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Abstract: Declarative languages, such as recursive rule based languages,
have been proposed to program distributed applications over networks. It has
been shown that they simplify greatly the code, while still offering efficient
distributed execution. In this report, we show that moreover they provide a
promising approach to the verification of distributed protocols. We consider the
Netlog language and use the Coq proof assistant. We first formalize the dis-
tributed computation model based on message passing with either synchronous
or asynchronous behavior. We then see how the declarative rules of the proto-
cols can be simply encoded in Coq and we develop the machine embedded on
each node of the network which evaluates the rules. This framework enables us
to formally verify distributed protocols, as shown on a concrete case study, a
spanning tree construction in both the asynchronous and synchronous setting.
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Vérification de protocoles déclaratifs en Coq:

une première expérience

Résumé : L’idée d’utiliser des langages déclaratifs, par exemple à base de
règles récursives, a été proposée pour programmer des applications distribuées
sur des réseaux. Il a été montré que cela simplifie grandement le code, sans
sacrifier l’efficacité de l’exécution distribuée. Dans ce rapport, nous montrons
qu’en outre ils constituent une approche prometteuse à la vérification de pro-
tocoles. Nous considérons le langage Netlog et utilisons l’assistant à la preuve
Coq. Nous commençons par formaliser le modèle de calcul distribué par com-
munication de message dans les deux variantes synchrone et asynchrone. Nous
montrons ensuite un encodage simple en Coq des règles définissant un protocole
et ainsi que de leur évaluation sur chaque nœud du réseau. Ce cadre permet de
vérifier formellement des protocoles distribués, comme illustré sur une étude de
cas concrète, la construction d’un arbre, tant dans le cas synchrone que dans le
cas asynchrone.

Mots-clés : preuve formelle, protocole, algorithme distribué, modèle de calcul
distribué.
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1 Introduction

Programming distributed algorithms, such as networking protocols for instance,
is a very complex task, which aims at solving global problems using local means,
and requires to handle the concurrency of the processes, the delays or even the
failure of the communication, as well as the limitations of both the hardware
and the communication channels. Most distributed systems rely on algorithms
invoking low level systems considerations. High-level abstractions have been
proposed to facilitate the programming, based on graph relabeling [38, 4], rule-
based languages such as [34, 23], functional languages such as Flask [37], as well
as algebras for routing [22]. Rule-based languages provide a declarative pro-
gramming framework which improves greatly the programmer’s burden, with a
code which is about two orders of magnitude shorter than standard program-
ming languages, and has been shown to produce efficient algorithms in the case
of various networking protocols in particular, by using methods developed in
the field of databases for recursive languages à la Datalog [32].

In the present report, we show that these declarative languages for dis-
tributed programming provide a new approach to the verification of distributed
programs, which can naturally deal with global properties, e.g. topological prop-
erties of a distributed data structure like a tree. To the best of our knowledge,
such properties are hard to prove or even to state with usual techniques relying
on la-belled transition systems and temporal logic, since they essentially focus
on events and their ordering.

We choose to work with the Netlog language [23], a variant of Datalog re-
cently proposed for programming distributed algorithms. The Netlog language
relies on deductive rules of the form head ← body, which are installed on each
node of the distributed system. The rules allow to derive new facts of the form
“head”, if their body is satisfied locally on the node. The facts derived might
then be stored locally on the node or sent to other nodes in the network de-
pending upon the rule. Netlog admits a semantics which is formally defined
by distributed fix-point, which interleaves local computation on the nodes and
communication between the nodes. On each node, a local round consists of a
computation phase followed by a communication phase. During the computa-
tion phase, the program updates the local data and produces messages to send.
During the communication phase, the router transmits the incoming messages
to the program, and routes the outgoing messages.

Our objective is to develop a framework to formally verify properties of
declarative distributed programs. As to formal verification, there are roughly
two kinds of approaches: model checking and theorem proving. Model checking
explores the state space of a system model exhaustively to see if a desirable
property is satisfied. It is largely automated and generates a counterexample
if the property doesn’t hold. The state explosion problem limits the potential
of model checkers for large systems. The basic idea of theorem proving is to
translate a system’s specification into a mathematical theory and then construct
a proof of a theorem by generating the intermediate proof steps. Theorem prov-
ing can deal with large or even infinite state spaces by using proof principles
such as induction and co-induction. In this report, we use Coq, which is a proof
assistant, that is an interactive theorem prover, in which high level proof search
commands construct formal proofs behind the scene, which are then mechani-
cally verified. Using a proof assistant seems more relevant than model checking
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Verifying Declarative Netlog Protocols with Coq 4

here since the manipulation of data plays a key role. We develop a Coq library
necessary for our purposes, including (i) the formalization of the distributed
system; (ii) the modeling of the embedded machine evaluating the Netlog pro-
grams; (iii) the translation of the Netlog programs; as well as a formalization of
graphs and trees suitable to our needs (respectively for communication networks
and our case study).

Technically, we formalize a message passing model for distributed compu-
tation. To this effect, we introduce a general framework parameterized by a
network topology and an abstract type for data. We then formalize appro-
priate notions for defining a global behavior in terms of local rounds, in a
way such that synchronous and asynchronous behaviors are obtained from the
same ingredients. This provides a transition relation between configurations
(or global states), on which general definitions can be applied, for example,
the co-inductive definition of a run and inductive or co-inductive definitions of
temporal logic operators and associated proof principles.

In our Coq formalization, each body of a deductive rule is encoded in a
systematic way by a tuple parameterized by a configuration, a node Id and
the free variables of the body. In turn, each Netlog rule is formalized by a
tuple which relates a configuration to a set of data representing updates to be
performed atomically at a given node, if the corresponding body is satisfied.

As a proof of concept, we test the proposed framework on a concrete protocol
for constructing spanning trees over connected graphs. It thus proceeds in
rounds, in which one node (in the asynchronous model) or all nodes (in the
synchronous model) perform some local computation and then exchange data
with their neighbors before entering the next round. To show its correctness,
the crucial ingredient is to formally prove the validity of the invariant that
evolving from one round to another always produces a larger tree rooted at the
same node. The protocol is shown to be correct for any finite connected graph.
Furthermore, in the synchronous message passing model, we show that we get
a distributed version of the classical breadth-first search (BFS) algorithm.

The report is organized as follows. In Section 2, we formalize the distributed
computational model. Section 3 is devoted to the presentation of Netlog pro-
grams, and their translation in Coq. Section 4 provides the fix-point semantics
of Netlog programs, while Section 5 presents the Coq formalization of the Netlog
machine. Section 6 sketches the proofs of the correctness of the tree protocol.
Section 7 discusses some related work, and finally we conclude in Section 8.

2 Distributed Computation Model

In this section we introduce a distributed computation model based on the
message passing mechanism and then formalize it in Coq. A brief overview of
Coq is delegated to Appendix A.

A distributed system relies on a communication network whose topology
is given by a directed connected graph G = (VG , G), where VG is the set of
nodes, and G denotes the set of communication links between nodes. For many
applications, we can also assume that the graph is symmetric, that is G(α, β)⇔
G(β, α).

Each node has a unique identifier, Id, taken from 1, 2, · · · , n, where n ≥ 2
is the number of nodes, and distinct local ports for distinct links incident to it.
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Figure 1: The node architecture

The control is fully distributed in the network, and there is no shared memory.
In this high-level computation model, we abstract away detailed factors like
node failures and lossy channels; if we were to formalize a more precise model,
most of the data structures defined below would have to be refined.

All the nodes have the same architecture and the same behavior. As de-
picted in Figure 1, each node consists of three main components: (i) a router,
handling the communication with the network; (ii) an engine, executing the
local programs; and (iii) a local data store to maintain the information (data
and programs) local to the node. It contains in particular the fragment of G,
which relates a node to its neighbors. The router queues the incoming messages
on the reception queue and the message to push produced by the engine on the
emission queue.

We distinguish between computation events, performed in a node, and com-
munication events, performed by nodes which cast their messages to their neigh-
bors. On one node, a computation phase followed by a communication phase is
called a local round of the distributed computation.

An execution is a sequence of alternating global configurations and rounds
occurring on one node, in the case of an asynchronous system, or a sequence of
alternating global configurations and rounds occurring simultaneously on each
node, in the case of a synchronous system. In the latter case, the computation
phase runs in parallel on all nodes, immediately followed by a parallel execution
on all nodes of the corresponding communication phase.

The distributed computation model described above does not depend on
Netlog. In our formalization, we just assume that the states at nodes have a
type local_data which can evolve using simple set-theoretic operations such as
union. Apart from that, the distributed computation model is quite standard.
Note that it is suitable both for synchronous and asynchronous execution.

We represent finite sets by simple lists, the union is simply represented by list
concatenation. This is a suitable choice as long as the only predicate we consider
on lists is membership. In the sequel we use freely set-theoretic notation for list
operations, e.g. ∅ for nil and ∈ for In.

The detailed Coq script for formalizing the distributed computation model
can be found in [17]. Here we just discuss a couple of key ingredients, especially
for the representations of rounds in asynchronous and synchronous settings.
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In the formal model, the graph is defined by a relation edge between nodes.
This relation is itself defined by a function neighbors which provides the list
of neighbors of a given node.

Variable neighbors : nat -> list nat.

Definition edge n m := m ∈ neighbors n.

We assume a type local_data for the set of facts stored on nodes as well
as on communication links. This type is endowed with at least a value repre-
senting the empty set of facts and a binary function returning the union of two
sets of facts. The union is used for describing incremental monotonic changes
(see local_round and communication below). Non-monotonic changes such as
removing facts are dealt with using an additional set difference function.

We also define the type Bmsg for “big messages”, i.e. pairs (j, t) where j is
a node Id and t a set of data to be transmitted to j. The global state of the
system has the type configuration defined as follows.

Variable local_data: Set.

Variable empty_ld: local_data. (* notation ∅ld *)

Variable union_ld: local_data -> local_data -> local_data. (* ∪ld *)

Definition Bmsg := nat * local_data.

Record configuration: Set:= mk_configuration {

Cnode: nat -> local_data;

Cedge: ∀ src dst: nat, edge src dst -> local_data

}.

Given a configuration c and a node Id j, the data available at j in c is either
Cnode c j, or Cedge c e, where e is an edge from some node i to j (a more
complete expression would be Cedge c i j e, but i and j can be easily deduced
from the type of e; in what follows, we omit such implicit arguments, as is done
in the formal Coq development).

A local round at node loc relates an actual configuration pre to a new con-
figuration mid and a list out of big messages from loc. Furthermore, incoming
edges are cleared. The new data d to be stored on loc is defined by a relation
new_stores given as a parameter, and we assume that d depends only on the
data available at loc in pre. Intuitively, the relation new_stores expresses that
d consists of new facts derived from facts available at loc (see more details in
Section 5). Similarly, out is defined by a relation new_push and satisfies sim-
ilar requirements. Using relations rather than functions for new_stores and
new_push deserves a special discussion provided in Section 3.

Formally, a local round is defined by using the following inference rule (by
convention, for such rules, free variables should be read as universally quantified
over the whole rule).

∃d, new_stores pre loc d ∧ Cnode mid loc = Cnode pre loc ∪ld d

new_push pre loc out

∀ src (e: edge src loc), Cedge mid e = ∅ld

local_round loc pre mid out

This definition expresses that a local round relating pre, mid and out at loc needs
the following three components: a proof that a suitable d exists, a proof that pre
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loc at out are related according to new_push, and a proof that for all nodes src
related to loc by edge e, the data stored on e in configuration mid is empty.

For modeling asynchronous behaviors, we also need the notion of a trivial
local round at loc, where the local data does not change and moreover incoming
edges are not cleared either.

Cnode mid loc = Cnode pre loc

∀ src (e: edge src loc), Cedge mid e = Cedge pre e

no_change_at loc pre mid

A communication event at node loc specifies that the local data at loc does
not change and that facts from out are appended on edges according to their
destinations.

Cnode post loc = Cnode mid loc

∀ dst (e: edge loc dst), Cedge post e = find dst out ∪ld Cedge mid e

communication loc mid post out

The function find returns the fact in out whose destination is dst. Note that
none of the previous three definitions specifies completely the next configuration
in function of the previous one. They rather constrain a relation between two
consecutive configurations by specifying what should happen at a given loca-
tion. Combining these definitions in various ways allows us to define a complete
transition relation between two configurations, with either a synchronous or an
asynchronous behavior.

loc: nat; mid: configuration; out: list Bmsg

local_round loc pre mid out

∀ loc’, loc 6= loc’→ no_change_at loc’ pre mid

communication loc mid post out

∀ loc’, loc 6= loc’→ communication loc’ mid post ∅

async_round pre post

An asynchronous round between two configurations pre and post is given by
a node Id loc, an intermediate configuration mid and a list of big messages
out such that there is a local round relating pre, mid and out on loc while no
change occurs on loc’ different from loc, and a communication relates mid and
out to post on loc while nothing is communicated on loc’ different from loc.

mid: configuration; out: list Bmsg

∀ loc, ∃ out, local_round loc pre mid out ∧ communication loc mid post out

sync_round pre post

A synchronous round between two configurations pre and post is given by an
intermediate configuration mid such that for all node Id loc, there exists a list
of big messages out such that there is a local round relating pre, mid and out

on loc and a communication relating mid and out to post on loc.
Now, given an arbitrary trans relation, which can be of the form sync_round,

or async_round, or even of some alternative form, we can co-inductively define
a run starting from a configuration. We have two cases: either there is a tran-
sition from configuration pre to configuration post, then any run from post
yields a run from pre; or, in the opposite case, we have an empty run from pre.
Altogether, a run from pre is either a finite sequence of transitions ended up
with a configuration where no transition is available, or an infinite sequence of
transitions, where consecutive configurations are related using trans.

RR n° 7511
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CoInductive run: configuration -> Set :=

| Rtrans: ∀ pre post, trans pre post -> run post -> run pre

| Rterm: ∀ pre, (∀ post, ¬ trans pre post) -> run pre.

In order to prove properties on run, we define some temporal logic operators.
For instance, in Section 6 we need a version of always, which is parameterized
by a property P of configurations. In a more general setting, the parameter
would be a property of runs.

P pre alw_run P r

alw_run P (Rtrans pre post s r)

P pre

alw_run P (Rterm pre h)

It is clear that a property which holds initially and is invariant is always
satisfied on a run. This fact is easily proved in the very general setting provided
by Coq. However, to show that a property is invariant is usually much more
difficult. We will see a concrete example in Section 6.

3 Declarative Netlog Protocols

We next introduce the Netlog language through simple protocols for construc-
tion of routes and trees. Only the main constructs are presented. A more
thorough presentation of the language can be found in [23]. Netlog relies on
Datalog-like recursive rules, of the form head← body, which allow to derive the
fact “head” whenever the “body” is satisfied. In contrast with other approaches
to concurrency, the focus is not primarily on observing some output, but on the
high-level data (i.e. Datalog facts) contained in nodes. Imagine, for example, a
program for constructing routing tables. Such tables are intended to be used by
other protocols and reasoning on their contents is more direct than considering
events.

The rules of a program are applied in parallel, and the results are computed
by iterating the rules over the local instance of the node, using facts either stored
on the node or pushed by a neighbor. The following rules, for instance, define
routes, stored in a relation Route(Src, Hop,Dst), from the graph E, which
from each source node, Src, and for each destination, Dst, gives the next hop,
Hop, on the path to that destination.

Simple routes

l Route(x, y, y) ← E(@x, y). (1)

l Route(x, y, z) ← E(@x, y);Route(y, u, z). (2)

This program has the following effect, when applied on a node, say α. If there is
a fact E(α, β), then Route(α, β, β) can be derived by Rule (1), and if there are
facts E(α, β) and Route(β, γ, δ), then Route(α, β, δ) can be derived by Rule (2).
The symbol “@” in the literal E(@x, y) in the body of the rules forces the variable
x to be instantiated by the node Id, or, in other words, forces the rule to run
on node x.

The Netlog programs are installed on each node, where they run concur-
rently. The facts deduced from rules can be stored on the node, on which
the rules run, or sent to other nodes. The symbol l in the head of the rules
means that the result has to be both stored on the local data store (↓), and
sent to neighbor nodes (↑). In other words, Rule (1), for instance, is essentially
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a combination of a store rule ↓ Route(x, y, y) ← E(@x, y) with a push rule
↑ Route(x, y, y)← E(@x, y).

Computing the body of a rule is always performed on a given node. A fact is
then considered to hold if and only if it occurs on this node (which includes an
incoming edge). The language also contains negation; consistently, the negation
of a fact holds if it does not occur on the node where the computation is per-
formed. Aggregation functions can also be used in the head of rules to aggregate
over all values satisfying the body of the rule. For instance, the function min
will be used in the next example.

The following program, which constructs a spanning tree over a distributed
system, relies on three relation symbols: E, onST , and ST ; E represents the
edge relation; and at any stage of the computation, onST (α) (respectively
ST (α, β)) hold iff the node α (respectively the edge (α, β)) is already on the
intended tree.

Spanning Tree / BFS Protocol

l onST (x) ← @x = 0. (3)

l onST (y)
↓ ST (min(x), y)

}

← E(x,@y); onST (x);¬onST (y). (4)

Rule (3) runs on the unique node, say ρ, which satisfies the relation ρ = 0. It
derives a fact OnST (ρ), which is stored on ρ and sent to its neighbors. Rule (4)
runs on the nodes (@y) at the border of the already computed tree. It chooses
one parent (the one with minimal Id) to join the tree. Two facts are derived,
which are both locally stored. The fact onST (y) is pushed to all neighbors.
Each fact E(x, y) is assumed to be initially stored on node y. As no new
fact E(x, y) can be derived from Rules (3) and (4), the consistency of E with
the physical edge relation holds forever. This algorithm aims at constructing
suitable distributed relations onST and ST . In Section 6, we will prove that
they actually define a tree; moreover, in the synchronous setting they define a
BFS tree.

The rules of Netlog programs can be encoded in Coq according to a system-
atic method which should be clear from the BFS example. To be more precise,
we present here a specification of the semantics of Netlog rules, as relations be-
tween a configuration, a location and incremental changes of data, consistently
with what is expected in a local round (see Section 2).

First we define an actual local_data, called bfs_data, needed in the BFS
protocol. In Rules (3) and (4), there are three kinds of facts: onST (x), ST (x, y)
and E(x, y), with the first being unary and the last two being binary. So we
introduce the types unary and binary to represent respectively sets (encoded
by lists) of unary and binary facts.

Record bfs_data : Set := mk_bfs_data {

onST : unary;

E : binary;

ST : binary}.

The pushing or emission of messages from a node to its neighbors always
follows the same scheme which can be abstracted as a general pattern. Assuming
an update u related to a configuration pre and location loc by a relation R given
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as parameter, the list of Bmsg broadcasted from loc is made of all pairs (dst, u)
such that dst is a neighbor of loc, as formalized by:

R pre loc u

push R pre loc (map (fun dst => (dst, u)) (neighbors loc))

This rule scheme converts a set of data u into a big message (dst,u), for every
neighbor dst of node loc. These big messages will be pushed to appropriate
destinations in the next communication phase. A common situation is when a
fact has to be both stored and broadcasted, as happens with Rules (3) and (4)
of the BFS example. Then R is then obtained from the corresponding store
rule.

Rule (3) leads to two definitions in Coq, for both the store (↓) and the push
(↑) consequences. The stored part is coded as follows:

ST upd = ∅
E upd = ∅
loc = 0→ onST upd = {loc} loc 6= 0→ onST upd = ∅

compute_phase_store_onST_initial pre loc upd

which says that for node 0, the update upd contains only the fact onST (0),
while other nodes produce no new fact at all. The push part is then coded
by instantiating the relation R as compute_phase_store_onST_initial in the
rule scheme mentioned above.

Definition compute_phase_push_onST_initial :=

push compute_phase_store_onST_initial

For Rule (4), we first introduce the inductive definition literally translated
from the body E(x,@y); onST (x);¬onST (y) as follows:

in_E cnf loc (x,y) in_onST cnf loc x ¬in_onST cnf loc y

tree_body cnf loc x y

The predicate in_E cnf loc (x, y) holds iff a fact E (x, y) is available in
configuration cnf at node loc, similarly for the predicate in_onST. Both of them
are specializations of the general predicate inFact, where prj is any projection
from local_data to some list X.

x ∈ prj(Cnode cnf loc)

inFact prj cnf loc x

e: edge neighbor loc x ∈ prj(Cedge cnf e)

inFact prj cnf loc x

According to these rules, the facts usable by a node either reside in its local
data store or are pushed by a neighbor and so are kept in the reception queue of
the node. We then introduce three definitions corresponding to the two derived
facts, together with the two modes store and push for the first one.
↓ onST (y)← E(x,@y); onST (x);¬onST (y) is coded by:

ST upd = ∅
E upd = ∅
∀ y, y ∈ onST upd↔ ((∃ x, tree_body pre loc x y) ∧ y = loc)

compute_phase_store_onST_tree pre loc upd

which means that if the body E(x,@y); onST (x);¬onST (y) is satisfied, then at
node y the update upd only includes the fact onST (y). On the other hand, the
push rule ↑ onST (y)← E(x,@y); onST (x);¬onST (y) is coded by:
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Definition compute_phase_push_onST_tree :=

push compute_phase_store_onST_tree

The last rule ↓ ST (min(x), y)← E(x,@y); onST (x);¬onST (y) is coded by:

onST upd = ∅
E upd = ∅
let P d := tree_body pre loc x loc in
∀ x, P x→ ∀ m, is_min pre m P→ ST upd = {(m, loc)} ∀ x,¬P x→ ST upd = ∅

compute_phase_store_ST_tree pre loc upd

Here is_min pre m P means that m is the smallest element x satisfying P x, but it
does not ensure the existence of such an x. If the smallest element m does exist,
then at node loc the update upd contains only the fact (m,loc). Otherwise,
upd would be empty.

One may wonder why we use relations everywhere instead of functions: rela-
tions are more general but less handy than functions especially in proofs. This
matter of fact is indeed driven by the relational nature of Datalog, on which
Netlog is based: facts may be derived or not according to the body of rules
and available facts. Moreover, the sequential composition of functions with re-
lations provides relations, hence even when trying to use functions in previous
attempts, e.g. for new_stores and new_push in local_round, this eventually
turned out to be not general enough.

4 The embedded Netlog machine

Netlog programs are running on the nodes of the network. They produce facts
to store as well as facts to be sent to other nodes. They are evaluated by a
machine which implements a precise semantics [23], which has been defined by
fix-points in a way which is classical for rule-based languages such as Datalog.
We present the semantics of a subset of the Netlog language of interest in this
report. The language is restricted to a subset of the language constructs, and
moreover, the rules are applied only once at each round, unlike in [23] where a
local fix-point is computed at each local round.

We assume that all variables range over the sort (N,≤), of the natural num-
bers. Given a finite set V of variables, a valuation over V is a mapping from V
to N. Let V(V ar(r)) be the set of valuations σ over V ar(r), the set of variables
of a rule r.

Let an instance I be a finite interpretation of the relations of some schema
S, which contains E, as well as some other relation symbols, such as Route,
ST , etc. depending upon the programs. The satisfaction of the literals in
the body of rule r by instance I and valuation σ is defined in a classical
way, except for the universal literal, where: (I, σ) |= ¬R(t1, . . . ,−, . . . , tn) iff
R(σ(t1), . . . , C, . . . , σ(tn)) /∈ I, for any constant C. Assume the body of r,
bodyr, is L1; . . . ;Lℓ. We have (I, σ) |= bodyr iff (I, σ) |= Li, for each i ∈ [1, ℓ].

The valuation of the head, headr, of rule r can now be defined. The aggre-
gation functions, which can only occur in the head of rules, require some care.
Let V ar✟✟Agg(headr) be the set of simple variables in the head, which are not
arguments of aggregation functions. Let τ ∈ V(V ar✟✟Agg(headr)). We extend τ
to V(V ar(r)) with respect to interpretation I, as:

[τ ]I,r = {σ|σ ∈ V(V ar(r)), σ(x) = τ(x), for all x ∈ dom(τ), and (I, σ) |= bodyr}.
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In the sequel, we assume that [τ ]I,r 6= ∅. We define τ(headr) as follows.
First, if headr contains only simple variables and is of the form: R(x1, . . . , xn),
then τ(headr) = R(τ(x1), . . . , τ(xn)). More generally, if it is of the form:

R(x1, . . . , xn, agg(y1), . . . , agg(ym))

where agg denotes an aggregate function on multi-sets, and {{ }} denotes multi-
set, then
τ(headr) = R(τ(x1), . . . , τ(xn), agg{{σ(y1)|σ ∈ [τ ]I,r}}, . . . ,

agg{{σ(ym)|σ ∈ [τ ]I,r}}).
We can now define the set of positive consequences of a program P over an

instance I, ∆+

P (I), as well as the set of consumed facts, ∆−
P (I).

∆+

P (I) = {τ(headr)|r ∈ P, τ ∈ V(V ar✟✟Agg(headr)), [τ ]I,r 6= ∅}.

∆−
P (I) = {R(σ(t1), . . . , σ(tn))|r ∈ P, (I, σ) |= bodyr, !R(t1, . . . , tn) in bodyr}.

It is not hard to see that ∆−
P (I) ⊆ I.

Let us now distinguish between P↓ the subset of store rules, and P↑ of push
rules in P . Note that store-and-push rules belong to both sets.

We describe the behavior of a Netlog program on one node, say α. At
each local round, it takes as input the local data on α and the data pushed by
neighbor nodes to α, (local_round) and produces updated local data, and data
to be pushed to each of its neighbor (communication). The node also forwards
messages, that are not used in the local computation. Its interaction with the
rest of the network is defined by the communication function: Rα(ℓ), which
maps each local round ℓ to the set of incoming messages on node α at local
round ℓ.

Note that at each local round, the router sorts the incoming messages into
two sets Lα(ℓ), of received facts, and Fα(ℓ), of messages to forward to other
nodes depending upon their destination: Lα(ℓ) contains the facts extracted from
messages received from other nodes, with destination α, “nbg” (the neighbor of
the sender), or “all” (the message is broadcasted to all nodes). Fα(ℓ) contains
the messages received from other nodes, with a destination different from α or
destination “all”, which will be forwarded further to other nodes.

Fα(0) = ∅;
Fα(ℓ) =

{

(dest, fact) | (dest, fact) ∈ Rα(ℓ); dest /∈ {α, nbg}
}

;

Lα(ℓ) =
{

fact | (dest, fact) ∈ Rα(ℓ); dest ∈ {α, nbg, all}
}

.

The computation relies on two operators, associated to program P , (i) for
the data to store locally, Ψ↓

P , and (ii) for the data to push to other nodes, Ψ↑
P .

They take as input the local instance I, and the received facts L.

• Ψ↓
P (I, L) = ∆+

P↓(I ∪ L) ∪ (I\∆−
P (I ∪ L)) defines the store operator, pro-

ducing facts to store.

• Ψ↑
P defines the push operator, producing messages to push:

Ψ↑
P (I ∪ L) =















(dest, fact)

∣

∣

∣

∣

∣

∣

∣

∣

fact ∈ ∆+

P↑(I ∪ L); and
if fact contains an address term @β
or @all, then resp. dest = β or all;

otherwise dest = nbg.














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When a local round ℓ starts, the node α has a local instance Iα(ℓ), and
has received facts Lα(ℓ), and messages to forward Fα(ℓ). It then starts its
computation, and produces a new local instance Iα(ℓ+ 1) = Ψ↓

P (I
α(ℓ),Lα(ℓ)),

and a set of messages to push Pα(ℓ) = Ψ↑
P (I

α(ℓ),Lα(ℓ)), which is then sorted
by destination.

Let us now consider the communication between nodes. The messages to
push are accumulated in Pα(ℓ). Their routes will be computed according to the
knowledge node α has of the Route relation.

In the case of synchronous systems without failure, there is an explicit cor-
respondence between the incoming and outgoing sets of messages.

Proposition 4.1 [23] For synchronous systems without failure, we have for
l ≥ 0:
Rα(0) = ∅,

Rα(ℓ+ 1) =















(dest, fact)

∣

∣

∣

∣

∣

∣

∣

∣

∃β s.t. E(β, α) ∈ Iβ(ℓ);
(dest, fact) ∈ Pβ(ℓ); and
if dest /∈ {α, nil, all} then
Route(β, α, dest) ∈ Iβ(ℓ)















.

In the case of asynchronous systems, the function Rα depends upon the
distributed system, and in general might differ between two executions. The
semantics is thus defined up to the system of communication function Rα for
each node α.

The semantics is defined as the local data store obtained on each node of
the network, when no communication occurs anymore in the network. The
termination is thus only implicit and globally defined. Clearly, programs can
very well not terminate. It has been shown that subclasses of well-behaved
Netlog programs terminate in polynomial time [23].

5 The Netlog Machine in Coq

Recall that in our computation model each node has an embedded Netlog ma-
chine, which implements a precise semantics given in Section 4. Our Coq formal-
ization of the Netlog machine defines a specialization of the distributed com-
putation model given in Section 2. This model is expressed in terms of two
abstract relations, new_stores and new_push. The present section explains
their definitions, according to the model given in the previous section.

We have seen in Section 3 how Netlog rules are represented in Coq in some
examples. For store rules the type is configuration -> nat -> local_data

-> Prop and for push rules configuration -> nat -> list Bmsg -> Prop.
In order to manipulate them explicitly in a general setting, we assume two types
store_rule_name and push_rule_name, as well as an appropriate semantics for
each rule (a relation in configuration -> nat -> local_data -> Prop).

Variable store_rule_name push_rule_name : Set.

Variable store_sem_of : store_rule_name ->

configuration -> nat -> local_data -> Prop.

Variable push_sem_of : push_rule_name ->

configuration -> nat -> list Bmsg -> Prop.
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Variable store_rule_order : list store_rule_name.

Variable push_rule_order : list push_rule_name.

Two simple auxiliary functions are needed; their definitions are standard
(here Coq is used as a functional programming language):

• merge, which merges two lists of Bmsg into one;

• find, which returns the data associated with a given node Id in a list of
Bmsg.

Fixpoint insert (loc: nat) (d: local_data) (l : list Bmsg) :

list Bmsg :=

match l with

| nil => (loc, d) :: nil

| (loc1, d1) :: l =>

if beq_nat loc loc1 then (loc, union_ld d d1) :: l

else (loc1, d1) :: insert loc d l

end.

Fixpoint merge (l1 l2: list Bmsg) : list Bmsg :=

match l1 with

| nil => l2

| (loc1, d1) :: l1 => insert loc1 d1 (merge l1 l2)

end.

Fixpoint find (dst: nat) (l : list Bmsg) : local_data :=

match l with

| nil => empty_ld

| (loc, d) :: l =>

if beq_nat loc dst then d else find dst l

end.

Then, from a configuration pre and a given list of store_rule_name, the future
local data to be stored at node loc is inductively defined by:

stores_of_list pre loc ∅ ∅ld

store_sem_of r pre loc updr

stores_of_list pre loc l updl

stores_of_list pre loc (r::l) (updr ∪ld updl)

Briefly speaking, the local data resulted from executing a list of store rules can
be obtained by collecting all facts produced by each individual rule of the list.
The list of Bmsg to be sent from loc in configuration pre is defined similarly by
a predicate called push_of_list.

An equivalent definition is given below, which is more computational and
sometimes more convenient to use. (Their equivalence is formally proved.)

Fixpoint stores_of_list

(pre : configuration) (loc : nat)

(l: list store_rule_name) : local_data -> Prop :=

match l with

| nil => fun u => u = empty_ld

| r :: l =>

fun u => ∃ updr, store_sem_of r pre updr loc ∧
∃ updl, stores_of_list pre loc l updl ∧ u = union_ld updr updl

end.
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Similarly, here is the list of Bmsg to be sent from loc in configuration pre:

Fixpoint push_of_list

(pre : configuration) (loc : nat)

(lp: list push_rule_name) : list Bmsg -> Prop :=

match lp with

| nil => fun l => l = nil

| r :: lp =>

fun l => ∃ lupdr, push_sem_of r pre lupdr loc ∧
∃ lupdlp, push_of_list pre loc lp lupdlp ∧ l = merge lupdr lupdlp

end.

A local round is defined by just applying the previous definitions to a list
srl of store rule names and a list prl of push rule names, where each element
of store_rule_name occurs exactly once; similarly for push_rule_name. Each
rule name acts as a trigger which entails the computation of the corresponding
rule.

Variable srl : list store_rule_name.

Variable prl : list push_rule_name.

Definition new_stores_mach :=

fun cnf loc d => stores_of_list cnf loc srl d.

Definition new_push_mach :=

fun cnf loc l => push_of_list cnf loc prl l.

Definition local_round_mach := local_round new_stores_mach new_push_mach.

Example of application: BFS

For our running example about BFS, we provide the following rule names and
semantics, which should be self-explanatory. The definition for push rule names
is similar, thus omitted.

Inductive bfs_store_rule_name : Set :=

store_onST_initial | store_onST_tree | store_ST_tree.

Definition bfs_store_sem_of (r : bfs_store_rule_name) :=

match r with

| store_onST_initial => compute_phase_store_onST_initial

| store_onST_tree => compute_phase_store_onST_tree

| store_ST_tree => compute_phase_store_ST_tree

end.

Definition bfs_store_rule_order :=

store_onST_tree :: store_ST_tree :: store_onST_initial :: nil.

The list bfs_store_rule_order is defined so that by iterating through it we
model the executing of each store rule one by one in a node. The order of
executing these rules are irrelevant because different orders always yield the
same new facts during a round.
In the formal reasoning carried out in Section 6, we need to use the following
form of assumption

bsr : bfs_synchronous_round cnf_pre cnf_post

To exploit this assumption, we first specialize bsr to a suitable location x. By
expanding and destructing the definitions given in the current section we obtain
an environment containing:
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upd0, upd1, upd2 : bfs_data

Hupd0 : compute_phase_store_onST_tree pre loc upd0

Hupd1 : compute_phase_store_ST_tree pre loc upd1

Hupd2 : compute_phase_store_onST_initial pre loc upd2

eCnode : Cnode post loc = Cnode pre loc ∪ld upd0 ∪ld upd1 ∪ld upd2 ∪ld ∅ld

We are then in position to reason by cases on the facts contained in hack
Cnode post loc, using knowledge specified by the representation of Netlog rules
on the corresponding updates upd0, upd1, upd2 or on the facts previously in
Cnode pre loc.

Inductive bfs_push_rule_name : Set :=

push_onST_initial | push_onST_tree (* | push_ST_tree *) .

Definition bfs_push_sem_of (r : bfs_push_rule_name) :

configuration bfs_data -> list Bmsg -> nat -> Prop :=

match r with

| push_onST_initial => compute_phase_push_onST_initial

| push_onST_tree => compute_phase_push_onST_tree

end.

Definition bfs_push_rule_order :=

push_onST_tree :: push_onST_initial :: nil.

6 Verification of a Tree Protocol

We conduct the verification in two settings: in the asynchronous case we prove
that the previous protocol eventually constructs a spanning tree; in the syn-
chronous case we prove that actually the protocol constructs a spanning tree
by doing a breadth-first search in the network. We briefly sketch the first case
study and then give more detailed discussion for the second one which involves
a much more difficult proof.

In both cases we expect to show that the relation ST determines a spanning
tree. However, this relation is distributed on the nodes and the Netlog protocol
reacts only to a locally visible part of relations ST , onST and E. The expected
property is then stated in terms of the union of all ST facts available on the
network.

In the asynchronous case, we have to check that when adding a new fact
ST (x, y) at some node loc then x is already on the tree while y is not yet. This
is basically entailed by the body of the last rule, but additional properties are
needed in order to ensure this rigorously. We use the following ones:

1. The E relation corresponds exactly to the edges.

2. An onST (z) fact arriving at a node y is already stored on the sender x.

3. If an onST (x) fact is stored on a node loc, then x = loc.

4. The onST relation grows consistently with ST (onST is actually the en-
gine of the algorithm), and these two relations define a tree.

The first three properties are separately proved to be invariant. The last prop-
erty is included in a predicate is_tree(o, s), which intuitively means that the
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union of all onST facts o and the union of all ST facts s are consistent and they
define a tree. We prove that if at the beginning of a round the first three proper-
ties together with is_tree(o, s) hold, then at the end of the round is_tree(o, s)
still holds. The conjunction of all the four properties then constitutes an in-
variant of the protocol. We check that the initial configuration generates a tree,
then we have that in all configurations of any asynchronous run starting from
the initial configuration, ST has the shape of a tree. This safety property is
formalized in Coq (the script is available on-line [17]).

Liveness, i.e. each node is eventually a member of onST , can be easily
proved, provided the graph is finite and connected, and a fairness property
is assumed in order to discard uninteresting runs where an inactive node is
continuously chosen for each local round, instead of another node having an
enabled rule. The proof is by induction on the finite cardinality of the set onST
of nodes which do not satisfy onST . If at some point of a run this set is non-
empty, then at least one of its members is a neighbor of the current tree due
to connectivity. By fairness, this node eventually performs a local round and is
no longer in onST . Formalizing such arguments involving liveness and fairness
properties of infinite behaviors of distributed systems has already been done in
Coq [18]. The issue of termination is simpler in the synchronous setting, since
fairness is no more needed to remove fake stuttering steps.

For our second case study, the correctness proof of the BFS protocol, we
prove that in the synchronous setting, the union of ST facts is the same as
the one which would be computed by a centralized algorithm C running on
the union of all facts. This is more subtle than one may expect at first sight,
because decisions taken on a given node do not depend on the global relations
onST and ST , but only on the visible part, which is made of the locally stored
facts and of the arriving messages. Moreover, the information contained in an
arriving onST fact is ephemeral: this fact is not itself stored locally (only its
consequences are stored) and it will never be sent again. Indeed this information
is available exactly at the right time. We therefore make a precise reasoning
on the consistency of stored and transmitted facts with the computation that
would be performed by the centralized algorithm C.

Given a tree made of node Id’s li and arcs la, it can be enlarged by extend-
ing it with new nodes and new arcs. Formally, C defines the arcs to be added by
considering those nodes that are not in li but have neighbors in li. The newly
added nodes and arcs are represented by the lists new_lloc li and new_larc

li, respectively. The algorithms for new_lloc and new_larc are defined in Coq
by simple functional programs.

Our main theorem states that a synchronous round in the distributed syn-
chronous version corresponds to a step of computation performed by new_larc.
Intuitively, this happens because the changes of onST facts and ST facts go
side by side with the addition of new nodes and arcs to a partially constructed
tree. Here onST facts play a prominent role in showing the correspondence.

Our invariant for the distributed BFS protocol involves several predicates,
besides the first three properties given above for the asynchronous version. Some
of them are quite natural. For instance, the predicates correct_onST cnf li

and complete_onST cnf li together maintain that in configuration cnf, the
union of onST facts available on any node characterizes exactly the members
of li, the list of node Id’s in the tree constructed by C. We have similar
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predicates about ST facts. Some others are more technical. For example, the
predicate all_edges_good asserts that, for any neighboring nodes x and y,
if the fact onST (x) is stored on x then y is receiving that fact or the fact
onST (y) is already stored on y. With those predicates at hand, we prove 9
useful propagation properties, e.g.,

Theorem propag_consistent_with :

∀ pre post, bfs_synchronous_round pre post ->

E_corresponds_to_edges pre ->

∀ li la, correct_onST pre li -> complete_onST_node pre li ->

all_edges_good pre ->

consistent_with (global_ST pre) la ->

consistent_with (global_ST post) (new_larc li ++ la).

Here, E_corresponds_to_edges describes Property 1 above, about the corre-
spondence of relation E with edges, global_ST represents the union of all ST
facts on the network, and consistent_with R la says that the binary rela-
tion R is equivalent to membership to the list la. Suppose the distributed
system evolves from global configuration pre into configuration post during a
synchronous round. This property says that if all the ST facts extracted from
pre can be expressed by the list of arcs la, then so is the case for configura-
tion post and the list la extended with new arcs in new_larc li. Its proof
requires a careful use of the preconditions simultaneously available on several
neighboring locations. The conjunction of the propagated properties gives rise
to an invariant which is, as expected, a strengthening of the desired property.

Besides this global property, one may wonder whether ST(x,y) facts are
located on relevant nodes, i.e. child nodes y in our case, so that this information
could be used by a higher layer protocol for transmitting data towards the root.
This is actually a simple consequence of Rules (3) and (4), since they ensure
that ST(x,y) can only be stored on y. This is formally proved in our framework.

7 Related work

Declarative languages have been first used in the context of networks for sensor
networks. TinyDB [36] and Cougar [16] offer the possibility to write distributed
queries in SQL. More interestingly, recursive query languages have been used to
express communication network algorithms such as routing protocols [34] and
declarative overlays [33]. Distributed query languages thus provide new means
to express complex network problems such as node discovery [3], route find-
ing, path maintenance with quality of service [6], topology discovery, including
physical topology [5], secure networking [2], or adaptive MANET routing [31].

Using formal techniques for verifying communication protocols is far from
being a new idea. “Formal Description techniques” were developed by telecom-
munication laboratories from the beginning of the 1980s in order to specify and
verify protocols to be standardized at ITU and ISO. Three languages came out.
Two of them, Estelle and SDL, are based on asynchronous communicating au-
tomata’s, while LOTOS is a process algebra based on CCS and CSP extended
with algebraic data types [46]. Various verification tools, ranging from sim-
ulation to model checking were developed and applied to many case studies
[48, 27, 45, 49, 42, 44, 26, 19, 21]. For the approach of verifying communication
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protocols based on process algebras, the guiding idea is to model both the imple-
mentation and the specification of a protocol as processes in a process algebra,
and then to employ automatic tools to check either the former is a refinement
of the latter or they are behaviorally equivalent [14, 43]. For example, the Con-
currency Workbench [14] is a verification tool based on CCS, FDR [43] is based
on CSP [25], ProVerif [8] is based on the applied pi calculus [1], etc.

Other approaches include input/output automata’s [35], or Unity and TLA,
which combine temporal logic and transition-based specification [12, 28]. Note
that the two latter got support from proof assistant technology [41, 24, 13, 29].

A common feature to these approaches is their focus on control, in particular
how to deal with behaviors in a distributed framework. Typical issues include
non-determinism, deadlock freedom, stuttering, fairness, distributed consensus
and, more recently, mobility. Data is generally considered as an abstract object
not really related to the behavior. This is relevant for many low-level protocols,
such as transport protocols. However, this does not suit the needs of applications
which aim at building up a distributed global information, such as topological
information on the network (in a physical or virtual sense), as in routing ta-
bles, for example. To our knowledge, such problems have not been attacked by
means of the above mentioned approaches. An explanation may be that the
pieces of data involved in distributed computations are embedded in different
components of the global configuration, and the previous formalisms make it
difficult to isolate them or to consider them as a whole in reasoning. A clear
feature of the current report, compared with those previous approaches, is the
emphasis on manipulating data in formal reasoning, which also drove us to use
Coq as the verification tool. Beyond formal verification of distributed protocols,
Coq has been successfully applied to ensure reliability of hardware and software
systems in various fields, such as multiplier circuits [40], concurrent communica-
tion protocols [20], self-stabilizing population protocols [18], Local Computation
Systems [11, 9, 10], devices for broadband protocols [39], and compilers [30] to
name a few.

Closely related to our work is [47], where a declarative network verifier
(DNV) was presented which maps specifications written in the Network Datalog
query language into logical axioms which can be used in theorem provers like
PVS to validate protocol correctness. The reasoning based on DNV is for Data-
log specifications of (eventually distributed) algorithms, but not for distributed
versions of Datalog such as the one provided by Netlog. In other words, it only
considers the highly abstract centralized behavior of a network. In contrast, our
development in this report is to reason about the distributed behavior of indi-
vidual nodes which together yield some expected global behavior of the whole
network. Therefore, we need to involve deep subtleties on message passing and
derivation of local facts, which are all absent in [47].

8 Conclusion

We developed a Coq library for verifying declarative protocols expressed in a
rule-based language.

This library includes the formalization of the distributed computation en-
vironment with the communication network. Importantly, we have shown that
both the synchronous and the asynchronous models of communication can be
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formalized in very similar ways. This library includes the formalization of the
distributed computation environment with the communication network, where
both the synchronous and the asynchronous models of communication are for-
malized in very similar ways. The library also includes the embedded machine
which evaluates the Netlog programs on each node. The Netlog programs are
translated into straightforward Coq definitions. As a preliminary result we
proved a topological property of a distributed data structure – a tree – con-
structed by a simple but subtle program. To our knowledge, such properties
are difficult to handle in other approaches to the verification of distributed pro-
grams. From this experiment, we are in position to define a deep embedding for
systematically deriving Coq encodings from the abstract syntax of Netlog rules,
as well as dedicated tactics for handling tedious steps specific to Netlog, and
then plan to further verify declarative protocols for routing, election, naming,
and other fundamental distributed problems.
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A Formal Verification with Coq

Coq is one of the most popular proof assistants for formal verification. It is based
on a constructive type theoretic setting, called the Calculus of (co-)Inductive
Constructions (CIC), which can be summarized both as a polymorphic typed
lambda-calculus enriched with universes, inductive and co-inductive types and
a language for describing mathematical definitions and proofs [15, 7]. These two
aspects are actually related thanks to the well-known Curry-Howard-De Bruijn
isomorphism, which maps propositions to types and proofs to functional objects
or strongly normalizing programs.

Let us illustrate some concepts and the syntax of Coq by a few examples.
One of the most commonly used data structure is list. Let A be a type, a
list whose elements are of type A can be inductively defined, with the usual
constructors nil and cons:

Inductive list : Type :=

| nil : list

| cons : A -> list -> list.

Total recursive functional programs can be defined for lists. For example,
the In predicate defined below checks if a occurs in the list l.
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Fixpoint In (a:A) (l:list) {struct l} : Prop :=

match l with

| nil => False

| b :: m => b = a \/ In a m

end.

In order to ensure termination, a structurally decreasing argument is spec-
ified by struct l. Here we meet the realm of propositions Prop. A predicate
over natural numbers for instance has type nat -> Prop. Given such a pred-
icate P, a proof p0 of P 0 and a proof step of for all n, P n -> P (S n),
we can construct a proof of P n for all natural numbers n, using the following
functional (primitive recursive) program:

Fixpoint natind (n:nat) {struct n}: P n := match n return (P n) with

| 0 => p0

| S q => step q (natind q)

end.

The type of natind is for all n, P n, that is a dependent type, since
the type of the result depends on the value of the argument; step, seen as a
function from numbers n and proofs of P n and returning a proof of P (S n),
has a slightly more complex dependent type. In the match construct itself, the
type of the result depends on the branch – it could be P 0 or P (S q) for some
q. Abstracting P, p0 and step in natind yields a proof of the usual induction
principle over natural numbers. As a function, it illustrates some important
features of the type theory of Coq: polymorphism, inductive and dependent
types.

Other constructs used in this report, such as records, are special cases of
inductive types (i.e with only one constructor; fields are just projections). When
defining inductive types, dependent types can also be used for constructors. It is
especially convenient for formalizing algebraic structures (a carrier, operations
and algebraic laws) and we use them extensively in the sequel. For example,
graphs can be defined below, with two fields: Vert for vertexes and Edge for
edges.

Record Graph : Type := mkGraph {

Vert : Type; (* vertices *)

Edge : Vert -> Vert -> Prop (* edges *)

}.

Like functions, relations are widely used mathematical concepts in formal
verification. As an example, let R be a binary relation over natural numbers.
Its transitive closure can be defined as follows.

Inductive TC (R: nat->nat->Prop): nat -> nat -> Prop :=

| TC0 : forall x y, R x y -> TC R x y

| TCrec : forall x y z, R x z -> TC R z y -> TC R x y.

Some frequently used types such as nat and list are available in the stan-
dard library of Coq; by importing relevant packages, we can directly use the
operations (e.g. In seen above) associated with lists. However, many other
types are not in the library, and in this case they need to be defined from
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scratch. We have seen Graph for graphs above. We next consider trees which
will be used to reason about algorithms for constructing spanning trees on con-
nected graphs. We define abstract trees inductively as follows (from now on, we
use the notation ∀ instead of for all in order to save space; types of variables
which can be easily inferred from the context are not explicitly given):

Variable Carrier : Set.

Inductive tree : list Carrier -> list (Carrier * Carrier) -> Prop :=

| root : ∀ x: Carrier, tree (x :: nil) nil

| leaf : ∀ lv le, tree lv le ->

∀ x y: Carrier, In x lv -> ¬ In y lv ->

tree (y :: lv) ((x,y) :: le).

A tree is built upon a set of vertexes (represented by a list lv) and a set of
edges (represented by a list le of pairs) by:

• the tree reduced to its root and no edge;

• from a tree upon lv and le, adding a new pendant vertex y and edge
(x, y) such that x ∈ lv, y 6∈ lv, we obtain a tree upon lv extended with
y and le extended with (x, y).

Altogether, the features of Coq allow us to formalize mathematical theories
in a typed and precise but still very general setting. Coq offers an environment
where users can state mathematical definitions using types, concrete objects,
functions over them, and then interactively prove theorems. Obvious proof
steps are automated, but clever ones, e.g. inductive arguments or intermediate
sub-goals, require user interactions.
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