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Abstra
t: The vesi
les 
onstitute a simpli�ed biologi
al model to des
ribe theme
hani
al behavior of red blood 
ells. The equilibrium shapes of these vesi
lesare driven by the bending energy whi
h is given by the Willmore fun
tional.We present a method to 
ompute the shape derivative of the Willmore fun
-tional in the level set framework. The equivalen
e with the method originallyintrodu
ed by Willmore, where the surfa
e is represented by a parametrization,is established. Finally, some numeri
al simulations of the relaxation of vesi
lestowards their equilibrium shapes in three dimensions are presented.Key-words: Shape optimization, �uid-stru
ture intera
tion, eulerian, levelset, �nite di�eren
es
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Dérivée de forme de la fon
tionnelle de Willmoreet appli
ations aux formes d'équilibre desvési
ulesRésumé : Les vési
ules 
onstituent un modèle biologique simpli�é pour la de-s
ription du 
omportement mé
anique des globules rouges. Les formes d'équilibrede 
es vési
ules sont pilotées par l'énergie de �exion qui est donnée par la fon
-tionnelle de Willmore. Nous présentons une méthode pour 
al
uler la dérivée deforme de la fon
tionnelle de Willmore ave
 l'appro
he level set. Nous montronsl'équivalen
e ave
 la méthode initialement introduite par Willmore où la sur-fa
e est représentée à l'aide d'une paramétrisation. En�n, quelques simulationsnumériques de la relaxation de vési
ules vers leur formes d'equilibre en troisdimensions sont présentées.Mots-
lés : Optimisation de formes, intera
tion �uide-stru
ture, eulerien,"level set", di�eren
es �nies



Willmore fun
tional 3Introdu
tionUnderstanding the blood rheology is a major issue for biomedi
al appli
ations.We 
an 
ite, for example, the predi
tion of vas
ular pathologies. The blood ismainly 
omposed of red blood 
ells, whi
h are responsible of the non Newtonianbehavior of the �ow. These 
ells have 
omplex membranes, whi
h are 
onsti-tuted of phospholipids and sprinkled over with proteins. The modelling of bothbiologi
al and me
hani
al properties of su
h 
ells is then di�
ult to handle. Thevesi
les in suspension are 
omposed of a phospholipidi
 membrane with elasti
properties. They 
onstitute a simpli�ed biologi
al model to des
ribe the me-
hani
al behavior of red blood 
ells in vitro .The strong intera
tion between the elasti
 membrane and the �uid leadsto a 
oupled �uid-stru
ture problem. A 
onvenient way to ta
kle this kind ofproblem is to use the immersed boundary method introdu
ed by Peskin [22℄.The main idea is to des
ribe the �uid-stru
ture medium with an unique 
on-tinuous velo
ity. This method involves both Eulerian and Lagrangian variables
oupled through Dira
 mass. The elasti
 for
es are treated as a sour
e term inthe �uid equations. The Lagrangian treatment of the elasti
ity leads to somedrawba
ks on the numeri
al point of view as for instan
e the treatment of largedeformations and the loss of mass. More re
ently, Cottet and Maitre have intro-du
ed in [7, 8℄ a full Eulerian formulation of the �uid-stru
ture intera
tion formembranes. The interfa
e is tra
ked impli
itly with a level set fun
tion φ whi
hdoes also 
apture the 
hange of area through |∇φ|. This formulation allows toover
ome the di�
ulties inherent to the immersed boundary method.The membrane of the vesi
le responds me
hani
ally only to the 
hange ofarea and bending. The vesi
le is 
onstituted of a �xed amount of mole
ules sothe membrane is nearly inextensible. As a result, the main mode of deformationof the vesi
le is bending.For this reason, we fo
us in this paper on the derivation of the bending for
eand its appli
ation to the shape equilibrium of vesi
les. The bending energy isgenerally given by the Willmore fun
tional [17, 4, 19℄
J(Γ) =

∫

Γ

H(Γ)2 ds.Here H is the mean 
urvature of the surfa
e Γ. The Willmore energy hasan interesting geometri
al interpretation: it 
aptures the deviation of a surfa
efrom its lo
al spheri
ity. Let κ1,κ2 be the prin
ipal 
urvatures and H = κ1+κ2,
G = κ1κ2 denote the respe
tive mean and Gaussian 
urvatures related by
H2 − 4G = (κ1 − κ2)

2. The Gauss-Bonnet theorem ensure that the Gaus-sian 
urvature is a topologi
al invariant ie ∫

Γ
G ds is 
onstant for a 
losedsurfa
e. Therefore, up to an additive 
onstant, the Willmore energy writes

∫

Γ
(κ1 − κ2)

2 ds. As a result, this energy vanishes when κ1 = κ2 and 
apturesthe deviation of a surfa
e from a sphere. In order to take the bending energy intoa

ount, the for
e linked to the Willmore energy has to be 
omputed. Followingthe virtual work prin
iple, this for
e is related to the variation of the fun
-tional J(Γ). Sin
e Γ is a surfa
e, the problem is re
asted as �nding the shapederivative of the Willmore fun
tional J ′(Γ). Two di�erent methods have beenRR n° 7539



Willmore fun
tional 4developed for this problem in the literature. While the �rst one is based on aexpli
it representation of the surfa
e with a parametrization [28℄, the se
ond oneis based on an impli
it representation of the surfa
e with a level set fun
tion [20℄.In the �rst method, the surfa
e is represented by a parametrization X andthe Willmore fun
tional is denoted by J(X). In order to perform the shapederivative, a deformation in the normal dire
tion is introdu
ed. Using di�eren-tial 
al
ulus, J′ writes [28℄
J
′(X)(δ) = −

∫

Γ

(

2∆ΓH +H(H2 − 4G)
)

δ ds, (1)where ∆Γ is the Lapla
e-Beltrami operator on the surfa
e Γ. This method isnatural sin
e it only involves quantities de�ned on the surfa
e. This result 
anbe used in the framework of the immersed boundary method sin
e the surfa
eand terms appearing in (1) 
an be 
omputed with a parametrization. However,when the surfa
e is des
ribed by a level set fun
tion, a parametrization is notknown.In the se
ond method, the surfa
e is represented by the zero level set of afun
tion φ and the Willmore energy is written J (φ) =

∫

{φ=0}

H(φ)2 ds. Thederivative with respe
t to φ is tough to handle sin
e the domain of integrationdepends itself on φ. To over
ome this di�
ulty a volumi
 approximation of
J (φ) is introdu
ed and the result is the following [20℄
J ′(φ)(δ) =

∫

{φ=0}

1

|∇φ| div
(

−H(φ)2
∇φ

|∇φ| +
2

|∇φ|P∇φ⊥(∇(|∇φ|H(φ)))

)

δ ds,(2)where P∇φ⊥ is the proje
tor on the plane whi
h is orthogonal to ∇φ. Thisresult 
an be used in an Eulerian framework sin
e it only involves quantitiesdepending on the level set fun
tion φ.The main goal of the paper is to investigate the equivalen
e of the shapederivatives (1) and (2). This is not straightforward sin
e the two results use dif-ferent representations of a surfa
e and di�erent di�erential operators. Moreover,the formula (2) depends a priori on φ outside the surfa
e {φ = 0} through |∇φ|,while (1) depends on both 
urvature and Lapla
e-Beltrami operator, whi
h areindependent of the parametrization. The equivalen
e of the approa
hes willprove that J ′(φ) is in fa
t independent of the 
hoi
e of φ outside {φ = 0}.Moreover, writing (2) under the form (1) is also relevant for numeri
al purpose.Indeed, we 
an fo
us separately on the approximation of the 
urvature and theLapla
e-Beltrami operator.The se
ond goal of the paper is to use the formula (1) in the level set frame-work to study the relaxation of vesi
les towards their equilibrium shapes. Theseshapes 
an be determined by minimizing the bending energy with two 
on-straints: �xed area (inextensible membrane) and �xed volume (in
ompressible�uid). The numeri
al methods used to solve this problem in the literature relyon the �nite elements method on surfa
es [3, 2℄ and the phase �eld methodsRR n° 7539



Willmore fun
tional 5[23, 24℄. It is worth mentioning the related works [12, 11, 13℄, whi
h fo
us onthe minimization of the bending energy without 
onstraints. Our approa
h is to
onsider an Eulerian model where an elasti
 membrane is immersed in a in
om-pressible vis
ous �uid. Taking the hydrodynami
s into a

ount is ne
essary inorder to be able to study the dynami
s of these vesi
les in a �owing �uid. Thevolume of the vesi
le is naturally 
onstraint with the in
ompressibility of the�uid while the area of the vesi
le is 
onstraint with a sti� elasti
 
oe�
ient. Weobtain various equilibrium shapes in three dimensions depending on a volumeratio, whi
h qualitatively agrees with the literature.The paper is organized as follow. The �rst se
tion is devoted to the intro-du
tion of the tools of di�erential geometry. The se
ond se
tion deals with theshape derivative of the Willmore energy in the level set framework. The thirdse
tion is devoted to numeri
al simulations of equilibrium shapes of vesi
les inthree dimensions. A simple proof of the Stokes formula for surfa
es as well as adi�erent shape derivative method for the Willmore fun
tional will be presentedin the Appendix.1 PreliminariesThe ve
tors and the matri
es will be written in the 
anoni
al orthonormal basisof R3. Let a,b be two ve
tors of R3. We denote by a ·b =
∑

i aibi the Eu
lideans
alar produ
t, |a| the asso
iated norm and [a⊗ b]ij = aibj the outer produ
t.Let A be a matrix of M3(R). We denote by Tr(A), det(A) the usual tra
e anddeterminant. We denote also by Tr(Cof(A)) = 1

2
(Tr(A)2 − Tr(A2)) the tra
eof the 
omatrix. We denote by ∇, div and ∆ the usual Eu
lidean gradient,divergen
e and Lapla
e operators, respe
tively.1.1 Level set methodThroughout the paper, Γ denotes a smooth 
onne
ted, oriented and 
losed sur-fa
e of R3. This surfa
e is represented impli
itly as the zero level set [21, 25℄ ofa smooth s
alar fun
tion φ

Γ = {x ∈ R
3 / φ(x) = 0}.Assume that |∇φ| > 0 in a neighborhood V of {φ = 0}. The unitary normalis then well de�ned on V and given by

n(φ) =
∇φ

|∇φ| . (3)The dependen
e on φ will be dropped in the next se
tions of the paper. Wedenote by U the domain en
losed by the surfa
e Γ. We 
hoose the 
onventionthat φ < 0 in U and φ > 0 outside U so that n is the outward normal. Thegradient of the relation |n|2 = 1 writes
[∇n]Tn = 0, ([∇n]n) · n = 0. (4)RR n° 7539



Willmore fun
tional 61.2 Tangential operatorsIt is natural to de�ne di�erential operators on surfa
es to study the variation ofs
alar and ve
tor �elds on Γ. When Γ is represented expli
itly by a parametriza-tion, these di�erential operators are naturally de�ned with the metri
 indu
edby the parametrization [5, 6, 14℄. In the 
ase of an impli
it representation of Γwith a level set fun
tion, the s
alar and ve
tor �elds are extended to a neighbor-hood V of Γ. The di�erential operators on surfa
es named tangential operatorsare then de�ned as the proje
tion on the tangent plane of the 
lassi
al Eu
lideandi�erential operators [18, 1, 26, 9, 15℄. Let f and v be smooth s
alar and ve
tor�elds de�ned in V ⊂ R3. Then, the tangential operators are de�ned by
∇Γf = ∇f − (∇f · n)n,
∇Γv = ∇v − [∇v](n ⊗ n),

divΓ(v) = Tr(∇Γv) = div(v)− ([∇v]n) · n,
∆Γf = divΓ(∇Γf).These de�nitions are independent of the extension of the quantities outsidethe surfa
e Γ sin
e the usual di�erential operators are proje
ted on the tangentplane of Γ. The following identities hold

∇Γφ = 0, (5)
∇Γf · n = 0, (6)

divΓ(fv) = f divΓ(v) +∇Γf · v, (7)
∇Γf · ∇g = ∇f · ∇Γg = ∇Γf · ∇Γg, (8)

[∇n] n =
∇Γ|∇φ|
|∇φ| . (9)These properties are simple 
onsequen
es of the de�nitions of the tangentialoperators and (3). We have also the relations

([∇ (∇Γf)]n) · n = −∇f · ([∇n]n), (10)
([∇ ([∇n] n)]n) · n = −([∇n] n) · ([∇n] n). (11)Taking gradient of equality (6) and multiplying by n leads to (10). Takingthe gradient of (4) and multiply the result by n gives (11).Let f, g be two smooth fun
tions and v a smooth ve
tor �eld. Let Q asmooth open set of R3 and ∂Q its boundary (whi
h is a 
losed surfa
e of R3).For the 
lassi
al Eu
lidean operators, the Stokes formula for volumes writes

∫

Q

div(v)f dx = −
∫

Q

v · ∇f dx+

∫

∂Q

fv · n ds. (12)For tangential operators, we have the following Stokes formula for 
losedsurfa
es
∫

Γ

divΓ(v)f ds = −
∫

Γ

v · ∇Γf ds+

∫

Γ

Hfv · n ds. (13)RR n° 7539



Willmore fun
tional 7Note that there is an extra term depending on the mean 
urvature H if vhas a 
omponent in the normal dire
tion. We provide a new simple proof of thisformula in the Appendix 1. Taking v = ∇Γg in this formula and using (5) weget
∫

Γ

f∆Γg ds =

∫

Γ

g∆Γf ds. (14)1.3 CurvatureIntuitively, the 
urvature represents the amount by whi
h a surfa
e deviatesfrom being a plane. Let us introdu
e the tensor [∇Γn], the so 
alled extendedWirtinger map [15℄. This tensor has the eigenve
tor n asso
iated to the eigen-value 0 sin
e [∇Γn]n = 0. The remaining eigenvalues are the prin
ipal 
ur-vatures denoted by κ1 and κ2. The mean and Gaussian 
urvatures are thende�ned by
H = κ1 + κ2 = Tr([∇Γn]) = divΓ(n), G = κ1κ2 = Tr(Cof([∇Γn])). (15)Sin
e n is extended by (3), we obtain with (4)

H = Tr([∇n]) = div(n), G = Tr(Cof([∇n])). (16)The identity Tr([∇n]2) = κ2
1 + κ2

2 = H2 − 2G and (16) prove the followingrelation
div([∇n] n) = ∇H · n+H2 − 2G. (17)2 Shape derivative of the Willmore fun
tionalThe aim of this se
tion is to 
ompute the shape derivative of the Willmorefun
tional

J(Γ) =

∫

Γ

H(Γ)2 ds.The original method of Willmore where the surfa
e is represented by aparametrization is presented in se
tion 2.1. The se
tion 2.2 deals with the shapederivative of a general fun
tional in the level set framework with the volumi
approa
h. In the se
tion 2.3, this method is applied for the Willmore fun
tionaland the equivalen
e of the level set and the parametri
 approa
hes is proved.2.1 Shape optimization with a parametrizationIn the method des
ribed in [28℄, the surfa
e is parametrized lo
ally byX : U −→
R3 with parameter domain U ⊂ R2. We denote by gij = X,i ·X,j the 
oe�
ientsof the �rst fundamental form, g its determinant and gij the 
oe�
ients of itsinverse. The normal is de�ned by n =

X,1 ∧X,2

|X,1 ∧X,2|
and the se
ond fundamentalRR n° 7539



Willmore fun
tional 8form by hij = X,ij · n. The mean 
urvature is then given by H = −
∑

i,j

gijhij .The Willmore energy is then
J(X) =

∫

U

(H(u1, u2))
2
√

g(u1, u2) du1du2.In order to perform the shape derivative, a deformation in the normal dire
-tion is introdu
ed with the asso
iate parametrization X(t) = X + tδn where δis a s
alar fun
tion. This 
hoi
e is justi�ed by the fa
t that a deformation inthe tangential dire
tion has no in�uen
e on the shape derivative. The result-ing sequen
e of perturbed surfa
es is denoted by (Γt)t>0 where Γ0 = Γ. Usingdi�erential 
al
ulus J′ writes [28℄
J
′(X)(δ) :=

d

dt

∣

∣

∣

∣

t=0

J(X+ tδn) = −
∫

Γ

(

2∆ΓH +H(H2 − 4G)
)

δ ds, (18)where ∆ΓH =
1√
g

∑

i,j

(
√
ggijH,j),i is the Lapla
e Beltrami operator on thesurfa
e Γ. This operator and the 
urvature involved in (18) 
an be 
omputedwith a parametrization of the surfa
e. However, this formula 
annot be useddire
tly in a level set framework sin
e a parametrization is not known.2.2 Shape optimization in the level set frameworkIn an Eulerian framework, the surfa
e Γ is represented impli
itly as the zerolevel set of a fun
tion φ. We 
onsider the generalized fun
tional
I(φ) =

∫

{φ=0}

f [φ] ds, (19)where f [φ] denotes a fun
tion depending on the spatial derivatives of φ. Forinstan
e, in the 
ase of the Willmore fun
tional we have f [φ] = div

( ∇φ

|∇φ|

)2.To perform the shape derivative, we deform the surfa
e assuming that φ satis�esthe transport equation
φt + u · ∇φ = 0, (20)where u is a ve
tor �eld. We denote then Γt = {x ∈ R3 / φ(x, t) = 0} and

Γ0 = Γ. The shape derivative is then given by d

dt

∣

∣

t=0
I(φ) denoted by (I(φ))t.The major di�
ulty to 
ompute (I(φ))t relies in the fa
t that the domain ofintegration is a surfa
e whi
h depends on time. To over
ome this di�
ulty, anidea introdu
ed in [8℄ is to approximate the surfa
e integral on a �xed domainof R3 with the following lemma.Lemma : Let be ζ a smooth positive 
ut-o� fun
tion with support in [−1, 1]and ∫

R
ζ = 1. Assume that φ is a smooth fun
tion with |∇φ| > 0 in a neighbor-hood of {φ = 0}. LetQ be a an open set of R3 su
h that {x ∈ R3/φ(x) ≤ 1} ⊂ Q,RR n° 7539



Willmore fun
tional 9
0 < ε < 1 and f [φ] a smooth s
alar fun
tion whi
h depends on φ and its deriva-tives. Then

Iε(φ) :=
∫

Q

f [φ]|∇φ|1
ε
ζ

(

φ

ε

)

dx −→
ε−→0

∫

{φ=0}

f [φ] ds. (21)A proof of this lemma involves the 
o-area formula and is given in [8℄. Wenow use this lemma to give a simple proof of the shape derivative (I(φ))t.The derivative of Iε(φ) with respe
t to t gives three terms
(Iε(φ))t =

∫

Q

(f [φ])t |∇φ|1
ε
ζ

(

φ

ε

)

dx+

∫

Q

f [φ]
1

ε
ζ

(

φ

ε

) ∇φ

|∇φ| · ∇φt dx

+

∫

Q

f [φ]|∇φ| 1
ε2

ζ′
(

φ

ε

)

φt dx. (∗)The Stokes formula for volumes (12) gives
∫

Q

f [φ]
1

ε
ζ

(

φ

ε

) ∇φ

|∇φ| · ∇φt dx = −
∫

Q

div

(

f [φ]
∇φ

|∇φ|

)

1

ε
ζ

(

φ

ε

)

φt dx

−
∫

Q

f [φ]
∇φ

|∇φ| · ∇φ
1

ε2
ζ′
(

φ

ε

)

φt dx, (∗∗)sin
e the term on ∂Q vanishes. Indeed, we have ζ
(

φ
ε

)

= 0 for |φ| > εbe
ause the support of ζ is in [−1, 1]. As {x ∈ R3/φ(x) ≤ 1} ⊂ Q and ε < 1 weget ζ (φ
ε

)

= 0 on ∂Q. Therefore, inserting (∗∗) in (∗) and using the transportequation (20) leads to
(Iε(φ))t =

∫

Q

(

(f [φ])t + div (f [φ]n)u · n
)

|∇φ|1
ε
ζ

(

φ

ε

)

dx. (22)Note that u · n appears in (29). Hen
e, the tangential 
omponent of u hasno in�uen
e in the shape derivative.The following se
tion is devoted to the 
omputation of the shape derivativeof the Willmore fun
tional with the volumi
 approa
h. We introdu
e the s
alarfun
tion A : R −→ R and the generalized Willmore fun
tional1
J (φ) =

∫

{φ=0}

A(H(φ)) ds. (23)2.3 Shape derivative with a volumi
 approximationWe 
onsider the volumi
 approximation (21) of the Willmore fun
tional (23)
Jε(φ) =

∫

Q

A(H(φ))|∇φ|1
ε
ζ

(

φ

ε

)

dx.1The 
hoi
e A(r) = (r − c0)2 is widely used in the appli
ations (c0 is the spontaneous
urvature).RR n° 7539



Willmore fun
tional 10We apply the general volumi
 approximation formula (22) with f = A(H)to obtain
(Jε(φ))t =

∫

Q

(

A′(H)Ht + div (A(H)n) u · n
)

|∇φ|1
ε
ζ

(

φ

ε

)

dx.As the mean 
urvature depends on the variation of the normal, we start by
omputing the derivative of the normal. We get from (20) and (9)
nt =

( ∇φ

|∇φ|

)

t

=
∇Γφt

|∇φ| = −∇Γ(u · n)− ([∇n] n)u · n. (24)As before there will be no 
ontribution on ∂Q in the Stokes formula for vol-umes sin
e ζ
(

φ
ε

)

= 0 on ∂Q.We obtain with the derivative of the normal (24)
(Jε(φ))t =

∫

Q

(

A′(H) div

(∇Γφt

|∇φ|

)

+ div (A(H)n)u · n
)

|∇φ|1
ε
ζ

(

φ

ε

)

dx.(25)The �rst term denoted by (J1,ε(φ))t. The Stokes formula for volumes (12)and the symmetry relation (8) are used to obtain
(J1,ε(φ))t = −

∫

Q

∇Γφt

|∇φ| · ∇
(

A′(H)|∇φ|1
ε
ζ

(

φ

ε

))

dx

= −
∫

Q

∇φt

|∇φ| · ∇Γ

(

A′(H)|∇φ|1
ε
ζ

(

φ

ε

))

dx.Using (5), we have the relation ∇Γ

(

1

ε
ζ

(

φ

ε

))

=
1

ε2
ζ′
(

φ

ε

)

∇Γφ = 0. Thisproperty is used to develop the term involving ∇Γ and a Stokes formula forvolumes gives
(J1,ε(φ))t = −

∫

Q

∇φt

|∇φ| · ∇Γ (A′(H)|∇φ|) 1
ε
ζ

(

φ

ε

)

dx

=

∫

Q

div

(

1

|∇φ|∇Γ (A
′(H)|∇φ|))1

ε
ζ

(

φ

ε

))

φt dx.With the relation (6), we get
∇Γ(A

′(H)|∇φ|) · ∇
(

1

ε
ζ

(

φ

ε

))

=
1

ε2
ζ′
(

φ

ε

)

|∇φ|∇Γ(A
′(H)|∇φ|) · n = 0.We use this property to develop the divergen
e term. Sin
e φt = −|∇φ|u · nwith the transport equation (20), we get

(Jε(φ))t =

∫

Q

div

(

A(H)n− 1

|∇φ|∇Γ (A
′(H)|∇φ|))

)

u · n|∇φ|1
ε
ζ

(

φ

ε

)

dx.RR n° 7539



Willmore fun
tional 11At this point we �nd the result (2) when ε goes to 0 with (21) and δ =
−|∇φ|u · n. This formula has the drawba
k to depend on φ outside {φ = 0}.We go further to obtain a more intrinsi
 result depending only on 
urvature andtangential operators. Following (9) we get

div

(

1

|∇φ|∇Γ(A
′(H)|∇φ|)

)

= div(A′(H)[∇n] n) + div(∇Γ(A
′(H))).For the �rst term we use (17)

div(A′(H)[∇n] n) = A′(H) (∇H · n+H2 − 2G) +∇(A′(H)) · ([∇n] n).For the se
ond term we use (10)
div(∇Γ(A

′(H))) = divΓ(∇Γ(A
′(H))) + ([∇(∇Γ(A

′(H)))] n) · n
= ∆Γ(A

′(H))−∇(A′(H)) · ([∇n] n).Combining these expressions gives
div

(

1

|∇φ|∇Γ(A
′(H)|∇φ|)

)

= ∆Γ(A
′(H)) +A′(H) (∇H · n+H2 − 2G).A

ording to (16), we have the relation

div(A(H)n) = A(H)H +A′(H)∇H · n,and using the transport equation (20), we �nally get
(Jε(φ))t =

∫

Q

(

A(H)H −∆Γ(A
′(H))−A′(H)(H2 − 2G)

)

u · n|∇φ|1
ε
ζ

(

φ

ε

)

dx.(26)When ε goes to 0, we obtain with the lemma (21)
(J (φ))t =

∫

{φ=0}

(

A(H)H −∆Γ(A
′(H)) −A′(H)(H2 − 2G)

)

u · n ds. (27)This result does not depends on φ outside {φ = 0} be
ause it involves only
urvature and tangential operators. We propose in the Appendix 2 anotherproof of this result based on dire
t 
omputations on the surfa
e. In the parti
-ular 
ase A(r) = r2 we �nd the result (18) obtained with a parametrization ofthe surfa
e. This result allow us to 
onstru
t more e�
ients numeri
al s
hemesto approximate the bending for
e. Indeed, we 
an fo
us separately on the ap-proximation of the 
urvature and the Lapla
e-Beltrami operator.
RR n° 7539



Willmore fun
tional 123 Numeri
al simulations of equilibrium shapesVesi
les are 
losed membranes of lipids suspended in an aqueous solution. Themembrane 
an be 
onsidered as a two-dimensional �uid sin
e there is no stressresponse to shear deformation. The membrane is also nearly inextensible andthus the equilibrium shapes of vesi
les is driven by the bending energy. Animportant ingredient is the volume ratio given by
τ =

V

4

3
π
(

S
4π

)
3

2

, (28)where V is the volume and S the area of the vesi
le. This parameter mea-sures the ratio between the volume of the vesi
le and the volume of the spherewith the same area.Our approa
h is to 
onsider an Eulerian �uid-stru
ture model where anelasti
 membrane is immersed in an in
ompressible vis
ous �uid. Two energieswill be introdu
ed to take the 
hange of area and the bending into a

ount. Thevolume of the vesi
le is naturally 
onstraint with the in
ompressibility of the�uid while the area of the vesi
le is 
onstraint with a sti� elasti
 
oe�
ient.3.1 Eulerian modelWe 
onsider the Eulerian �uid-stru
ture model introdu
ed in [7, 8℄. Let Q be adomain 
ontaining an in
ompressible �uid where the vesi
le is immersed. Themotion of the interfa
e is 
aptured by a level set fun
tion φ whi
h is adve
tedby the �uid velo
ity. A part of the elasti
ity, the 
hange of area, is re
orded in
|∇φ| and we introdu
e the asso
iated regularized energy

Ee(φ) =
∫

Q

E(|∇φ|)1
ε
ζ

(

φ

ε

)

dx,where ζ is a 
ut-o� fun
tion used to spread the interfa
e near {φ = 0}. Weuse in our simulations the following expression ζ(r) = 1

2
(1 + cos(πr)) on [−1, 1]and ζ(r) = 0 elsewhere. The parameter ε is equal to 1.5∆x in the simulationswhere ∆x is the grid size. The 
onstitutive law r 7→ E′(r) des
ribe the responseof the membrane to the 
hange of area. We use in our simulations the linearlaw E′(r) = λ(r − 1) where λ is elasti
 modulus. The asso
iated for
e is givenby

Fe(φ) =
(

∇Γ(E
′(|∇φ|)) − E′(|∇φ|)H(φ)n(φ)

)

|∇φ|1
ε
ζ

(

φ

ε

)

.To take the bending energy into a

ount, we introdu
e the regularized energy
Ec(φ) =

∫

Q

A(H(φ))|∇φ|1
ε
ζ

(

φ

ε

)

dx,where A is a 
onstitutive law for the bending energy. We use in our sim-ulations the Helfri
h law A(r) = αr2 where α is the bending modulus. Theprin
iple of virtual works 
laims that (Ec(φ))t = −
∫

Q

Fc(φ) · u dx. Using theresult (26), we getRR n° 7539
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Fc(φ) = α

(

2∆Γ(H(φ)) +H(φ)(H(φ)2 − 4G(φ))
)

|∇φ|1
ε
ζ

(

φ

ε

)

n(φ).The model is then given by the in
ompressible Navier-Stokes equations withthe bending and elasti
 for
es as a sour
e term 
oupled with a transport equationfor the level set. Let L, U , ρref and µref represent the respe
tive 
hara
teristi
length, velo
ity, density and vis
osity s
ales. The dimensionless equations writes






Re(ut + (u · ∇)u)−∆u+∇p = 1

We

Fe(φ) +
1

Wc

Fc(φ),

φt + u · ∇φ = 0,
div(u) = 0,where

Re =
LUρref
µref

, We =
µrefU

λ
, Wc =

µrefUL2

α
,are respe
tively the Reynolds, Weissenberg and bending numbers. In thismodel, the �uid vis
osity and the density are the same in the two �uids. More-over we have negle
ted the mass of the membrane. These equations are 
om-pleted with appropriate initial and boundary 
onditions.The transport equation is dis
retized with �fth order WENO s
heme in spa
e[16℄ and expli
it Euler s
heme in time. A proje
tion method is used to de
ou-pled the pressure and the velo
ity in time in the Navier-Stokes equations. Theresolution of the Poisson equation for the pressure is performed with FFT. Animpli
it s
heme in time is used for the di�usion to avoid a restri
tive stability
ondition on the time step for low Reynolds numbers. The others terms aredis
retized in spa
e with 
lassi
al 
entered s
hemes of order two. Sin
e the levelset fun
tion is used through its gradient to 
ompute the stret
hing, we do notperform the redistan
ing. Instead, we use the renormalization φ

|∇φ| to measurethe distan
e to interfa
e. Thus, |∇φ| 1
ε
ζ
(

φ
ε

) is repla
ed by 1

ε
ζ
(

φ
|∇φ|ε

). Thisapproa
h was proved in [8℄ to be e�
ient from the point of view of both volume
onservation and interfa
e for
e 
al
ulations.3.2 Numeri
al resultsThe domain Q = [0, 1]3 is dis
retized on a Cartesian mesh with 64 points inea
h dire
tion. We 
hoose Re = 0.01 to reprodu
e the typi
al regime of the �ow, We = 0.0001 to 
onstraint the 
hange of area and Wc = 0.3. We impose zerovelo
ity for the initial and boundary 
onditions. We 
onsider the relaxation oftwo initial shapes with di�erent volume ratio (28). In the following simulationswe represent the evolution of the zero level set of φ and sli
es of the pressure atthe 
enter of the domain.In the �rst simulation, we 
hoose an ellipsoid represented by the level setfun
tion φ(x, y, z) =
(

x−0.5
a

)2
+

(

y−0.5
b

)2

+
(

z−0.5
c

)2 with the parameters a =RR n° 7539
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0.35, b = 0.35, c = 0.1. We perform initially a redistan
ing on this level set fun
-tion. The asso
iated volume ratio is τ = 0.6. The results are presented on Fig 1.

Figure 1: Evolution of the ellipsoid at time 0, 0.5, 1, 1.5, 2 and 4.5.In the se
ond simulation, we 
hoose a "dumbbell" represented by the levelset fun
tion φ(x, y, z) = min(φ1(x, y, z), φ2(x, y, z), φ3(x, y, z)) with
φ1(x, y, z) =

√

x2 + y2 + (z + α)2)− r,

φ2(x, y, z) =
√

x2 + y2 + (z − α)2)− r,

φ3(x, y, z) = max(|z| − α,
√

x2 + y2 − w).and the parameters α = 0.22, w = 0.13, r = 0.18. The volume ratio is
τ = 0.77. We perform initially a redistan
ing on this level set fun
tion. Theresults are presented on Fig 2.
RR n° 7539
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Figure 2: Evolution of the dumbbell at time 0, 0.05, 0.1, 0.15, 0.2 and 2.Note that the initial shapes are 
lose to the optimal shapes in order to avoidlo
al minimums. These shapes qualitatively agree with the results presented inthe literature [3, 2, 23, 24℄.4 Con
lusion and forth
oming worksIn this paper, we have introdu
ed a method to 
ompute the shape derivativeof the Willmore fun
tional in the level set framework. This approa
h relies onRR n° 7539



Willmore fun
tional 16the approximation of surfa
e integrals on a �xed domain and allow to use thestandard di�erential 
al
ulus in R3. We have proved that this method leads toa geometri
al result involving the 
urvature and the Lapla
e-Beltrami opera-tor. The equivalen
e with the method originally introdu
ed by Willmore, wherethe surfa
e is represented by a parametrization, is established. The level setbending for
e asso
iated to the Willmore energy is then added on an Eulerian�uid-stru
ture model where an elasti
 membrane is immersed in a vis
ous �uid.The dis
retization on a �xed Cartesian mesh of the level set fun
tion allows toover
ome the di�
ulties inherent to a Lagrangian tra
king of the interfa
e, asfor instan
e the treatment of large deformations. We have presented some nu-meri
al simulations related to the relaxation of vesi
les toward their equilibriumshapes in three dimensions. The various shapes obtained are in good agreementwith the results presented in the literature. These numeri
al results are a �rststep to understand the behavior of vesi
les in the blood �ow. A ongoing work
on
ern the simulation of dynami
s of vesi
les in a shear �ow.5 Appendix 1: Stokes formula for surfa
esThe aim of this �rst Appendix is to present a new proof of the Stokes formulafor surfa
es based on the volumi
 approximation of fun
tionals.Let Q be an open set of R3, f, g smooth fun
tions and v,w smooth ve
tor�elds. Assume that w vanishes on ∂Q. As a result, a Stokes formula for volumesand the de�nition of tangential divergen
e give
∫

Q

divΓ(w) dx =

∫

Q

div(w)− [∇w] : n⊗ n dx =

∫

Q

div(n⊗ n) ·w dx.Taking w = v|∇φ| 1
ε
ζ
(

φ
ε

) (whi
h vanishes on ∂Q) and using the properties(7) and (16), we obtain
∫

Q

divΓ(v)|∇φ|1
ε
ζ

(

φ

ε

)

dx = −
∫

Q

∇Γ

(

|∇φ|1
ε
ζ

(

φ

ε

))

· v dx

+

∫

Q

(

Hn+ [∇n] n
)

· v|∇φ|1
ε
ζ

(

φ

ε

)

dxUsing (5) and (9), we have
∇Γ

(

|∇φ|1
ε
ζ

(

φ

ε

))

= ∇Γ (|∇φ|) 1
ε
ζ

(

φ

ε

)

= [∇n] n|∇φ|1
ε
ζ

(

φ

ε

)Therefore
∫

Q

divΓ(v) |∇φ|1
ε
ζ

(

φ

ε

)

dx =

∫

Q

H v · n |∇φ|1
ε
ζ

(

φ

ε

)

dx.When ε goes to 0 we obtain with the lemma (21)RR n° 7539



Willmore fun
tional 17
∫

Γ

divΓ(v) ds =

∫

Γ

H v · n ds.Repla
e v by fv gives with (7)
∫

Γ

f divΓ(v) ds = −
∫

Γ

∇Γf · v ds+

∫

Γ

fHv · n ds.6 Appendix 2 : Another proof of the shape deriva-tive of the Willmore fun
tionalThis se
ond Appendix is devoted to a di�erent proof of the shape derivativeof the Willmore fun
tional. The major di�eren
e with the volumi
 approa
h isthat the 
omputations are performed dire
tly on the surfa
e {φ = 0}.The starting point is the volumi
 shape derivative (22)
(Iε(φ))t =

∫

Q

(

(f [φ])t + div (f [φ]n)u · n
)

|∇φ|1
ε
ζ

(

φ

ε

)

dx.When ε goes to 0 we get with the lemma (21)
(I(φ))t =

∫

{φ=0}

(f [φ])t + div (f [φ]n) u · n ds. (29)We obtain the general shape derivative formula for surfa
e integral whi
h
an be found in [1, 18℄. We 
onsider the Willmore fun
tional
J (φ) =

∫

{φ=0}

A(H(φ)) ds.We apply (29) with f = A(H) to obtain
(J (φ))t =

∫

{φ=0}

A′(H)Ht + div(A(H)n) u · n ds. (30)We 
hoose the de�nition H = divΓ(n) of the mean 
urvature (15) in orderto introdu
e the tangential operators. Then a Stokes formula for surfa
es (14)whi
h involves tangential operators will be used to get the �nal result.We have with the de�nition of tangential operators and (4)
Ht = (div(n))t − (([∇n] n) · n)t,

= div(nt)− ([∇nt] n) · n− ([∇n] nt) · n− ([∇n] n) · nt,

= divΓ(nt)− ([∇n] n) · nt.Inserting (24) in the previous expression and developing the tangential di-vergen
e with (7) gives
Ht = −∆Γ(u · n)− divΓ([∇n] n) u · n+ ([∇n] n) · ([∇n] n) u · n.RR n° 7539



Willmore fun
tional 18Using the relations (17) and (11) for the se
ond term gives
Ht = −∆Γ(u · n)− (∇H · n+H2 − 2G) u · n.We have also with (16) the relation

div(A(H)n) = A(H)H +A′(H)∇H · n.Using the Stokes formula for surfa
es (14) we �nally obtain
(J (φ))t =

∫

{φ=0}

(

A(H)H −∆Γ(A
′(H)) −A′(H)(H2 − 2G)

)

u · n ds. (31)We obtain the same shape derivative (27) obtained with the volumi
 app-proa
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