D. V. Arnold and N. Hansen, Active covariance matrix adaptation for the (1+1)-CMA-ES, Proceedings of the 12th annual conference on Genetic and evolutionary computation, GECCO '10, pp.385-392, 2010.
DOI : 10.1145/1830483.1830556

URL : https://hal.archives-ouvertes.fr/hal-00503250

P. Auer, N. Cesa-bianchi, and P. Fischer, Finite-time analysis of the multi-armed bandit problem, Machine Learning, vol.47, issue.2/3, pp.235-256, 2002.
DOI : 10.1023/A:1013689704352

A. Auger, J. Bader, D. Brockhoff, and E. Zitzler, Theory of the hypervolume indicator, Proceedings of the tenth ACM SIGEVO workshop on Foundations of genetic algorithms, FOGA '09, pp.87-102, 2009.
DOI : 10.1145/1527125.1527138

URL : https://hal.archives-ouvertes.fr/inria-00430540

N. Beume, B. Naujoks, and M. Emmerich, SMS-EMOA: Multiobjective selection based on dominated hypervolume, European Journal of Operational Research, vol.181, issue.3, pp.1653-1669, 2007.
DOI : 10.1016/j.ejor.2006.08.008

D. Brockhoff, A. Auger, N. Hansen, D. V. Arnold, and T. Hohm, Mirrored Sampling and Sequential Selection for Evolution Strategies, Parallel Problem Solving from Nature (PPSN XI), pp.11-20, 2010.
DOI : 10.1007/978-3-642-15844-5_2

URL : https://hal.archives-ouvertes.fr/inria-00530202

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A Fast Elitist Multi-Objective Genetic Algorithm: NSGA-II, IEEE TEC, vol.6, pp.182-197, 2000.

N. Hansen, A. Auger, R. Ros, S. Finck, and P. Posík, Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009, Proceedings of the 12th annual conference comp on Genetic and evolutionary computation, GECCO '10, pp.1689-1696, 2010.
DOI : 10.1145/1830761.1830790

URL : https://hal.archives-ouvertes.fr/hal-00545727

N. Hansen, S. Müller, and P. Koumoutsakos, Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), Evolutionary Computation, vol.11, issue.1, 2003.
DOI : 10.1162/106365601750190398

N. Hansen and A. Ostermeier, Completely Derandomized Self-Adaptation in Evolution Strategies, Evolutionary Computation, vol.9, issue.2, pp.159-195, 2001.
DOI : 10.1016/0004-3702(95)00124-7

C. Igel, N. Hansen, and S. Roth, Covariance Matrix Adaptation for Multi-objective Optimization, Evolutionary Computation, vol.15, issue.1, pp.1-28, 2007.
DOI : 10.1109/TEVC.2003.810758

C. Igel, T. Suttorp, and N. Hansen, A computational efficient covariance matrix update and a (1+1)-CMA for evolution strategies, Proceedings of the 8th annual conference on Genetic and evolutionary computation , GECCO '06, pp.453-460, 2006.
DOI : 10.1145/1143997.1144082

C. Igel, T. Suttorp, and N. Hansen, Steady-State Selection and Efficient Covariance Matrix Update in the Multi-objective CMA-ES, LNCS, vol.4403, issue.07, pp.171-185, 2007.
DOI : 10.1007/978-3-540-70928-2_16

J. Knowles, L. Thiele, and E. Zitzler, A tutorial on the performance assessment of stochastic multiobjective optimizers, 2006.

H. Li, Q. Zhang, M. , and N. , Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II, IEEE Transactions on Evolutionary Computation, vol.13, issue.2, pp.284-302, 2009.
DOI : 10.1109/TEVC.2008.925798

R. Ros and N. Hansen, A Simple Modification in CMA-ES Achieving Linear Time and Space Complexity, Parallel Problem Solving from Nature (PPSN X), pp.296-305, 2008.
DOI : 10.1007/978-3-540-87700-4_30

URL : https://hal.archives-ouvertes.fr/inria-00287367

M. Schumer and K. Steiglitz, Adaptive step size random search. Automatic Control, IEEE Transactions on, vol.13, pp.270-276, 1968.
DOI : 10.1109/tac.1968.1098903

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

E. Zitzler, K. Deb, and L. Thiele, Comparison of Multiobjective Evolutionary Algorithms: Empirical Results, Evolutionary Computation, vol.8, issue.2, pp.173-195, 2000.
DOI : 10.1109/4235.797969

E. Zitzler and L. Thiele, Multiobjective optimization using evolutionary algorithms ??? A comparative case study, LNCS, vol.1498, pp.292-301, 1998.
DOI : 10.1007/BFb0056872