAT

ie −∆t
2

Aie
∆t
2

Si

−∆t
2

ST
e

∆t
2

AT
ie I 0

∆t
2

AT
ei−

∆t2

4
AT

eiDe −∆t
2

ST
i 0 I− ∆t2

4
AT

eiAei


, (41)

and εn, ∆tρn and δn are respectively the (space-time) global, local and truncation errors.
Note that the recursion (39) has the standard form (see e.g. [16]) for the convergence analysis of

one-step integration methods. It transfers local errors to the global error, essentially by adding all local
errors. Indeed, for a given time interval [0,T ] we make the usual stability hypothesis

‖Rn‖ ≤ K for h→ 0 and n≥ 0, n∆t ≤ T. (42)

On the other hand the elaboration of the error recursion (39) gives

εn = Rn
ε0 +Rn−1

∆tρ0 + ...+R∆tρn−2 +∆tρn−1, (43)

which leads directly (with (42)) to

‖εn‖ ≤ K‖ε0‖+K∆t
n−1

∑
j=0
‖ρ j‖ for n∆t ≤ T. (44)

Recall that ρ j = R−1
L δ j and because we assume stability we may consider RL inversely bounded for ∆t ∼ h,

h→ 0. Consequently if δ j = O
(
∆tk
)

we have ‖ρ j‖ ≤C∆tk. Assuming ε0 = 0, we deduce from (44) that

‖εn‖ ≤ K̃∆tk for n∆t ≤ T, (45)

with constant K̃ = KTC.

2.4.4 Error analysis

We assume that the true PDE solutions Eh
e , Eh

i , Hh
e and Hh

i are sufficiently differentiable. Then we can
Taylor expand the trapezoidal rule defect (36) at the symmetry point tn+1/2 to get

δEh
e
(tn) = ∑

j=2′

− j
2 j ( j +1)!

(∆t) j Eh( j+1)
e , (46)

Inria



Temporal convergence of a locally implicit DG method for Maxwell’s equations 13

where j = 2′ means even values for j only and Eh( j)
e denotes the j-th derivative of Eh

e (t) at time t = tn+1/2.
We obtain similar expressions for δEh

i
(tn), δHh

e
(tn) and δHh

i
(tn). Note that these defects start with ∆t2 and

the third solution derivative of the true PDE solution (in the first section we have assumed that the true
PDE solution is three times differentiable). We conclude that the trapezoidal rule defects are O

(
∆t2
)

for
∆t ∼ h and h→ 0. Then, from (36), we write the truncation error as follows

δn = bn +O
(
∆t2) , (47)

where

bn =



bE
e,n

bE
i,n

bH
e,n

bH
i,n


=



∆t
4

Se
d
dt

(
Hh

e (tn+1)−Hh
e (tn)

)
−∆t

4
Aie

d
dt

(
Hh

e (tn+1)−Hh
e (tn)

)
0

−∆t
4

AT
eiSe
(
Hh

e (tn+1)−Hh
e (tn)

)
+

∆t
4

AT
ei

d
dt

(
Eh

e (tn+1)−Eh
e (tn)

)


, (48)

and O
(
∆t2
)

contains the trapezoidal rule defects. Note that we have voluntarily omitted the spatial error
parts contained in the σE

e , σE
i , σH

e , σH
i contributions from (36) because our interest lies in temporal

convergence order. Further carrying these spatial error contributions only complicates the formulas and
will not lead to different conclusions for the temporal errors.

Next we Taylor expand the components of bn at the symmetry point tn+1/2

bE
e,n =

∆t
4

Se ∑
j=1′

1
2 j−1 j!

(∆t) j Hh( j+1)
e ,

bE
i,n = −∆t

4
Aie ∑

j=1′

1
2 j−1 j!

(∆t) j Hh( j+1)
e ,

bH
i,n = −∆t

4
AT

eiSe ∑
j=1′

1
2 j−1 j!

(∆t) j Hh( j)
e +

∆t
4

AT
ei ∑

j=1′

1
2 j−1 j!

(∆t) j Eh( j+1)
e ,

(49)

where j = 1′ means odd values for j only. For a fixed spatial dimension we find the expected second-
order ODE convergence, since Se, Aie and AT

ei are bounded for fixed dimension. Indeed, with (49) we
have bn = O

(
∆t2
)

and because we assume stability we may consider RL inversely bounded, consequently
ρn = R−1

L δn = O
(
∆t2
)

and we conclude that we have the second-order convergence for a fixed dimension.
Now we observe, with (25), that under stable simultaneous space-time refinement, ∆t ∼ h and h→ 0,

we might lose one unit of ∆t in bE
e,n and bE

i,n (due to Se and Aie, respectively) and two units of ∆t in bH
i,n

(due to the product AT
eiSe in the first terms). Then bn = O (1), for ∆t ∼ h and h→ 0 and with (45) we

should expect a severe order reduction. However, as mentioned in [27], this result is based on standard
local error analysis and in the transition from local to global errors it can happen that the order reduction
for local errors is (partly) canceled. Often this cancellation can be shown to exist through a transformation
of the global error recurrence to one by which we may gain one unit of ∆t in the transformed local error.

2.4.5 A transformed global error recursion

The transformation used in [27] emanates from [16], Lemma II.2.3. We write the latter for our one-step
global error recursion (39) and stability assumption (42)
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Lemma 2.1. Suppose the local error ∆ρn can be written as

∆tρn = (I−R)ξn +ηn,

with ‖ξn‖ ≤C∆tk, ‖ηn‖ ≤C∆tk+1 and ‖ξn+1−ξn‖ ≤C∆tk+1 for all n. Then there is a constant C′ > 0,
depending on C, K and T , such that ‖εn‖ ≤C′∆tk for n∆t ≤ T .

The proof can be found in [16].
First we assume for ∆t ∼ h, h→ 0 that

AT
eiSeHh(1)

e = O

(
1
∆t

)
. (50)

Consequently we get bn = O (∆t) (in this case bH
i,n = O (∆t), see (49)). With the above-mentioned Lemma

we can assume that if the local error ∆tρn allows a decomposition

∆tρn = (I−R)ξn +ηn (51)

such that ξn = O
(
∆t2
)
, ηn = O

(
∆t3
)

for ∆t ∼ h, h→ 0, then we have the desired second-order conver-
gence for εn. So we need to verify (51), or equivalently,

∆tδn = (RL−RR)ξn +RLηn, (52)

such that ξn = O
(
∆t2
)
, ηn = O

(
∆t3
)

for ∆t ∼ h, h→ 0.
Now we deal with the condition ηn = O

(
∆t3
)
. Recall that δn = bn +O

(
∆t2
)
, then (52) can be written

as
∆t
(
bn +O

(
∆t2))= (RL−RR)ξn +RLηn. (53)

Furthermore, RL is inversely bounded, then by assigning the O
(
∆t2
)

terms present in (53) multiplied
by ∆t R−1

L for ηn (i.e. ηn = ∆t R−1
L O

(
∆t2
)
), we have ηn = O

(
∆t3
)
. Consequently, we deduce from

Lemma 2.1 that we have the desired second-order convergence if a vector ξn exists such that ξn = O
(
∆t2
)

for ∆t ∼ h, h→ 0 and
∆tbn = (RL−RR)ξn, i.e. (54)



De 0 −Se Aei

0 Di Aie −Si

ST
e −AT

ie 0 0

−AT
ei ST

i 0 0





ξ E
e,n

ξ E
i,n

ξ H
e,n

ξ H
i,n


=



bE
e,n

bE
i,n

bH
e,n

bH
i,n


. (55)

Equivalently, we have second-order convergence if a vector ξn =
[(

ξ E
n
)T

,
(
ξ H

n
)T
]T

exists such that ξn =

O
(
∆t2
)

for ∆t ∼ h, h→ 0 and
Dξ E

n −Sξ H
n = bE

n ,

ST ξ E
n = bH

n ,
(56)

where

ξ
E
n =

[(
ξ

E
e,n
)T

,
(
ξ

E
i,n
)T
]T

,ξ H
n =

[(
ξ

H
e,n
)T

,
(
ξ

H
i,n
)T
]T

,bE
n =

[(
bE

e,n
)T

,
(
bE

i,n
)T
]T

,bH
n =

[(
bH

e,n
)T

,
(
bH

i,n
)T
]T

.

Inria



Temporal convergence of a locally implicit DG method for Maxwell’s equations 15

Now we will check the existence of a such vector ξn. At this stage of the derivation we must be careful
because the matrix S is not necessarily a square matrix (in 2D this is not the case) and consequently S may
no be invertible. More precisely, if we denote ndo f the number of degrees of freedom, and if we consider
the two-dimensional transversal magnetic (TM) model, then the size of the matrix S is ndo f ×2ndo f . That
is why we now use the notion of pseudo inverse.

Definition 2.1. Let A ∈Rm×n, b ∈Rm, x ∈Rn and A+ the Moore-Penrose pseudo inverse of A which is a
generalization of the inverse and exists for any m×n matrix. If A has full rank, then

A+ = A−1 (m = n)
A+ = AT

(
AAT

)−1 (m < n) ,
A+ =

(
AT A

)−1 AT (m > n) ,
(57)

and the solution of Ax = b is x = A+b.

Assume the size of the matrix S is m×n with m ≤ n (the case m > n can be treated similarly). With
the second equation of (56) and the above definition we derive

ξ
E
n =

(
ST )+ bH

n . (58)

With (10) we have (
ST )+ =

(
SST )−1

S ∼ h, for h→ 0, (59)

and recall that bH
e,n = 0 and bH

i,n = O (∆t) (due to the initial assumption (50)) for ∆t ∼ h, h→ 0. Then we
conclude with (58) and (59) that for ∆t ∼ h, h→ 0

ξ
E
n = O

(
∆t2) . (60)

From the first equation of (56) we get

ξ
H
n =−S+ (bE

n −Dξ
E
n
)
, (61)

and with (10) we get
S+ = ST (SST )−1 ∼ h, for h→ 0. (62)

Recalling that bE
e,n = O (∆t), bE

i,n = O (∆t) and ξ E
n = O

(
∆t2
)
, we conclude from (61) and (62) that for

∆t ∼ h, h→ 0

if D = 0 (no conduction term −σE) or D = O
(
hk
)

with k ≥−1, then ξ H
n = O

(
∆t2
)
. (63)

With (60) and (63) we conclude that ξn =
[(

ξ E
n
)T

,
(
ξ H

n
)T
]T

= O
(
∆t2
)

for ∆t ∼ h, h→ 0 and conse-
quently through the Lemma 2.1 we have the second-order convergence uniformly in h under the assump-
tion (50). Note that if we do not assume (50) (i.e. bn = O (1)) a similar proof, based on the same Lemma,
only guarantees the first-order convergence. We can now state the following theorem

Theorem 2.1. Let f H (t), f E (t) ∈C2 [0,T ] and suppose a Lax-Richtmyer stable space-time grid refine-
ment ∆t ∼ h, h→ 0. On [0,T ] the approximations Hn

e , Hn
i , En

e and En
i of method (18) then converge to

Hh
e (t), Hh

i (t), Eh
e (t) and Eh

i (t)

(i) at least at first order,
(ii) at least at second order, if in addition AT

eiSeHh(1)
e (t) = O

(
∆t−1

)
for h→ 0.

To sum up, we can guarantee at least the first-order convergence of method (18). As might be feared,
component splitting can be detrimental to the temporal convergence order (order reduction). We have
also put forward a sufficient condition (50) on the the true solution of the PDE problem for second-order
convergence. However it would have been better if this sufficient condition could be controlled through
the source term, because in general the true solution is of course not (a priori) known.
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3 Numerical results

In this section we will conduct numerical tests in two dimensions by considering a wave propagation
problem for which an analytical solution is available (see the subsection 3.1). The subsection 3.2 is
devoted to the numerical convergence analysis of the locally implicit method (18). First in the ODE
sense (i.e. on a fixed mesh) to illustrate that the method retains indeed its second-order convergence in
time. Then in the PDE sense (i.e. for a simultaneous stable space-time grid refinement) to illustrate the
reduction by one in the temporal convergence order, proved theoretically in the subsection 2.4. In the
latter case we will also considered the second-order method (11) to ensure that the reduction order is
due to component splitting and not to the spatial discretization itself. Finally in the subsection 3.3 we
will present an overview of the influence of the reduction order on the efficiency of the locally implicit
method, when high order approximation polynomials are used within the DG method. For that purpose
we will also considered the methods (18) - (11).

3.1 Simulation setting

We solve the two-dimensional (2D) Transverse Magnetic (TM) model for the components Ez (x,y, t),
Hx (x,y, t) and Hy (x,y, t) 

µ
∂Hx

∂ t
= −∂Ez

∂y
,

µ
∂Hy

∂ t
=

∂Ez

∂x
,

ε
∂Ez

∂ t
=

∂Hy

∂x
− ∂Hx

∂y
−σEz− Jz

E .

(64)

In the following, we set ε = µ = 1 and σ = 0. Equations (64) are space discretized using a DG method
formulated on quadrangular and triangular meshes, see Figure 1. In the preliminary implementation of
this DG method, the approximation of the electromagnetic field components within a quadrangle ci or a
triangle τi relies on a nodal Ql or Pl interpolation method, respectively. The a priori convergence analysis
for this DGTD method based on a centered numerical flux and formulated on simplicial meshes shows
that the convergence rate is O

(
hl
)

for a l-th interpolation order [10]. A quadrangle ci is characterized by
the discretization parameters (∆xi,∆yi) and a triangle τi by its height hi. The critical step size, denoted
∆tc, used in the numerical tests is given by

∆tc =



CFL√
1

∆x2
k

+
1

∆y2
k

, on quadrangular meshes,

CFL×hmin
k , on triangular meshes,

(65)

where the parameters (∆xk,∆yk) characterize the smallest quadrangle ck treated explicitly and hmin
k the

smallest height of a triangle τk inside the region treated explicitly. The value of the CFL number corre-
sponds to the numerical stability, i.e. the limit beyond which we observe a growth of the discrete energy.
Finally for the component splitting we choose to treat implicitly the elements inside the red regions (see
Figure 1).

We consider the propagation of an eigenmode in a unitary perfectly electrically conducting (PEC)
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Temporal convergence of a locally implicit DG method for Maxwell’s equations 17

cavity. In this problem there is no source term i.e. Jz
E = 0 in (64) and the exact solution is given by

Hx (x,y, t) = −kπ

ω
sin(lπx)cos(kπy)sin(ωt) ,

Hy (x,y, t) =
lπ
ω

cos(lπx)sin(kπy)sin(ωt) ,

Ez (x,y, t) = sin(lπx)sin(kπy)cos(ωt) ,

(66)

where the resonance frequencies are given by

ω = π

√
k2 + l2. (67)
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Figure 1: Examples of quadrangular/triangular (uniform/non-uniform) meshes used in numerical tests.

For numerical tests we put k = l = 1 and we initialize the electromagnetic field with the exact analyt-
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18 L. Moya & J.G. Verwer

ical solution at t = 0 i.e. 
Hx (x,y, t = 0) = 0,

Hy (x,y, t = 0) = 0,

Ez (x,y, t = 0) = sin(πx)sin(πy) .

(68)

For the boundary conditions, we consider a PEC cavity such that the tangential component of the electric
field vanishes on the boundaries

n×Ez = 0 on ∂Ω, (69)

where the domain Ω = [0,1]2 (the unitary PEC cavity) and n denotes the unit outward normal to ∂Ω.

3.2 Numerical convergence analysis

Throughout this subsection the total simulation time T is set to T = 3.34×10−9 s, and we use the DGTD-
Q2 and DGTD-P2 methods so that the spatial error is not detrimental to the temporal convergence orders.
For our integration method and the chosen spatial DG scheme the numerical CFL number, used in (65),
is equal to 0.24 and 0.20 for DGTD-Q2 and DGTD-P2 methods, respectively.

3.2.1 Convergence in the ODE sense

To estimate the temporal convergence in the ODE sense we fix the discretization in space and we mea-
sure the electromagnetic field for different time steps (denotes by W∆t ) at the final time T . We plot the
sup-norm of W∆t/n (T ) - W∆t/2n (T ) as a function of ∆t/n, in logarithmic scale. The use of the loga-
rithmic scale allows to visualize the convergence rates as the slopes of the curves with ◦-marker and
4-marker for uniform and non-uniform meshes, respectively. The dashed line has slope two for second-
order convergence. The results given in Figure 2 and Table 1 clearly confirm the expected behavior i.e.
the second-order convergence of the method (18) for ∆t→ 0 on a fixed space grid.
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10
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Time step size

M
ax

. e
rr

or

 

 

Loc. imp. / unif
Loc. imp. / non−unif
Slope two

Figure 2: Temporal convergence (in the ODE sense) of the method (18) based on DGTD-Q2 method.
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n ∆t/n→ ∆t/2n ‖W∆t/n (T )−W∆t/2n (T ) ‖∞

Uniform Non-uniform

1 0.0169→ 0.0085 8.5000e-3 2.0000e-3
2 0.0085→ 0.0042 1.9000e-3 6.8912e-4
4 0.0042→ 0.0021 4.8669e-4 1.5110e-4
8 0.0021→ 0.0011 1.2186e-4 3.6888e-5

Conv. rate 2.0249 1.9394

Table 1: Temporal convergence (in the ODE sense), on uniform and non-uniform quadrangular meshes,
of the method (18) based on the DGTD-Q2 method.

3.2.2 Convergence in the PDE sense

First we conducted numerical investigations to check whether the condition (50) is satisfied. The follow-
ing results have been obtained for ∆t ∼ h, h→ 0

AT
eiSeHh(1)

e =


O

(
1

∆t1.3

)
, for uniform meshes,

O

(
1

∆t1.2

)
, for non-uniform meshes.

(70)

Consequently the condition (50) is not satisfied and we expect to observe a reduction PDE order by one.
The possible loss in accuracy could originate from the spatial discretization itself, regardless of com-

ponent splitting. To eliminate this latter possibility we also repeat the numerical tests using the fully
explicit method (11). Furthermore in [2] the authors have proven that DG methods on conformal tetrahe-
dral/triangular meshes are spurious-free when the approximation spaces are made of elementwise poly-
nomials of degree l in each variable or local Nédélec elements of the first type of degree l [21]. They
also remarked that this remains true for the local Nédélec elements of the first type of degree l on con-
formal hexahedral/quadrilateral meshes but not for elementwise polynomials of degree l in each variable
or local Nédélec elements of the second type of degree l [22]. In the latter case spurious modes can
appear. Similarly the methods (18) - (11) with a DG-Q2 spatial discretization on quadrangular meshes
can produce spurious modes. Therefore, we have also conducted numerical tests on triangular meshes
(see Figure 1) with a DG-P2 spatial approximation to ensure that the reduction of convergence is not due
to the emergence of spurious modes, but indeed to component splitting.

To estimate the temporal convergence in the PDE sense we measure the maximal L2-norm of the
error for different meshes of increased resolution. We plot this error as a function of the square root of the
number of degrees of freedom (DOF), in logarithmic scale. The obtained results, given in Figure 3 and
Table 2, clearly confirm the theoretical behavior i.e. the first-order convergence of the method (18) and
the second-order of (11), for ∆t ∼ h, h→ 0; except for (11) on non-uniform quadrangular meshes where
we observe a super-convergence phenomenon (about 2.8 instead of 2.0).

RR n° 7533



20 L. Moya & J.G. Verwer

10
2

10
−5

10
−4

10
−3

(DOF)1/2

 M
ax

. e
rr

or
 (

L2 −
no

rm
)

 

 

Loc. imp. / unif 
Fully exp. / unif.
Loc. imp. / non−unif.
Fully exp. / non−unif.
Slope one
Slope two

10
2

10
−4

10
−3

(DOF]1/2

M
ax

. e
rr

or
 (

L2 −
no

rm
)

 

 

Loc. imp. / unif
Fully exp. / unif
Loc. imp. / non−unif
Fully exp. / non−unif
Slope one
Slope two

Figure 3: Temporal convergence (in the PDE sense), on uniform and non-uniform meshes, of meth-
ods (18) and (11) based on DGTD-Q2 (on left) and DGTD-P2 (on right) methods.

# DOF Max. error in L2-norm # DOF Max. error in L2-norm
(unif. quad.
meshes)

Loc. imp.
method (18)

Fully exp.
method (11)

(non-unif.
quad. meshes)

Loc. imp.
method (18)

Fully exp.
method (11)

900 1.2000e-3 5.7020e-4 900 1.1000e-3 5.7274e-4
3600 5.4236e-4 1.3695e-4 3600 5.2066e-4 8.3295e-5
8100 3.5759e-4 6.0818e-5 8100 3.3373e-4 2.5979e-5
14400 2.7164e-4 3.4116e-5 14400 2.3845e-4 1.1239e-5

Conv. rate 1.0762 2.0315 1.0991 2.8329

# DOF Max. error in L2-norm # DOF Max. error in L2-norm
(unif. tri.
meshes)

Loc. imp.
method (18)

Fully exp.
method (11)

(non-unif. tri.
meshes)

Loc. imp.
method (18)

Fully exp.
method (11)

1200 2.3990e-3 2.1098e-3 3840 5.9380e-4 5.2875e-4
4800 9.6905e-4 5.4487e-4 8640 3.2121e-4 2.3662e-4
10800 6.7305e-4 2.4522e-4 15360 2.2685e-4 1.3354e-4
19200 5.4399e-4 1.3502e-4 24000 1.8200e-4 8.5705e-5

Conv. rate 1.0817 1.9775 1.2988 1.9859

Table 2: Temporal convergence (in the PDE sense), on uniform and non-uniform quadrangular/triangular
meshes (top/bottom), of methods (18) and (11) based on DGTD-P2 method.
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3.3 High order approximation within the DG method

An attractive feature of the DG approach is the ability to easily increase the spatial convergence order.
The reduction by one of the PDE order for the locally implicit method (18) raises the question of the
efficiency of the method when high order approximation polynomials are used within the DG method.
We have conducted a numerical investigation for the propagation of an eigenmode in a unitary PEC
cavity (66). The total simulation time T is set to T = 5×10−8 s which corresponds to a propagation of
the initial wave over 10 wavelengths. Note that the simulation time was chosen large enough in order that
if we observe the evolution of the L2-norm error during time, the oscillations and the growth of the latter
become very small from a time less than the final time. We plot the maximal L2-norm error as a function
of the mesh spacing h and the total number of DOF for the DGTD-P1,2,3,4 methods on uniform triangular
meshes. The critical time step ∆tc is determined by (65) where the numerical CFL number is given in
Table 3.

Method DGTD-P4 DGTD-P3 DGTD-P2 DGTD-P1

Numerical CFL 0.09 0.13 0.20 0.30

Table 3: Numerical value of the CFL number in (65), for triangular meshes.

We observe in Figure 4 that for a given error the locally implicit method needs a finer grid or significantly
more DOF compared to the fully explicit case. In other words the method (18) needs more points per
wavelength. We have also indicated in Tables 4 - 5 the rates of decrease of the error relatively to the
polynomial degree for both methods, for a given error tolerance (L2-norm error = 10−3) or a given total
number of DOF (= 10000). As expected these rates are lower for (18) than for (11).

Because of its first order temporal convergence, an high order spatial discretization is less advanta-
geous for method (18) than for the fully explicit method (11) which retains its second-order PDE conver-
gence. Nevertheless increasing the polynomial order remains relatively useful for improving the accuracy
as shown in Figure 4 and Tables 4 - 5. Furthermore, as previously mentioned in the introduction, another
attractive feature of th DG approach is to handle geometrical details by using locally refined space grids.
Consequently we can expect that the higher cost of the locally implicit method compared to the fully
explicit method (in the sense of number of ppw for a given error) can be partly compensated because the
unduly large step size restriction of (11) is overcome when a local refinement is necessary for a practical
time dependent problem.

r (Pk,Pl) |errorL2 (Pk)− errorL2 (Pl) |/ |errorL2 (Pk) |
Method (18) Method (11)

r (P2,P3) 0.14 0.34
r (P2,P4) 0.28 0.52
r (P3,P4) 0.17 0.28

Table 4: Rate of decrease of the error relatively to the polynomial degree, for methods (18) - (11), for a
fixed number of DOF to 10000

(
errorL2 (Pl) = [1− r (Pk,Pl)]× errorL2 (Pk)

)
.
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r (Pk,Pl) |DOF (Pk)−DOF (Pl) |/ |DOF (Pk) |
Method (18) Method (11)

r (P2,P3) 0.11 0.34
r (P2,P4) 0.33 0.52
r (P3,P4) 0.26 0.28

Table 5: Rate of decrease of the error relatively to the polynomial degree, for methods (18) - (11), for a
fixed error tolerance to 10−3 (DOF (Pl) = [1− r (Pk,Pl)]×DOF (Pk)).
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Figure 4: Maximal L2-norm error as function of the mesh spacing h and the total number of DOF (left -
right) for methods (18) - (11) (top - bottom) based on DGTD-P1,2,3,4 spatial discretization.
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4 Conclusion and future work

In this paper, we have shown that component splitting can be detrimental to the temporal convergence
uniformaly in h of a locally implicit DG method. We have presented a sufficient condition (see (50)) on
the true PDE solution to recover the second-order convergence. Thus in the general case we can only
guarantee first-order convergence. Numerical investigations have been conducted to illustrate this last
theoretical result in 2D by considering a wave propagation problem for which an analytical solution is
available. Note that the aim of these tests was not to illustrate the computational efficiency of the locally
implicit DG method (for that purpose see [7]) but the temporal convergence order of the method (18) in
the ODE and PDE senses (i.e. for ∆t→ 0 on a fixed space grid and ∆t ∼ h, h→ 0, respectively).

In this paper we have mentioned another component splitting method from [27] which cover the
common spatial discretizations like finite difference and various finite element discretizations. We plan
to compare the latter with the implicit-explicit integration method from [7, 23] for a DG discretization on
unstructured meshes. The objective will be to illustrate the practical virtue of both component splitting
methods using locally refined space grids, and to highlight the most efficient one which then can be
advocated for future use.

In Section 3.3 we have seen that the reduction by one in the PDE convergence order for the method (18)
does not allow to fully exploit the gain in accuracy and efficiency that one can expect when the interpola-
tion order is increased. Thus a future objective is to examine higher order implicit-explicit methods. Sev-
eral strategies based on one of the schemes from [23, 27] can be envisaged. One possibility is to exploit
composition methods [12], known to be accurate with well-designed composition coefficients [19, 25, 32]
to minimize truncation errors. Note that these composition methods with orders beyond two are restricted
to problems with small (non-stiff) dissipative terms [1]. Furthermore in the presence of source functions,
the convergence order may be lower than the chosen composition order [28]. In the latter reference the
author used the scheme (11) as the basis method in composition and a source function perturbation to
solve Maxwell’s equations. With this perturbed scheme the author obtained at least a third-order scheme,
and a fourth-order one with additional sufficient conditions. Another possibility is to rely on local or
global Richardson extrapolations [1, 9, 13, 18, 30] which are easy to implement and straightforward to
parallelize. These high order extensions are well-known in the numerical solution of ODEs and have
been already considered with (11) as the basis methods to solve damped Maxwell equations [1]. With
Dirichlet boundary conditions the authors of [1] observed that the global approach does not suffer from
order reduction; this is not the case of composition methods and local extrapolations. However when
the reduction order is inevitable, they advocate the local approach that allows to eliminate error terms
instantaneously. The fact that these different methods, with an implicit-explicit approach, retain their
ODE convergence order for simultaneous space-time grid refinement towards the true PDE solution is
doubtful. Moreover, due to their accuracy, a comparison with high order local time stepping approaches,
as in [11, 26], will certainly be very interesting.

Acknowledgments The author wishes to acknowledge the many and important contributions to this
work by Prof. dr. Jan Verwer of Centrum Wiskunde en Informatica (CWI, 1090 GB Amsterdam, The
Netherlands), who passed away on 16 February 2011 before completion of this paper. The author wishes
also to thank the CWI for its hospitality during the month of December 2010, period during which much of
the theory presented in this paper was conducted in collaboration with Jan Verwer. Stéphane Descombes
and Stéphane Lanteri are acknowledged for valuable discussions and important assistance throughout this
work.

RR n° 7533



24 L. Moya & J.G. Verwer

References
[1] M.A. Botchev and J.G. Verwer, Numerical Integration of Damped Maxwell Equations. SIAM J. SCI.

Comput. 31 (2009) 1322-1346.

[2] A. Buffa and I. Perugia, Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM
J. Numer. Anal. 44 (2006) 2198-2226.

[3] A. Catella, V. Dolean and S. Lanteri, An Unconditionally Stable Discontinuous Galerkin Method
for Solving the 2-D Time-Domain Maxwell Equations on Unstructured Triangular Meshes. IEEE
Transactions on Magnetics 44 (2008) 1250-1253.

[4] B. Cockburn, G.E. G.E. Karniadakis and C.-W. Shu Eds., Discontinuous Galerkin methods. Theory,
computation and applications. Springer-Verlag, Berlin (2000)

[5] G. Cohen, X. Ferrieres and S. Pernet, A spatial high order hexahedral discontinuous Galerkin
method to solve Maxwell’s equations in time-domain. J. Comput. Phys. 217 (2006) 340-363.

[6] J. Diaz and M.J. Grote, Energy conserving explicit local time stepping for second.order wave equa-
tions. SIAM J. SCI. Comput. 31 (2009) 1985-2014.

[7] V. Dolean, H. Fahs, L. Fezoui and S. Lanteri, Locally implicit discontinuous Galerkin method for
time domain electromagnetics. J. Comput. Phys. 229 (2010) 512-526.

[8] H. Fahs, Development of a hp-like discontinuous Galerkin time-domain method on non-conforming
simplicial meshes for electromagnetic wave propagation. Int. J. Numer. Anal. Mod. 6 (2009) 193-
216.

[9] I. Faragó, Á. Havasi and Z. Zlatev, Richardson-extrapolated sequential splitting and its application.
J. Comp. Appl. Math. 234 (2010) 3283-3302.

[10] L. Fezoui, S. Lanteri, S. Lohrengel and S. Piperno, Convergence and stability of a discontinu-
ous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured
meshes. ESAIM: M2AN 39 (2005) 1149-1176.

[11] M.J. Grote and T. Mitkova, Explicit Local Time Stepping Methods for Maxwell’s Equations. J.
Comp. Appl. Math. 234 (2010) 3283-3302.

[12] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Second edition, Springer-
Verlag, Berlin (2002).

[13] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II - Stiff and Differential-
Algebraic problems. Second edition, Springer-Verlag, Berlin (1996).

[14] J. Hesthaven and T. Warburton, Nodal high-order methods on unstructured grids. I. Time-domain
solution of Maxwell’s equations. J. Comput. Phys. 181 (2002) 186-221.

[15] J. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods. Springer (2008).

[16] W. Hundsdorfer and J.G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-
Reaction Equations. Springer-Verlag, Berlin (2003).

[17] J. Jin, The Finite Element Method in Electromagnetics. Secon edition, Wiley-IEEE Press (2002).

[18] G.Yu. Kulikov, Local theory of extrapolation methods. Numer. Algor. 53 (2010) 321-342

Inria



Temporal convergence of a locally implicit DG method for Maxwell’s equations 25

[19] R.I. McLachlan, On the numerical integration of ordinary differential equations by symmetric com-
position methods. SIAM J. Sci. Comput. 16 (1995) 151-168.

[20] E. Montseny, S. Pernet, X. FerriÃ¨res, G. Cohen, Dissipative terms and local time-stepping im-
provements in a spatial high order Discontinuous Galerkin scheme for the time-domain Maxwell’s
equations. textitJ. Comput. Phys. 227(14) (2008) 6795-6820.

[21] J.C. Nédélec, Mixed finite elements in R3. Numer. Math. 35 (1980) 315-341.

[22] J.C. Nédélec, A new dfamily of mixed finite elements in R3. Numer. Math. 50 (1986) 57-81.

[23] S. Piperno, Symplectic local time-stepping in non-dissipative DGTD methods applied to wave prop-
agation problem. ESAIM: M2AN 40 (2006) 815-841.

[24] M. Remaki, A new finite volume scheme for solving Maxwell’s system. COMPEL 19 (2000) 913-
931.

[25] M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories
and Monte-Carlo simulations. Phys. Lett. A 146 (1990) 319-323.

[26] A. Taube, M. Dumbser, C.D. Munz and R. Schneider, A high order discontinuous Galerkin method
with local time stepping for the Maxwell equations. International Journal Of Numerical Modelling:
Electronic Networks Devices and Fields 22(1) (2009) 77-103.

[27] J.G. Verwer, Component splitting for semi-discrete Maxwell equations. BIT Numer. Math. (2010)
DOI 10.1007/s10543-010-0296-y.

[28] J.G Verwer, Composition methods, Maxwell’s and source term. SIAM J. Numer. Anal. 50(2) (2012)
439-457.

[29] J.G. Verwer and M.A. Botchev, Unconditionaly stable integration of Maxwell’s equations. Linear
Algebra and its Applications 431 (2009) 300-317.

[30] J.G. Verwer and H.B. de Vries, Global extrapolation of a first order splitting method. SIAM J. Sci.
Stat. Comput. 6 (1985) 771-780.

[31] K.S Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in
isotropic media. IEEE Trans. Antenn. Propag. 14 (1966) 302-307.

[32] H. Yoshida, Construction of higher order symplectic integrators. Phys. Lett. A 150 (1990) 262-268.

RR n° 7533



26 L. Moya & J.G. Verwer

Contents
1 Problem statement 4

2 The implicit-explicit DGTD method 5
2.1 Component splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 The implicit-explicit time integration method . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Matrix behavior for h→ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Temporal convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Elimination of intermediates values . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.2 The perturbed method and defects for the PDE solution . . . . . . . . . . . . . . 9
2.4.3 The error scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.4 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.5 A transformed global error recursion . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Numerical results 16
3.1 Simulation setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Numerical convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Convergence in the ODE sense . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Convergence in the PDE sense . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 High order approximation within the DG method . . . . . . . . . . . . . . . . . . . . . 21

4 Conclusion and future work 22

Inria



RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399


	Problem statement
	The implicit-explicit DGTD method
	Component splitting
	The implicit-explicit time integration method
	Matrix behavior for h0
	Temporal convergence
	Elimination of intermediates values
	The perturbed method and defects for the PDE solution
	The error scheme
	Error analysis
	A transformed global error recursion


	Numerical results
	Simulation setting
	Numerical convergence analysis
	Convergence in the ODE sense
	Convergence in the PDE sense

	High order approximation within the DG method

	Conclusion and future work

