G. Archer, A. Saltelli, and I. Sobol, Sensitivity measures,anova-like Techniques and the use of bootstrap, Journal of Statistical Computation and Simulation, vol.2, issue.2, pp.99-120, 1997.
DOI : 10.1142/S0129183195000204

S. Boyaval, C. Le-bris, Y. Maday, N. Nguyen, and A. Patera, A reduced basis approach for variational problems with stochastic parameters: Application to heat conduction with variable Robin coefficient, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.41-44, pp.41-443187, 2009.
DOI : 10.1016/j.cma.2009.05.019

URL : https://hal.archives-ouvertes.fr/inria-00311463

A. Buffa, Y. Maday, A. Patera, C. Prud-'homme, and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis. Mathematical Modelling and Numerical Analysis, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00659314

G. M. Dancik, mlegp: Maximum Likelihood Estimates of Gaussian Processes, 2011.

B. Efron, Nonparametric standard errors and confidence intervals, Canadian Journal of Statistics, vol.9, issue.2, pp.139-158, 1981.
DOI : 10.2307/3314608

B. Efron and R. Tibshirani, Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy, Statistical Science, vol.1, issue.1, pp.54-75, 1986.
DOI : 10.1214/ss/1177013815

B. Efron and R. Tibshirani, An introduction to the bootstrap, 1993.
DOI : 10.1007/978-1-4899-4541-9

M. Grepl, Y. Maday, N. Nguyen, and A. Patera, Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.41, issue.3, pp.575-605, 2007.
DOI : 10.1051/m2an:2007031

URL : https://hal.archives-ouvertes.fr/hal-00112154

M. Grepl and A. Patera, error bounds for reduced-basis approximations of parametrized parabolic partial differential equations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.39, issue.1, pp.157-181, 2005.
DOI : 10.1051/m2an:2005006

J. Helton, J. Johnson, C. Sallaberry, and C. Storlie, Survey of samplingbased methods for uncertainty and sensitivity analysis, Reliability Engineering & System Safety, vol.91, pp.10-111175, 2006.

T. Homma and A. Saltelli, Importance measures in global sensitivity analysis of nonlinear models, Reliability Engineering & System Safety, vol.52, issue.1, pp.1-17, 1996.
DOI : 10.1016/0951-8320(96)00002-6

A. Janon, M. Nodet, and C. Prieur, Certified reduced-basis solutions of viscous Burgers equation parametrized by initial and boundary values, ESAIM: Mathematical Modelling and Numerical Analysis, vol.47, issue.2, 2010.
DOI : 10.1051/m2an/2012029

URL : https://hal.archives-ouvertes.fr/inria-00524727

A. Marrel, B. Iooss, B. Laurent, and O. Roustant, Calculations of Sobol indices for the Gaussian process metamodel, Reliability Engineering & System Safety, vol.94, issue.3, pp.742-751, 2009.
DOI : 10.1016/j.ress.2008.07.008

URL : https://hal.archives-ouvertes.fr/hal-00239494

N. Nguyen, K. Veroy, and A. Patera, Certified real-time solution of parametrized partial differential equations, Handbook of Materials Modeling, pp.1523-1558, 2005.

A. Quarteroni, G. Rozza, and A. Manzoni, Certified reduced basis approximation for parametrized partial differential equations and applications, Journal of Mathematics in Industry, vol.1, issue.1, 2011.
DOI : 10.1137/090780122

A. Saltelli, Making best use of model evaluations to compute sensitivity indices, Computer Physics Communications, vol.145, issue.2, pp.280-297, 2002.
DOI : 10.1016/S0010-4655(02)00280-1

A. Saltelli, K. Chan, and E. Scott, Sensitivity analysis, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00386559

T. J. Santner, B. Williams, and W. Notz, The Design and Analysis of Computer Experiments, 2003.
DOI : 10.1007/978-1-4757-3799-8

R. Schaback, Mathematical results concerning kernel techniques, Prep. 13th IFAC Symposium on System Identification, pp.1814-1819, 2003.

M. Scheuerer, R. Schaback, and M. Schlather, Interpolation of spatial data ? a stochastic or a deterministic problem ? Preprint, 2011.

I. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Mathematics and Computers in Simulation, vol.55, issue.1-3, pp.271-280, 2001.
DOI : 10.1016/S0378-4754(00)00270-6

C. Storlie, L. Swiler, J. Helton, and C. Sallaberry, Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models, Reliability Engineering & System Safety, vol.94, issue.11, pp.941735-1763, 2009.
DOI : 10.1016/j.ress.2009.05.007

K. Urban and A. Patera, A new error bound for reduced basis approximation of parabolic partial differential equations, Comptes Rendus Mathematique, vol.350, issue.3-4, 2012.
DOI : 10.1016/j.crma.2012.01.026

K. Veroy and A. Patera, Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basisa posteriori error bounds, International Journal for Numerical Methods in Fluids, vol.42, issue.8-9, pp.8-9773, 2005.
DOI : 10.1002/fld.867

C. Zhu, R. Bryd, J. Nocedal, and L. , Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization, ACM Transactions on Mathematical Software, vol.23, issue.4, 1997.
DOI : 10.1145/279232.279236