Bi-framelet systems with few vanishing moments characterize Besov spaces

Lasse Borup 1 Rémi Gribonval 2 Morten Nielsen 1
2 METISS - Speech and sound data modeling and processing
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : We study the approximation properties of wavelet bi-frame systems in Lp(R^d). For wavelet bi-frame systems the approximation spaces associated with best m-term approximation are completely characterized for a certain range of smoothness parameters limited by the number of vanishing moments of the generators of the dual frame. The approximation spaces turn out to be essentially Besov spaces, just as in the classical orthonormal wavelet case. We also prove that for smooth functions, the canonical expansion in the wavelet bi-frame system is sparse and one can reach the optimal rate of approximation by simply thresholding the canonical expansion. For twice oversampled MRA based wavelet frames, a characterization of the associated approximation space is obtained without any restrictions given by the number of vanishing moments, but at a price of replacing the canonical expansion by another linear expansion.
Type de document :
Article dans une revue
Applied and Computational Harmonic Analysis, Elsevier, 2004, Special Issue: Frames in Harmonic Analysis, Part 1, 17 (1), pp.3--28. 〈10.1016/j.acha.2004.01.004〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00567265
Contributeur : Rémi Gribonval <>
Soumis le : samedi 19 février 2011 - 22:19:01
Dernière modification le : mercredi 16 mai 2018 - 11:23:03
Document(s) archivé(s) le : vendredi 20 mai 2011 - 02:31:16

Fichier

2004_ACHA_BorupEtAl.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Lasse Borup, Rémi Gribonval, Morten Nielsen. Bi-framelet systems with few vanishing moments characterize Besov spaces. Applied and Computational Harmonic Analysis, Elsevier, 2004, Special Issue: Frames in Harmonic Analysis, Part 1, 17 (1), pp.3--28. 〈10.1016/j.acha.2004.01.004〉. 〈inria-00567265〉

Partager

Métriques

Consultations de la notice

262

Téléchargements de fichiers

251