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Dérivée de forme de la fonctionnelle de Willmore
et applications aux formes d’équilibre des
vésicules

Résumé : Les vésicules constituent un modeéle biologique simplifié pour la de-
scription du comportement mécanique des globules rouges. Les formes d’équilibre
de ces vésicules sont pilotées par I’énergie de flexion qui est donnée par la fonc-
tionnelle de Willmore. Nous présentons une méthode pour calculer la dérivée de
forme de la fonctionnelle de Willmore avec I’approche level set. Nous montrons
I’équivalence avec la méthode initialement introduite par Willmore ou la sur-
face est représentée & ’aide d’une paramétrisation. Enfin, quelques simulations
numériques de la relaxation de vésicules vers leur formes d’equilibre en trois
dimensions sont présentées.

Mots-clés :  Optimisation de formes, interaction fluide-structure, eulerien,
"level set", differences finies
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Introduction

Understanding the blood rheology is a major issue for biomedical applications.
We can cite, for example, the prediction of vascular pathologies. The blood is
mainly composed of red blood cells, which are responsible of the non Newtonian
behavior of the flow. These cells have complex membranes, which are consti-
tuted of phospholipids and sprinkled over with proteins. The modelling of both
biological and mechanical properties of such cells is then difficult to handle. The
vesicles in suspension are composed of a phospholipidic membrane with elastic
properties. They constitute a simplified biological model to describe the me-
chanical behavior of red blood cells in wvitro .

The strong interaction between the elastic membrane and the fluid leads
to a coupled fluid-structure problem. A convenient way to tackle this kind of
problem is to use the immersed boundary method introduced by Peskin [22].
The main idea is to describe the fluid-structure medium with an unique con-
tinuous velocity. This method involves both Eulerian and Lagrangian variables
coupled through Dirac mass. The elastic forces are treated as a source term in
the fluid equations. The Lagrangian treatment of the elasticity leads to some
drawbacks on the numerical point of view as for instance the treatment of large
deformations and the loss of mass. More recently, Cottet and Maitre have intro-
duced in [7, 8] a full Eulerian formulation of the fluid-structure interaction for
membranes. The interface is tracked implicitly with a level set function ¢ which
does also capture the change of area through |V¢|. This formulation allows to
overcome the difficulties inherent to the immersed boundary method.

The membrane of the vesicle responds mechanically only to the change of
area and bending. The vesicle is constituted of a fixed amount of molecules so
the membrane is nearly inextensible. As a result, the main mode of deformation
of the vesicle is bending.

For this reason, we focus in this paper on the derivation of the bending force
and its application to the shape equilibrium of vesicles. The bending energy is
generally given by the Willmore functional [I7, 4 [19]

ﬂﬁ:AH&f@

Here H is the mean curvature of the surface I'. The Willmore energy has
an interesting geometrical interpretation: it captures the deviation of a surface
from its local sphericity. Let x1,x2 be the principal curvatures and H = k1 + ko,
G = Ki1ks denote the respective mean and Gaussian curvatures related by
H? — 4G = (k1 — K2)?. The Gauss-Bonnet theorem ensure that the Gaus-
sian curvature is a topological invariant ie er ds is constant for a closed
surface. Therefore, up to an additive constant, the Willmore energy writes
fr(m — k)% ds. As a result, this energy vanishes when x; = ko and captures
the deviation of a surface from a sphere. In order to take the bending energy into
account, the force linked to the Willmore energy has to be computed. Following
the virtual work principle, this force is related to the variation of the func-
tional J(T'). Since I is a surface, the problem is recasted as finding the shape
derivative of the Willmore functional J/(I"). Two different methods have been
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developed for this problem in the literature. While the first one is based on a
explicit representation of the surface with a parametrization [28], the second one
is based on an implicit representation of the surface with a level set function [20].

In the first method, the surface is represented by a parametrization X and
the Willmore functional is denoted by J(X). In order to perform the shape
derivative, a deformation in the normal direction is introduced. Using differen-
tial calculus, J' writes [28]

T(X)(0) = — /F (2808 + H(I ~ 46))5 ds, (1)

where Ar is the Laplace-Beltrami operator on the surface I'. This method is
natural since it only involves quantities defined on the surface. This result can
be used in the framework of the immersed boundary method since the surface
and terms appearing in () can be computed with a parametrization. However,
when the surface is described by a level set function, a parametrization is not
known.

In the second method, the surface is represented by the zero level set of a

function ¢ and the Willmore energy is written J(¢) = / H(¢)* ds. The

derivative with respect to ¢ is tough to handle since the domain of integration
depends itself on ¢. To overcome this difficulty a volumic approximation of
J(¢) is introduced and the result is the following [20]

! 1 . 2 Vd) 2
70 = [ v (~HOP G + ggPee (TIVOIH@) ) 5 ds
(2)
where Py, is the projector on the plane which is orthogonal to V¢. This
result can be used in an Eulerian framework since it only involves quantities
depending on the level set function ¢.

The main goal of the paper is to investigate the equivalence of the shape
derivatives () and (). This is not straightforward since the two results use dif-
ferent representations of a surface and different differential operators. Moreover,
the formula () depends a priori on ¢ outside the surface {¢ = 0} through |V¢|,
while () depends on both curvature and Laplace-Beltrami operator, which are
independent of the parametrization. The equivalence of the approaches will
prove that J'(¢) is in fact independent of the choice of ¢ outside {¢ = 0}.
Moreover, writing (2) under the form () is also relevant for numerical purpose.
Indeed, we can focus separately on the approximation of the curvature and the
Laplace-Beltrami operator.

The second goal of the paper is to use the formula () in the level set frame-
work to study the relaxation of vesicles towards their equilibrium shapes. These
shapes can be determined by minimizing the bending energy with two con-
straints: fixed area (inextensible membrane) and fixed volume (incompressible
fluid). The numerical methods used to solve this problem in the literature rely
on the finite elements method on surfaces [3, 2] and the phase field methods
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23 24]. Tt is worth mentioning the related works [12] 111 [13], which focus on
the minimization of the bending energy without constraints. Our approach is to
consider an Eulerian model where an elastic membrane is immersed in a incom-
pressible viscous fluid. Taking the hydrodynamics into account is necessary in
order to be able to study the dynamics of these vesicles in a flowing fluid. The
volume of the vesicle is naturally constraint with the incompressibility of the
fluid while the area of the vesicle is constraint with a stiff elastic coefficient. We
obtain various equilibrium shapes in three dimensions depending on a volume
ratio, which qualitatively agrees with the literature.

The paper is organized as follow. The first section is devoted to the intro-
duction of the tools of differential geometry. The second section deals with the
shape derivative of the Willmore energy in the level set framework. The third
section is devoted to numerical simulations of equilibrium shapes of vesicles in
three dimensions. A simple proof of the Stokes formula for surfaces as well as a
different, shape derivative method for the Willmore functional will be presented
in the Appendix.

1 Preliminaries

The vectors and the matrices will be written in the canonical orthonormal basis
of R3. Let a,b be two vectors of R*. We denote by a-b = >_. a;b; the Euclidean
scalar product, |a| the associated norm and [a ® b];; = a;b; the outer product.
Let A be a matrix of M3(R). We denote by Tr(A), det(A) the usual trace and
determinant. We denote also by Tr(Cof(A)) = 1(Tr(A)? — Tr(A?)) the trace
of the comatrix. We denote by V, div and A the usual Euclidean gradient,
divergence and Laplace operators, respectively.

1.1 Level set method

Throughout the paper, I' denotes a smooth connected, oriented and closed sur-
face of R3. This surface is represented implicitly as the zero level set [21 25] of
a smooth scalar function ¢

I'={zreR3/¢(x) =0}

Assume that |[Vé| > 0 in a neighborhood V of {¢ = 0}. The unitary normal
is then well defined on V and given by

_ Ve

The dependence on ¢ will be dropped in the next sections of the paper. We
denote by U the domain enclosed by the surface I'. We choose the convention
that ¢ < 0 in U and ¢ > 0 outside U so that n is the outward normal. The
gradient of the relation |n|? = 1 writes

[Vn]'n =0, ([Vnn) - n = 0. (4)
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1.2 Tangential operators

It is natural to define differential operators on surfaces to study the variation of
scalar and vector fields on I'. When T’ is represented explicitly by a parametriza-
tion, these differential operators are naturally defined with the metric induced
by the parametrization [5] [6, [[4]. In the case of an implicit representation of I’
with a level set function, the scalar and vector fields are extended to a neighbor-
hood V of I'. The differential operators on surfaces named tangential operators
are then defined as the projection on the tangent plane of the classical Euclidean
differential operators [18, [, [26] [0 15]. Let f and v be smooth scalar and vector
fields defined in V C R3. Then, the tangential operators are defined by

va = Vf - (Vf : n)n,
Vrv =Vv — [Vv](n ® n),
divp(v) = Tr(Vrv) = div(v) — ([Vv]n) - n,
Apf = diVF(VFf).
These definitions are independent of the extension of the quantities outside

the surface I' since the usual differential operators are projected on the tangent
plane of I'. The following identities hold

Vre¢ =0, (5)

va N = 0, (6)

divp(fv) = fdivp(v) + Vrf - v, (7)

Vrf-Vg=Vf-Vrg=Vrf-Vrg, (8)
_ Vr|Vg|

These properties are simple consequences of the definitions of the tangential
operators and ([Bl). We have also the relations

(V(Vrf)n) - n=-Vf-([Vnn), (10)
(V (VA n)ln) - n = —([Vn] n) - ([Vn] n). (11)

Taking gradient of equality (@) and multiplying by n leads to (I0). Taking
the gradient of (@) and multiply the result by n gives (II).

Let f,g be two smooth functions and v a smooth vector field. Let @ a
smooth open set of R? and 0Q its boundary (which is a closed surface of R?).
For the classical Euclidean operators, the Stokes formula for volumes writes

/div(v)fd:c:f/v~Vfd:c+ fv-nds. (12)
Q Q 0Q

For tangential operators, we have the following Stokes formula for closed
surfaces

/FdivF(v)deZ—/FV-fods—i—/Fva-nds. (13)

RR n°® 7539
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Note that there is an extra term depending on the mean curvature H if v
has a component in the normal direction. We provide a new simple proof of this
formula in the Appendix 1. Taking v = Vg in this formula and using (&) we
get

/prg ds :/gApf ds. (14)
r r

1.3 Curvature

Intuitively, the curvature represents the amount by which a surface deviates
from being a plane. Let us introduce the tensor [Vrn], the so called extended
Wirtinger map [15]. This tensor has the eigenvector n associated to the eigen-
value 0 since [VrnJn = 0. The remaining eigenvalues are the principal cur-
vatures denoted by k; and k. The mean and Gaussian curvatures are then
defined by

H = k1 + ke = Tr([Vrn]) = divp(n), G = k1k2 = Tr(Cof([Vrn])). (15)
Since n is extended by (), we obtain with (@)

H = Tr([Vn]) = div(n), G = Tr(Cof([Vn])). (16)

The identity Tr([Vn]?) = k7 + k3 = H? — 2G and ([{6) prove the following
relation

div([Vn] n) = VH -n+ H?* - 2G. (17)

2 Shape derivative of the Willmore functional

The aim of this section is to compute the shape derivative of the Willmore
functional

J(T) :/FH(F)2 ds.

The original method of Willmore where the surface is represented by a
parametrization is presented in section 2.1. The section 2.2 deals with the shape
derivative of a general functional in the level set framework with the volumic
approach. In the section 2.3, this method is applied for the Willmore functional
and the equivalence of the level set and the parametric approaches is proved.

2.1 Shape optimization with a parametrization

In the method described in [28], the surface is parametrized locally by X : U —
R? with parameter domain U C R?. We denote by ¢;; = X ;- X ; the coefficients
of the first fundamental form, g its determinant and g% the coefficients of its

X1 AX
.1 2 and the second fundamental

inverse. The normal is defined by n = ———=
YR TIX I AX
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form by h;; = X ;; - n. The mean curvature is then given by H = — Zgijhij.
4]
The Willmore energy is then

JX) = /[](H(Ul,UQ))Q\/g(u1,U2) duqdus.

In order to perform the shape derivative, a deformation in the normal direc-
tion is introduced with the associate parametrization X (t) = X + tdn where §
is a scalar function. This choice is justified by the fact that a deformation in
the tangential direction has no influence on the shape derivative. The result-
ing sequence of perturbed surfaces is denoted by (I't):~o where I'o = I'. Using
differential calculus J' writes [28]

T(X)(0) = %

J(X+t5n):—/

(2ApH Y H(H? - 40))5 ds,  (18)
I

t=0
1 3
where ArH = 7 Z(\/gg” H ;). is the Laplace Beltrami operator on the
g =
i,

surface I'. This operator and the curvature involved in (I8) can be computed
with a parametrization of the surface. However, this formula cannot be used
directly in a level set framework since a parametrization is not known.

2.2 Shape optimization in the level set framework

In an Eulerian framework, the surface I' is represented implicitly as the zero
level set of a function ¢. We consider the generalized functional

o)~ [ flolas (19)
{¢=0}
where f[¢] denotes a function depending on the spatial derivatives of ¢. For
2
instance, in the case of the Willmore functional we have f[¢] = div <%) .

To perform the shape derivative, we deform the surface assuming that ¢ satisfies
the transport equation

¢y +u- Vo =0, (20)

where u is a vector field. We denote then I't = {z € R® / ¢(z,t) = 0} and
I'o =T'. The shape derivative is then given by % ‘t:O Z(¢) denoted by (Z(¢)):.
The major difficulty to compute (Z(¢)); relies in the fact that the domain of
integration is a surface which depends on time. To overcome this difficulty, an
idea introduced in [8] is to approximate the surface integral on a fixed domain
of R? with the following lemma.

Lemma: Let be ¢ a smooth positive cut-off function with support in [—1, 1]

and fR ¢ = 1. Assume that ¢ is a smooth function with |V¢| > 0 in a neighbor-
hood of {¢) = 0}. Let Q be a an open set of R? such that {z € R?/¢(z) <1} C Q,

RR n°® 7539
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0 <e < 1and f[¢] a smooth scalar function which depends on ¢ and its deriva-
tives. Then

/ HEIZIRS ( ) dv —» 119] ds. (21)

e—0 {¢:0}

A proof of this lemma involves the co-area formula and is given in [8]. We
now use this lemma to give a simple proof of the shape derivative (Z(¢)):.

The derivative of Z.(¢) with respect to ¢ gives three terms

o= [ lol 1Veizc (£) do+ [ riel2 ( ) oy T
+ [ f6vel5 <)¢tdz (¥

The Stokes formula for volumes (I2)) gives

5 | Vo)1 (6), o
/f < )|V¢| Vérd /d”<f[¢]|w| 5<<€)¢td
L (0

since the term on Q) vanishes. Indeed, we have ( (f) = 0 for |¢p| > ¢
because the support of ¢ isin [-1,1]. As {x € R3/¢(z) <1} C Q and £ < 1 we
get ¢ (%) = 0 on 9Q. Therefore, inserting (xx) in (x) and using the transport
equation (20) leads to

o) = [ (ol + die (floim)u-n)VolZc () ar (@2)

Note that u - n appears in ([29). Hence, the tangential component of u has
no influence in the shape derivative.

The following section is devoted to the computation of the shape derivative
of the Willmore functional with the volumic approach. We introduce the scalar
function A : R — R and the generalized Willmore functionall

T(6) = / A(H(#)) ds. (23)
{p=0}

2.3 Shape derivative with a volumic approximation

We consider the volumic approximation ([21]) of the Willmore functional (23)

T.(6) = /Q AH(6)) V6] ¢ (?> da.

IThe choice A(r) = (r — cg)? is widely used in the applications (co is the spontaneous
curvature).

RR n°® 7539
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We apply the general volumic approximation formula 22) with f = A(H)
to obtain

VA =/Q(A'(H)Ht+div(A(H)n)u-n)|v¢|%C (?) d

As the mean curvature depends on the variation of the normal, we start by
computing the derivative of the normal. We get from (20) and (@)

Vo ) Vi
n=|(—-», = =—-Vr(u-n)—([Vn] n)u-n. 24
= (05) = Tt = Ve )~ (7l o) (24)

As before there will be no contribution on 9@ in the Stokes formula for vol-
umes since ¢ (%) =0 on 0Q.

We obtain with the derivative of the normal ([24])

(J=(9)): /Q (A’(H)div <|VVF;T) +div (A(H)n) u - n) |v¢>|§§ (?) dz.
(25)

The first term denoted by (J1.:(¢)):. The Stokes formula for volumes (I2)
and the symmetry relation (®) are used to obtain

(Jre(@)) = — Qmj{- ( "(H |v¢|i (?)) de
fywer v (o))

Using (@), we have the relation Vp (ég (?)> = E_QC (?) r¢ = 0. This

€
property is used to develop the term involving Vi and a Stokes formula for

volumes gives

el = [ o VeIV ¢ () @

/dw(w r (A'(H)|V6) ¢ (f)) b da.

With the relation (@), we get

v e v (3¢ (2)) = Lo (2) waveianive) =

€ g2

We use this property to develop the divergence term. Since ¢ = —|Vo|u-n
with the transport equation (20), we get

(T(6)) = /Qdiv (A(H)n - ﬁVF (A'(H)|v¢|))) u-n|Ve| ¢ (g) dz.

RR n°® 7539
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At this point we find the result [2) when e goes to 0 with 2I) and § =
—|V¢|u - n. This formula has the drawback to depend on ¢ outside {¢ = 0}.
We go further to obtain a more intrinsic result depending only on curvature and
tangential operators. Following (@) we get

: 1 ! = div(A’ n|n iv !

For the first term we use ()

div(A'(H)[Vn] n) = A'(H) (VH -n+ H? — 2G) + V(A (H)) - ([Vn] n).

For the second term we use (I0)

div(Vr(A'(H))) = dive(Ve(A'(H))) + ([V(Ve(A'(H)))] n) - n
= Ap(A'(H)) = V(A'(H)) - ([Vn] n).

Combining these expressions gives

. 1 / . /7 /7 ‘n 27

According to (I6]), we have the relation

div(A(H)n) = A(H)H + A'(H)VH - n,
and using the transport equation ([20), we finally get

(A(H)H — Ap(A/(H)) — A'(H)(H? - 2G))u : n|V¢)|%C <¢> da.

(o = [ ¢
(26)

Q

When ¢ goes to 0, we obtain with the lemma (21

(T (@) = /{ o, (AUDH = An(/ ) = A/ = 2G) Jun ds. - (21)

This result does not depends on ¢ outside {¢ = 0} because it involves only
curvature and tangential operators. We propose in the Appendix 2 another
proof of this result based on direct computations on the surface. In the partic-
ular case A(r) = r? we find the result ([I8) obtained with a parametrization of
the surface. This result allow us to construct more efficients numerical schemes
to approximate the bending force. Indeed, we can focus separately on the ap-
proximation of the curvature and the Laplace-Beltrami operator.

RR n°® 7539
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3 Numerical simulations of equilibrium shapes

Vesicles are closed membranes of lipids suspended in an aqueous solution. The
membrane can be considered as a two-dimensional fluid since there is no stress
response to shear deformation. The membrane is also nearly inextensible and
thus the equilibrium shapes of vesicles is driven by the bending energy. An
important ingredient is the volume ratio given by

T= v (28)

3
57 (3)°
where V' is the volume and S the area of the vesicle. This parameter mea-
sures the ratio between the volume of the vesicle and the volume of the sphere
with the same area.

Our approach is to consider an Eulerian fluid-structure model where an
elastic membrane is immersed in an incompressible viscous fluid. Two energies
will be introduced to take the change of area and the bending into account. The
volume of the vesicle is naturally constraint with the incompressibility of the
fluid while the area of the vesicle is constraint with a stiff elastic coefficient.

3.1 Eulerian model

We consider the Eulerian fluid-structure model introduced in [7,[8]. Let @ be a
domain containing an incompressible fluid where the vesicle is immersed. The
motion of the interface is captured by a level set function ¢ which is advected
by the fluid velocity. A part of the elasticity, the change of area, is recorded in
|[V¢| and we introduce the associated regularized energy

o) = [ B(ve)Zc (2) an
Q g e
where ( is a cut-off function used to spread the interface near {¢ = 0}. We
use in our simulations the following expression ¢((r) = 3(1 + cos(7r)) on [—1,1]
and ((r) = 0 elsewhere. The parameter ¢ is equal to 1.5Az in the simulations
where Az is the grid size. The constitutive law r — E’(r) describe the response
of the membrane to the change of area. We use in our simulations the linear

law E’(r) = A(r — 1) where X is elastic modulus. The associated force is given
by

F.(¢) = (Vr(E (Vo) — B' (Vo) H(@)n(6)) IVl ¢ (?) |

To take the bending energy into account, we introduce the regularized energy
L. (¢
E(¢) = | A(H(9)IVo|=C | = | da,
Q 3 3
where A is a constitutive law for the bending energy. We use in our sim-
ulations the Helfrich law A(r) = ar? where « is the bending modulus. The

principle of virtual works claims that (E:(¢)): = f/ F.(¢)-udz. Using the
Q
result (26]), we get

RR n°® 7539
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FL(6) = a(2Ar(H(0) + HO(H () - 160) 7612 (£ ) n(o)

The model is then given by the incompressible Navier-Stokes equations with
the bending and elastic forces as a source term coupled with a transport equation
for the level set. Let L, U, prer and pef represent the respective characteristic
length, velocity, density and viscosity scales. The dimensionless equations writes

Re(u;+ (u-V)u) —Au+Vp = -F.(0)+ 7-Fe(9),
ot +u-Vo = 0,
div(u) = 0,
where
Re _ LUpref, We _ Mrer, Wc _ MrerL2’
Href A (%

are respectively the Reynolds, Weissenberg and bending numbers. In this
model, the fluid viscosity and the density are the same in the two fluids. More-
over we have neglected the mass of the membrane. These equations are com-
pleted with appropriate initial and boundary conditions.

The transport equation is discretized with fifth order WENO scheme in space
[16] and explicit Euler scheme in time. A projection method is used to decou-
pled the pressure and the velocity in time in the Navier-Stokes equations. The
resolution of the Poisson equation for the pressure is performed with FFT. An
implicit scheme in time is used for the diffusion to avoid a restrictive stability
condition on the time step for low Reynolds numbers. The others terms are
discretized in space with classical centered schemes of order two. Since the level
set function is used through its gradient to compute the stretching, we do not

perform the redistancing. Instead, we use the renormalization \VL)M to measure
the distance to interface. Thus, |[Ve|L¢ (%) is replaced by 1¢ (IVfb\s)‘ This

approach was proved in [§] to be efficient from the point of view of both volume
conservation and interface force calculations.

3.2 Numerical results

The domain @ = [0,1]? is discretized on a Cartesian mesh with 64 points in
each direction. We choose R, = 0.01 to reproduce the typical regime of the flow
, We = 0.0001 to constraint the change of area and W, = 0.3. We impose zero
velocity for the initial and boundary conditions. We consider the relaxation of
two initial shapes with different volume ratio (28)). In the following simulations
we represent the evolution of the zero level set of ¢ and slices of the pressure at
the center of the domain.

In the first simulation, we choose an ellipsoid represented by the level set
; _ (z=0.5)\2 y—0.5)2 2=0.5\2 _: _
function ¢(z,y,z) = (=25)" 4+ (522)" + (==22)" with the parameters a =
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0.35,b = 0.35,c = 0.1. We perform initially a redistancing on this level set func-
tion. The associated volume ratio is 7 = 0.6. The results are presented on Fig[Il
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Figure 1: Evolution of the ellipsoid at time 0,0.5,1,1.5,2 and 4.5.

In the second simulation, we choose a "dumbbell" represented by the level
set function ¢($, Y, Z) = min(¢1 ($, Y, Z)7 ¢2($, Y, Z)a ¢3(l’, Y, Z)) with

¢1(x,y,z) = \/%2 + y2 + (Z + a)2) -
¢2($7y72) = \/LEZ +y2 + (Z - Ol)2) -

¢3($,y,2) = ma’X(|Z| —Q,V x? + y2 - ’Ll))

and the parameters a = 0.22,w = 0.13,r = 0.18. The volume ratio is
7 = 0.77. We perform initially a redistancing on this level set function. The
results are presented on Fig[2
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Figure 2: Evolution of the dumbbell at time 0,0.05,0.1,0.15,0.2 and 2.

Note that the initial shapes are close to the optimal shapes in order to avoid
local minimums. These shapes qualitatively agree with the results presented in

the literature [3] 2], 23] [24].

4 Conclusion and forthcoming works

In this paper, we have introduced a method to compute the shape derivative
of the Willmore functional in the level set framework. This approach relies on
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the approximation of surface integrals on a fixed domain and allow to use the
standard differential calculus in R3. We have proved that this method leads to
a geometrical result involving the curvature and the Laplace-Beltrami opera-
tor. The equivalence with the method originally introduced by Willmore, where
the surface is represented by a parametrization, is established. The level set
bending force associated to the Willmore energy is then added on an Eulerian
fluid-structure model where an elastic membrane is immersed in a viscous fluid.
The discretization on a fixed Cartesian mesh of the level set function allows to
overcome the difficulties inherent to a Lagrangian tracking of the interface, as
for instance the treatment of large deformations. We have presented some nu-
merical simulations related to the relaxation of vesicles toward their equilibrium
shapes in three dimensions. The various shapes obtained are in good agreement
with the results presented in the literature. These numerical results are a first
step to understand the behavior of vesicles in the blood flow. A ongoing work
concern the simulation of dynamics of vesicles in a shear flow.

5 Appendix 1: Stokes formula for surfaces

The aim of this first Appendix is to present a new proof of the Stokes formula
for surfaces based on the volumic approximation of functionals.

Let @Q be an open set of R?, f, g smooth functions and v, w smooth vector

fields. Assume that w vanishes on 0Q). As a result, a Stokes formula for volumes
and the definition of tangential divergence give

/QdivF(w) dr = /Qdiv(w) —[Vw]:n®ndr = /Qdiv(n ®@n)-wdz.

Taking w = v|V¢|L1¢ (%) (which vanishes on 0Q) and using the properties
@) and (I6), we obtain

/Qdm(vﬂw%c(?) dxz—/er (wgc(f)) v dz
+/Q(Hn+[Vn] n) -v|v¢|§§ (?) de

Using (@) and (@), we have

(a2 (2) et e (2) - o 2

€

Therefore

/ divp(v) |V¢|1C (?> dz =/ Hv-n |V¢|1C (?> dz.
Q g 1> Q g £

When e goes to 0 we obtain with the lemma (21

RR n°® 7539



Willmore functional 17

/din(v) ds:/HV-nds.
r r

Replace v by fv gives with ()

/FfdivF(v)ds:f/Ffo-vder/Fva-nds.

6 Appendix 2: Another proof of the shape deriva-
tive of the Willmore functional

This second Appendix is devoted to a different proof of the shape derivative
of the Willmore functional. The major difference with the volumic approach is
that the computations are performed directly on the surface {¢ = 0}.

The starting point is the volumic shape derivative (22)

(CF6De + div (Flolm)u - n) V6] (?) d.

€

To)i = |

Q
When e goes to 0 we get with the lemma (21])

@@= [ (h+divslelm)un . (29)

We obtain the general shape derivative formula for surface integral which
can be found in [1 [I8]. We consider the Willmore functional

T(6) = /{ A s

We apply (29) with f = A(H) to obtain

(JT(9): = /{ o) A'(H)H; + div(A(H)n) u - n ds. (30)

We choose the definition H = divp(n) of the mean curvature (I3)) in order
to introduce the tangential operators. Then a Stokes formula for surfaces (I4)
which involves tangential operators will be used to get the final result.

We have with the definition of tangential operators and (@)
Hy = (div(n)); = (([Vn] n) - 1)y,

=div(n:) — ([Vng n) -n— ([Vn] ns) -n— ([Vn] n) - ng,
=divr(n) — ([Vn] n) - n,.

Inserting (24) in the previous expression and developing the tangential di-
vergence with () gives

H; = —Ar(u-n) —divp([Vn] n) u-n+ ([Vn] n) - ([Vn] n) u-n.
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oy = [

Using the relations (I7) and () for the second term gives
Hy=—Ar(u-n)— (VH -n+ H?> - 2G) u-n.
We have also with (6] the relation
div(A(H)n) = A(H)H + A'(H)VH - n.
Using the Stokes formula for surfaces (I4) we finally obtain

(A(H)H — Ar(A'(H)) — A/(H)(H? - 2G))u nds. (31)
{¢=0}

We obtain the same shape derivative (27) obtained with the volumic app-

proach.
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