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ABSTRACT

This paper deals with the localization of multiple sources

from two-channel mixtures recorded in a reverberant envi-

ronment. We introduce new angular spectrum-based methods

relying on the signal-to-noise ratio (SNR) to estimate the

time difference of arrival (TDOA) of each source. We pro-

pose and compare five ways of estimating the SNR in each

time-frequency point and in each direction, using beamform-

ing techniques and statistical models. Large-scale evaluation

considering a high number of situations shows the effective-

ness of the proposed approach compared to state-of-the-art

angular spectrum-based techniques.

Index Terms—Multiple source localization, TDOA esti-

mation, signal-to-noise ratio, angular spectrum

1. INTRODUCTION

Recorded signals are often a mixture of several sound sources

such as speech, music or noise. Source localization is the task

of estimating the direction of arrival (DOA) of each source.

It has potential applications in many domains such as video-

conferencing, surveillance, or blind source separation.

This problem is particularly difficult in the two-channel

under-determined case, when three or more sources must

be localized from only two sensors. Localization is often

achieved by finding time difference of arrival (TDOA) be-

tween channels for each source [5, 9]. Usually, this problem is

addressed using the short-time Fourier transform (STFT). Let

X(t, f) = [X1(t, f),X2(t, f)]T and Sn(t, f), n = 1, . . . , N
be respectively the STFT of the observed signals and the

n-th source signal in time frame t and frequency bin f . The
mixture can be modeled as the sum of a direct part and a

reverberated part B(t, f):

X(t, f) =

N∑

n=1

dτn
(f)Sn(t, f) + B(t, f) (1)

where τn is the TDOA of source n and

dτ (f) = [1, e−2iπfτ ]T (2)
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is the steering vector associated with TDOA τ . Each TDOA

thus translates into an expected phase difference 2πfτ at each

frequency f .
Three different approaches have been proposed in the

literature. A first one [11, 3, 1] is to convert the observed

phase difference into a TDOA in each time-frequency bin

and to build a histogram of the TDOAs whose peaks point

to the sources. This approach is restricted to small micro-

phone spacings for which little or no spatial aliasing occurs.

A second possibility [4, 8] is to alternately cluster the time-

frequency bins into sources and update the source TDOAs

according to the observed phase differences. It does not suf-

fer from spatial aliasing but necessitates an initial guess of

the source TDOAs due to local optima. A third approach

[5, 9, 7] is to build a function of TDOA that we call angular

spectrum, whose peak(s) indicate the TDOA(s) compatible

with the observed phase difference in each time-frequency

bin, and to sum this function over all bins. In the following,

we consider the latter approach which is applicable to any

microphone spacing and does not necessitate any prior guess

of the source TDOAs.

A limitation of current angular spectrum-based methods

is that they essentially assign the same weight to all observed

phase differences, whether they result from the direct sound

of single source or from a mixture of direct and reverberated

sound and/or several sources1. In [1], a signal-to-noise ratio

(SNR)-like confidence measure was proposed to weight the

information provided in each time-frequency bin in the spe-

cific context of histogram-based localization in instantaneous

mixtures and was shown to greatly improve localization per-

formance.

In this paper, we propose to use the SNR in each time-

frequency point to construct an angular spectrum and define

five ways of estimating the SNR in a convolutive mixture us-

ing beamforming techniques and statistical models. In section

2, we describe the five proposed SNR-based angular spectra.

We evaluate the performance of the proposed approaches and

compare them to existing angular spectrum-based methods in

section 3. Finally, we conclude in section 4.

1MUSIC [9] attenuates the effect or reverberation or interfering sources

by denoising in the parameter domain but the output spectrum does not de-

pend on the resulting signal-to-noise ratio



2. SNR-BASED ANGULAR SPECTRA

In a given time-frequency bin (t, f), we define the SNR(t, f, τ)
associated with TDOA τ as the ratio between the signal power

Eτ in this direction and the noise powerEb (power in all other

directions). The SNR is then supposed to take large values

in the direction of a given source in the time-frequency bins

where this source is predominant. We propose to build an

angular spectrum by summing the estimated SNRs over all

time-frequency bins and all TDOAs:

Σ(τ) =
∑

(t,f)

SNR(t, f, τ) (3)

The source TDOAs are then estimated by selecting the val-

ues of τ corresponding to the J highest peaks of Σ(τ). The
choice of J leads to a trade-off between recall and precision ,

as described in section 3.

In order to estimate SNR(t, f, τ), we propose three differ-
ent approaches. The first one, that we call a posteriori, uses

beamforming to estimate the source power and considers the

residual power as noise. The second one, that we call a priori,

jointly estimates the source and noise powers in the maximum

likelihood (ML) sense, under a diffuse noise model. We then

combine these two models to define a third approach based

on frequency weighting of the a posteriori SNR.

2.1. Estimation of a posteriori SNR

From now on, we consider a single time-frequency bin (t, f)
and omit its indices for simplicity. The power associated with

TDOA τ can be estimated as the power of the output of a

Delay-and-Sum (DS) beamformer or a Minimum Variance

Distortionless Response (MVDR) beamformer, respectively

given by [6]

E(DS)
τ =

dτ
H
Φ̂xxdτ

4
(4)

E(MVDR)
τ = (dτ

H
Φ̂

−1
xx

dτ )−1 (5)

where Φ̂xx denotes the empirical mixture covariance matrix

that can be computed as described in [2]. We write Eb =
EX − Eτ where EX = 1

2 tr(Φ̂xx) represent the total power.
We obtain two ways of estimating the SNR for TDOA τ

SNRDS =
dτ

H
Φ̂xxdτ

2tr(Φ̂xx) − dτ
H
Φ̂xxdτ

(6)

SNRMVDR =
(dτ

H
Φ̂

−1
xx

dτ )−1

1
2 tr(Φ̂xx) − (dτ

H
Φ̂

−1
xxdτ )−1

(7)

Figures 1 (A) and (B) show the angular spectra obtained re-

spectively with SNRDS and SNRMVDR . As compared to

the DS beamformer, MVDR beamformer appears to provide

better noise elimination and enhances the peaks.

2.2. Estimation of a priori SNR by ML under a diffuse

noise model.

In the a posteriori approach, the SNR is generally overesti-

mated at low frequencies. Indeed, the observed phase differ-

ences are small so that Φxx becomes similar to dτdτ
T for

all τ . This can be addressed by modeling both the source and

the noise as random variables. We assume that in each time-

frequency point, one source S of TDOA τ is predominant,

and that S and noise B follow independent zero-mean Gaus-

sian distributions. The mixture X = dτS + B then follows a

zero-mean Gaussian distribution with covariance matrix

Φxx = vsdτdτ
H + vbΨ (8)

where vs et vb represent respectively the source variance and

the noise variance, andΨ is the covariance matrix of a diffuse

noise [4, 2]

Ψ =

(
1 sinc(2πf d

c
)

sinc(2πf d
c
) 1

)
(9)

where d is the distance between the two microphones, c is the

soundspeed and sinc(.) = sin(.)
(.) . We estimate vs and vb in the

ML sense using the closed form algorithm in [2]

(
vs

vb

)
= (diag(Λ1) diag(Λ2))

−1
diag(A−1

Φ̂xx(AH)−1)

(10)

where diag(.) denotes the column vector of diagonal entries

of a matrix, A is the matrix whose columns are the eigen-

vectors of dτdτ
H
Ψ

−1, and Λ1, Λ2 are equal respectively to

A
−1

dτdτ
H(AH)−1 and A

−1
Ψ(AH)−1. Non-negativity is

imposed by setting vs to zero and vb to
1
2 tr(Ψ−1

Φ̂xx) when
vb or vs resulting from (10) is negative [2]. We then compute

the SNR by:

SNRAPR =
vs

vb

(11)

This method effectively addresses the SNR overestimation

problem at low frequencies but results in slightly wider peaks,

so that the resulting spectrum is not much different (see fig-

ure 1 (C)).

2.3. Estimation of a priori SNR by frequency weighting of

a posteriori SNR

We now want to combine both approaches to obtain an angu-

lar spectrum with the global shape of a priori SNR and the

precision of a posteriori SNR. In order to do so, we express

the relationship between these two forms of SNR, in the sim-

ple case where the input signal consists in a single source of

TDOA τ = 0 and a diffuse noise. Φ̂xx is then given by (8).

By plugging (8) into (6) and (7), we obtain:

SNRDS =
1 + 2SNRpriori + sinc(2πf d

c
)

1 − sinc(2πf d
c
)

(12)



SNRMVDR =
1 + 2SNRpriori

1 − sinc(2πf d
c
)

(13)

where SNRpriori = vs/vb. By inverting these equations,

we obtain a new way of computing a priori SNR by fre-

quency weighting of a posteriori SNR, for both SNRDS and

SNRMVDR:

SNRDSW = Wd(f)SNRDS + Wd(f) − 1 (14)

SNRMVDRW = Wd(f)SNRMVDR −
1

2
(15)

where Wd(f) =
1−sinc(2πf d

c
)

2 is a frequency-dependent fac-

tor reducing the weight of low frequencies. Figure 1 (D)

shows the shape of Wd(f) for different values of d. Angular
spectra obtained with SNRDSW and SNRMVDRW are repre-

sented in figure 1 (E) and (F).
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Fig. 1. Angular spectra produced by SNRDS (A), SNRMVDR

(B), SNRAPR (C), SNRDSW (E) and SNRMVDRW (F) for

three female speech sources placed at 50 cm from the center

of the microphone pair, with d = 15 cm and a reverberation

time of 500 ms. (D) represents the weighting factors Wd(f)
for different microphone spacings d.

3. EXPERIMENTAL EVALUATION

We evaluated the five proposed methods on a large number

of configurations, involving two to six sources, six reverber-

ation times (from 50 ms to 750 ms), four microphone spac-

ings (from 5 cm to 1 m), four distances between the sources

and the center of the microphone pair (from 20 cm to 2 m),

several source DOAs, and three source types (male speech,

SNR GCC
MUSIC cSCT

DS MVDR APR DSW MVDRW PHAT
R 0.41 0.58 0.64 0.63 0.66 0.56 0.58 0.61
P 0.48 0.61 0.66 0.67 0.69 0.65 0.24 0.64
F 0.43 0.59 0.65 0.65 0.67 0.58 0.34 0.62

Table 1. Recall, precision and F-measure for J =
Jopt(A, N, d) averaged over all configurations.

female speech and music). 4446 mixtures of 11 s duration

were generated in total using impulse responses simulated via

the Roomsimove toolbox2 for a room of dimensions 4.45 m

× 3.55 m × 2.5 m. Matlab code implementing the five pro-

posed methods is available3. We compared these methods

with three existing angular spectrum methods GCC-PHAT

[5], MUSIC [9], and cSCT [7]. The parameters of cSCT were

fixed by interpolation of the values chosen by the author for

other configurations.

Evaluation was made in terms of recall, precision and F-

measure. An estimated TDOA τ̂ is considered to be a correct

estimate of a true TDOA τ if c
d
(τ − τ̂) ≤ γ with γ a constant

set in our experiments to 0.05. For N sources, if we select the

TDOAs corresponding to the J highest peaks of the angular

spectrum, and we note IJ the number of correct TDOAs, we

define the recall R, the precision P and the F-measure F by

R(J) = IJ

N
, P(J) = IJ

J
and F(J) = 2 R(J)×P(J)

R(J)+P(J) respec-

tively [10].

Figure 2 (A) shows the average F-measure as a function

of J for N = 6 sources. For all evaluated algorithms, ex-

cepted MUSIC and GCC-PHAT, the F-measure reaches its

maximum for J equal to the number of sources N . The best

F-measure is obtained by SNRMVDRW and SNRDSW which

provide respectively an improvement of 0.06 and 0.04 com-

pared to cSCT.

In the following, we fix the number of selected peaks to a

value J = Jopt(A, N, d) for each algorithm A, each number

of sources N and each distance between microphones d, so
as to maximise the F-measure averaged over all other param-

eters. Indeed, preliminary experiments showed that these pa-

rameters have the most important effect on the value of Jopt.

The resulting average recall, precision and F-measure are pre-

sented in table 1. The best recall, precision and F-measure are

obtained by SNRMVDRW and SNRDSW.

Figure 2 shows the F-measure obtained as a function

of microphone spacing d and reverberation time RT60 for

speech sources. All methods provide poorer results with

microphone spacings smaller than 15 cm or with larger rever-

beration time. SNRMVDRW outperforms the other evaluated

methods for most microphone spacing and for all reverber-

ation times. The two principal reasons are that it is robust

to high reverberation thanks to MVDR beamforming, and to

2http://www.irisa.fr/metiss/members/evincent/software
3http://bass-db.gforge.inria.fr/bss locate
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Fig. 2. Average F-measure of the evaluated algorithms as a function of the number of selected peaks J for all 6-source mixtures

(A) and as a function of microphone spacing d (B) and reverberation time RT60 (C) with J = Jopt for all speech mixtures.

small microphone spacing thanks to frequency weighting.

4. CONCLUSION

We proposed five new angular spectrum methods using SNR

to estimate TDOAs in two-channel under-determined mix-

tures. Large-scale evaluation showed that two of the proposed

angular spectra, based on frequency weighting of SNR es-

timated by beamforming techniques outperform state-of-the-

art methods in most configurations. Future work will focus on

summing a nonlinear function of SNR in each time-frequency

point and in using other information such as harmonicity to

improve TDOA estimation.
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