
HAL Id: inria-00568674
https://inria.hal.science/inria-00568674

Submitted on 1 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new approach to the lattice Boltzmann method for
graphics processing units

Christian Obrecht, Frédéric Kuznik, Bernard Tourancheau, Jean-Jacques
Roux

To cite this version:
Christian Obrecht, Frédéric Kuznik, Bernard Tourancheau, Jean-Jacques Roux. A new approach
to the lattice Boltzmann method for graphics processing units. Computers & Mathematics with
Applications, 2010, �10.1016/j.camwa.2010.01.054�. �inria-00568674�

https://inria.hal.science/inria-00568674
https://hal.archives-ouvertes.fr

A new approach to the lattice Boltzmann method

for graphics processing units

Christian Obrechta,b,∗, Frédéric Kuznika, Bernard Tourancheaub, Jean-Jacques Rouxa

aCentre de Thermique de Lyon, UMR5008, CNRS, INSA-Lyon, Université de Lyon
bLaboratoire de l’Informatique du Parallélisme, UMR 5668, CNRS, ENS de Lyon, INRIA, UCB Lyon 1

Abstract

Emerging many-core processors, like CUDA capable nVidia GPUs, are promising platforms for regular
parallel algorithms such as the Lattice Boltzmann Method (LBM). Since global memory on graphic devices
shows high latency and LBM is data intensive, memory access pattern is an important issue to achieve good
performances. Whenever possible, global memory loads and stores should be coalescent and aligned, but
the propagation phase in LBM can lead to frequent misaligned memory accesses. Most previous CUDA
implementations of 3D LBM faced this problem using low latency on chip shared memory. Instead of this,
our CUDA implementation of LBM follows carefully chosen data transfer schemes in global memory. On
the 3D lid-driven cavity test case, we obtained 2× to 3× speed-up over previously published performances,
achieving up to 86% of the global memory maximal throughput. As a consequence we show that highly
efficient implementations of LBM on GPU are possible, even for complex models.

Key words: GPU programming, CUDA, Lattice Boltzmann method, Parallel computing

1. Introduction

During the last decade, the computational power
of commodity graphics hardware has dramatically
increased, as shown in figure 1, nearing 1 GFlop/s
with nVidia’s latest GT200. Yet, one should be
aware that this performance is attainable only for
single precision computations, which are not fully
IEEE-754 compliant. Nonetheless, due to their low
cost, GPUs become more and more popular for sci-
entific computations (see [1, 2]).

Lattice Boltzmann method, which originates
from the lattice gas automata methods, is an effi-
cient alternative to the numerical solving of Navier-
Stokes equations for simulations of complex fluid
systems. Besides its numerical stability and ac-
curacy, one of the major advantage of LBM is
its data parallel nature. Nevertheless, using LBM
for practical purposes requires large computational
power. Thus, several attempts to implement LBM
on GPUs were made recently.

In this paper, we intend to present some optimi-
sation principles for CUDA programming. These

∗Corresponding author: christian.obrecht@insa-lyon.fr

NV30

J an
2003
J un Apr

2004 2005 2007 2006 2008

NV35 NV40
G70

G71

G80

G92

GT200

J un Nov Mar May J un

3.0 GHz
Core2 Duo

3.2 GHz
Harpertown

Figure 1: Peak performances GPU vs CPU (source nVidia)

principles led us to a GPU implementation of 3D
LBM which appears to be more efficient than the
previously published ones.

2. CUDA

The Compute Unified Device Architecture
(CUDA), released by nVidia in early 2007, is up
to now the leading technology for general purpose
GPU programming (see [3]). It consists of hard-
ware specifications, a specific programming model,
and a programming environment (API and SDK).

2.1. Architecture

General purpose GPU programming usually re-
quires to take some architectural aspects into con-
sideration. CUDA hardware specifications make
the optimisation process easier by providing a gen-
eral model for the nVidia GPUs architecture from
the G80 generation on.

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Device Memory

Shared Memory

I nstruction
Unit

Processor 1

Registers

...Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache

Figure 2: CUDA hardware (source nVidia)

Figure 2 shows the main aspects of the CUDA
hardware specifications. A GPU consists in several
Streaming Multiprocessors (SMs). Each SM con-
tains Scalar Processors (SPs), an instruction unit,
and a shared memory, concurrently accessible by
the SPs through 16 memory banks. Two cached,
read-only memories for constants and textures are
also available. The device memory, usually named
global memory is accessible by both the GPU and
the CPU. Table 1 specifies some of the features of
the GT200 processor on which our implementations
were tested.

SPs are only able to perform single precision com-
putations. From compute capability 1.3 on, CUDA
supports double precision. On this kind of hard-
ware, each SM is linked to a double precision com-
putation unit. Both single and double precision
calculations are mostly IEEE-754 compliant. Di-
vergences from the standard are mainly:

• No denormalized numbers. Numbers with null
exponent are considered as zero.

Number of SMs 30

Number of SPs per SM 8

Registers per SM 16,384

Shared Memory 16 KB

Constant Cache 8 KB

Texture Cache 8 KB

Global Memory 896 MB or 1 GB

Table 1: Features of the GT200

• Partial support of rounding modes.

• No floating point exception mechanism.

• Multiply-add operations with truncated inter-
mediate results.

• Non compliant implementations of some oper-
ations like division or square root.

2.2. Programming

CUDA programming model (see [4]) relies on the
concept of kernel. A kernel is a function that is ex-
ecuted in concurrent threads on the GPU. Threads
are grouped into blocks which in turn form the ex-
ecution grid (see figure 3).

Grid

Block (2, 1)Block (1, 1)Block (0, 1)

Block (2, 0)Block (1, 0)Block (0, 0)

Block (1, 1)

Thread (0, 0) Thread (1, 0) Thread (2, 0) Thread (3, 0)

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1)

Thread (0, 2) Thread (1, 2) Thread (2, 2) Thread (3, 2)

Figure 3: CUDA programming model (source nVidia)

The CUDA technology makes use of a slightly
modified version of the C (or C++) language as a

2

programming language. The code of a CUDA appli-
cation consists in functions which can be classified
in four categories:

1. Sequential functions run by the CPU.
2. Launching functions allowing the CPU to start

a kernel.
3. Kernels run by the GPU.
4. Auxiliary functions which are inlined into the

kernels at compile time.

The execution grid’s layout is specified at run
time. A grid may have one or two dimensions.
The blocks of threads within a grid must be iden-
tical and may have up to three dimensions. A
thread is identified in respect of the grid using the
two structures threadIdx and blockIdx, contain-
ing the three fields x, y, and z.

A block may only be executed on a single SM,
which yields to an upper bound of the number of
threads within a block1. Scheduling is carried out
at hardware level and may not be adjusted. It is
yet possible to place synchronisation barriers, but
their scope is limited to blocks. The only way to
ensure global synchronisation is to use a kernel for
each step.

The local variables of a kernel are stored in the
registers of the SMs. Their scope is limited to
threads and they cannot be used for communica-
tion purposes. Data exchanges between threads
require the use of shared memory. The manage-
ment of these exchanges is left to the programmer.
It is worth noting that no protection mechanism
is available, hence concurrent writes at the same
memory location yield unpredictable results. The
shared memory’s scope is limited to blocks. Com-
munication between threads belonging to different
blocks requires the use of global memory.

3. Optimisation principles

3.1. Computational aspect

Generally speaking, the occupancy rate of the
SPs, i.e. the ratio between the number of threads
run and the maximum number of executable
threads, is an important aspect to take into con-
sideration for the optimisation of a CUDA kernel.
Even though a block may only be run on a sin-
gle SM, it is possible however to execute several

1As of compute capability 1.3, this maximum is 1,024.

blocks concurrently on the same SM. Hence tuning
the execution grid’s layout allows to increase the oc-
cupancy rate. Nevertheless, reaching the maximal
occupancy is usually not possible: the threads exe-
cuted in parallel on one SM have to share the avail-
able registers. On compute capability 1.3 architec-
tures, for instance, maximal occupancy is achieved
only for kernels using at most 16 registers, that is to
say only the simplest ones. It should be noted that
shared memory, which is rather scarce too, may also
be a limiting factor for the occupancy.

The rather elementary optimisation technique
consisting in common sub-expression elimination
should be used with care. As a matter of fact, this
method implies to store the values of these sub-
expressions in temporary variables, thence increas-
ing the use of registers, which in turn may lead to
lower occupancy. In some cases, this common sense
technique has negative effects, and it may be bet-
ter to recompute some values than to store them.
Anyway, general principles regarding this topic are
not relevant. Since the compiler performs aggres-
sive optimisation, the number of register needed for
a given kernel is scarcely predictable.

The hardware scheduler groups threads in warps
of 32 threads. Though not mandatory, the num-
ber of threads in a block should be a multiple of
the warp size. Whenever a warp is running, all the
corresponding threads are executed concurrently by
the SPs, except when conditional branching occurs.
Divergent branches are executed sequentially by
the SM. Even though serialisation only happens at
warp level, conditional structures should be avoided
as much as possible, being likely to have a major
impact on actual parallelism.

Regarding optimisation, the cost of arithmetic
operations (in clock cycles) must also be taken in
consideration. Table 2 displays the time needed for
a warp to perform the most common single preci-
sion floating point operations :

Operation Cycles

Add, multiply, multiply-add 4

Reciprocal, logarithm 16

Sine, cosine, exponential 32

Divide 36

Table 2: Cost of floating point operations

It should be noted that, since addition and mul-
3

tiplication are merged in one single axpy operation
whenever possible, evaluating the actual algorith-
mic complexity of a computation is not straightfor-
ward. It’s also worth noting that division is rather
expensive and should be used parsimoniously.

3.2. Data transfer aspect

For many applications, memory transactions op-
timisation appears to be even more important
than computations optimisation. Registers do not
arise any specific problem apart from their limited
amount. Shared memory is in terms of speed simi-
lar to register but is accessed by the SPs through 16
memory banks. For efficient accesses, each thread
in a half-warp must use a different bank. When this
condition is not met, the transaction is repeated as
much as necessary.

Global memory, being the only one accessible by
both the CPU and the GPU, is a critical path for
CUDA applications. Unlike registers and shared
memory, global memory suffers high latency rang-
ing from 400 to 600 clock cycles. Nonetheless,
this latency can be mostly hidden by the scheduler
which stalls inactive warps until data is available.
Furthermore, global memory throughput is signifi-
cantly less than register throughput. For data in-
tensive applications like LBM, this aspect is gener-
ally the limiting factor.

Global memory accesses are performed by half-
warp on 32, 64, or 128 bytes segments whose start
addresses are multiple of the segment’s size. To
optimise global memory transactions, memory ac-
cesses should be coalesced and aligned whenever
possible. To achieve coalescence, threads within
a half-warp must access contiguous memory loca-
tions.

4. Data transfer modelling

In CUDA applications, the execution of a kernel
can generally be split into three steps:

1. Reading data from global memory.
2. Processing data using registers (and possibly

shared memory).
3. Writing processed data to global memory.

Code 1 follows this scheme in the case where the
amount of data read and written are equal. Func-
tion launch_kernel calls function kernel with an
execution grid containing L3 threads. One may no-
tice some syntactic specificities of the CUDA pro-
gramming language: the use of the tripled angle

brackets for kernel invocation, the __global__ key-
word for kernel definition, the __device__ keyword
for auxiliary functions. The kernel performs the
reading and writing of N 32-bit words. The second
step is simplistic, though not suppressed in order
to ensure actual data transfer to the GPU. Global
memory accesses are optimal, provided L is set to
an appropriate value. In the present study, L = 128
was chosen.

#define id(j, k) k + SIZE*(j)

__device__ int index(void)
{

int x = threadIdx.x;
int y = blockIdx.x;
int z = blockIdx.y;
return x + y*L + z*L2;

}

__global__ void kernel(int N, float* t)
{

int k = index();

for (int j = 0; j <= N; j++)
{

t[id(j+1, k)] = t[id(j, k)]*0.5;
}

}

extern "C" void launch_kernel(int N, float* t)
{

dim3 grid(L, L);
dim3 block(L);

kernel<<<grid, block>>>(N, t);
cudaThreadSynchronize();

}

Code 1: Data transfer benchmark kernel

Measuring the execution time of the
launch_kernel function enables to estimate
the average time T for data transfer between GPU
and global memory relatively to the amount N
of data exchanged. Figure 4 shows the results
for one warp with T in nanoseconds and N in
32-bit words, obtained using a GeForce GTX 295
graphics board.

The quasi-linear aspect of these measurements
reveals that, in ideal cases, the hardware scheduler
is able to hide the latency of global memory. Nu-
merically, we obtain:

T ≈ 2.78×N + 0.99 (1)

The average throughput is almost constant rel-
atively to N and is about 90.7 GB/s for the

4

       
















Figure 4: Average transfer time

GeForce GTX 295. Reckoning the characteristics of
the benchmark program, we consider the obtained
value as the effective maximal throughput for data
transfer between GPU and global memory. This up-
per bound is useful in evaluating the performances
of a CUDA application leaving aside the hardware
in use. The obtained value is about 81% of the the-
oretical maximal throughput, which is comparable
to the result found in [5].

On the same hardware, the bandwidthTest pro-
gram from the CUDA SDK gives 91.3 GB/s, which
is rather close to the value we obtained. Yet, this
program uses only memory copy functions instead
of a kernel, hence yielding less relevant results from
a practical standpoint.

5. Lattice Boltzmann Method

The lattice Boltzmann method is based on a
threefold discretisation of the Boltzmann equation:
time, space and velocity (see [6]). Velocity space
reduces to a finite set of well chosen velocities
{ei | i = 0, . . .N} where e0 = 0. Figure 5 illustrates
the D3Q19 stencil we used.

Instead of reviewing the well-known Lattice
Bhatnagar-Gross-Krook (LBGK) model (see [7]),
we will outline the Multiple Relaxation Time model
presented in [8]. The analogous of the one-particule

12

3

4

5

6

7

8

9

10

11

1213

14

15

1617

18

Figure 5: The D3Q19 stencil

distribution function f is a set of N + 1 mass frac-
tions fi. We denote:

∣

∣f(x, t)
〉

= (f0(x, t), . . . fN (x, t))T

for given lattice node x and time t, T being the
transpose operator. The mass fractions can be
mapped to a set of moments {mi | i = 0, . . .N} by
an invertible matrix M such as:

∣

∣f(x, t)
〉

= M
−1
∣

∣m(x, t)
〉

(2)

where
∣

∣m(x, t)
〉

is the moment vector. With the
D3Q19 stencil, the density is ρ = m0, the momen-
tum is j = (m3,m5,m7). Higher order moments as
well as matrix M are given in detail in [8, app. A].
Using these notations, the lattice Boltzmann equa-
tion can be written as:

∣

∣f(x + δtei, t+ δt)
〉

−
∣

∣f(x, t)
〉

=

M
−1

S

(

∣

∣m(x, t)
〉

−
∣

∣m(eq)(x, t)
〉

)

(3)

where
∣

∣m(eq)(x, t)
〉

is the equilibrium-moment vec-
tor and:

S = diag(s0, . . . sN)

is the relaxation rates matrix. The LBGK model
is a special case of MRT where all relaxation rates
si = 1/τ . In a numerical point of view, MRT should
be preferred to LBGK, being more stable and ac-
curate.

5

6. Previous Work

Data organisation schemes for LBM are mainly
of two kinds. First, the Array of Structures (AoS)
type, which for D3Q19 is equivalent to a L3 × 19
array. Second, the Structure of Arrays (SoA) type,
which for D3Q19 is equivalent to a 19 × L3 array.
For CPU implementations of the LBM, the AoS is
relevant insofar as it improves the locality of mass
fractions associated to a same node (see [9]). Up
to now, for all GPU implementations of LBM, a
thread is allocated to each lattice node, which is
probably the simplest way to take advantage of the
massively parallel structure of the GPU. With this
approach, ensuring coalescence of global memory
accesses requires to use a SoA kind of organisation.

With values of L divisible by 16, every mass frac-
tions associated to a half-wrap lay in a same seg-
ment of global memory. Yet, this is not sufficient to
ensure optimal memory transaction. Indeed, for the
minor spatial dimension, propagation corresponds
to one unit shifts of memory addresses. In other
words, for most mass fractions, propagation phase
leads to misalignments. Getting round this prob-
lem was up to now the main issue regarding GPU
implementations of the LBM.

The first attempt of implementing a D3Q19
model using CUDA is due to Ryoo et al. (see [10]).
It consists mainly in a port of the 470.lbm code
from the SPEC CPU2006 benchmark (see [11]). In
terms of optimisation, switching from AoS to SoA
is the only important modification undertaken. To
the best of our knowledge, misalignment problems
caused by propagation are not taken into consid-
eration. The announced speed-up factor of 12.3 is
rather low compared to subsequent results.

The two-dimensional D2Q9 implantation submit-
ted by Tölke in [5] solves the misalignment problems
using one-dimensional blocks and shared memory.
More precisely, propagation within one block is split
in two steps: a longitudinal shift in shared memory
followed by a lateral shift in global memory. This
approach is outlined in figure 6.

Since blocks follow the minor dimension, no more
misalignment arises. Nevertheless, because of the
limited scope of shared memory, mass fractions
leaving or entering a block require specific han-
dling. The retained solution is to store out-coming
mass fractions in places temporarily left vacant by
in coming mass fractions (see figure 7).

A drawback of the shared memory approach is
consequently the need for a second kernel exchang-

Figure 6: Propagation using shared memory

Figure 7: Storage of out-coming mass fractions

ing data in order to place properly mass fractions
located at the blocks’ boundaries. Obviously, this
further processing has a non negligible cost.

Following the same method than Tölke, Habich
in [12] describes an implementation of a D3Q19
model. The transition from D2Q9 to D3Q19 leads
to lower performances, achieving only 51% of the ef-
fective maximal throughput. Habich assumes this
decrease is due to the low occupancy rate. As a
matter of fact, given the limited amount of regis-
ters, the number of threads run in parallel on a SP
cannot exceed one or two warps.

This point of view is probably erroneous as we
shall see subsequently. The lower performances
seem more likely due to the increase of the ex-
ecution time of the second kernel, since there is
dramatically more data to exchange than for two-
dimensional LBM. As an example, for D2Q9 on a
2,0482 grid with 128 threads per block, there are
2,048×16×6 = 196,608 mass fractions to move. For
D3Q19, on a 1603 grid with 32 threads per block,
there are 1602 × 5 × 14 = 1,792,000 mass fractions
to move. Relatively to the number of nodes, the
ratio is about 9.3.

A way to obtain better performances for three-
dimensional LBM consists in using stencils contain-

6

ing less mass fractions, like D3Q13. This approach
was studied by Tölke and Krafczyk in [13], obtain-
ing 61% of the effective maximal throughput. The
D3Q13 stencil, which corresponds to the points of
contact in a close-packing of spheres, is the simplest
three-dimensional structure sufficiently isotropic for
LBM. Yet, due to the lesser amount of informa-
tion processed, D3Q13 is less accurate than D3Q19.
Furthermore, node addressing becomes quite com-
plex.

Bailey et al. in [14] announce a 20% improvement
of maximal performances for their implementation
of D3Q19 compared to those published in [12]. The
description of the tested optimisations is not very
explicit, but it seems that the main intention was
to increase occupancy. One of the proposed tech-
nique consists in imposing at compile time an upper
bound to the number of registers used by the com-
putation kernel. Of course this directive causes the
compiler to fall back on register spilling. Taking
the cost of global memory accesses into account,
we consider this approach as not relevant.

7. Proposed Implementations

All but one CUDA implementations of LBM
mentioned in the former section use shared mem-
ory for propagation. As formerly outlined, this
approach imposes the use of a second kernel tak-
ing care of the mass fractions crossing the blocks’
boundaries. Though rather basic, the CUDA pro-
filer allows to gather some informations during ker-
nel run time (see [15]). Concerning LBM, this tool
led us to make two assumptions:

1. The additional cost caused by misalignment
has the same order of magnitude than the one
caused by the exchange kernel.

2. The cost of a misaligned read is less than the
cost of a misaligned write.

Hence we adopted the following approach for our
implementations of D3Q19:

• SoA type of data organisation.

• One-dimensional blocks following the minor di-
mension.

• Propagation performed by global memory
transactions.

• Deferment of misalignment on reading.

We experimented two propagation schemes: a
split scheme and a reversed scheme. The split
scheme was tested with a LBGK model and on-
grid boundary conditions. The reversed scheme was
tested with a MRT model and mid-grid boundary
conditions. To ease cross platform development,
we employed the CMake build system (see [16]).
Moreover, we used the XML based VTK format for
output (see [17]).

7.1. Split scheme

With the split scheme, propagation is parted in
two components: shifts that induce misalignment
are performed at reading, the others are performed
at writing, as outlined in figure 8. For the sake of
simplicity, the diagram shows the two-dimensional
case.

Figure 8: Split propagation scheme

Boundary conditions are implemented using on-
grid bounce back: nodes at the cavity’s borders,
except the lid, are considered as solid and simply
return the in-coming mass fractions in the opposite
direction.

To summarise, the corresponding kernel breaks
up into:

1. Reading along with propagation in minor di-
mension.

2. On-grid bounce back boundary conditions.

3. Computations using LBGK model.

4. Writing along with propagation in major di-
mensions.

7.2. Reversed scheme

With reversed scheme, propagation is entirely
performed at reading, as outlined in figure 9. Again,
the diagram shows the two-dimensional case only.

7

Figure 9: Reversed propagation scheme

Boundary conditions are implemented using mid-
grid bounce back: nodes at the cavity’s borders, ex-
cept the lid, are considered as fluid with null veloc-
ity. Unknown mass fractions are determined using:

fi − f
eq
i = fj − f

eq
j (4)

whith i and j such as ei = −ej (see [18]). For
null velocity, f eq

i = f eq
j . Hence the former equation

yields fi = fj .
To summarise, the corresponding kernel breaks

up into:

1. Reading carrying out propagation.

2. Mid-grid bounce back boundary conditions.

3. Computations using MRT model.

4. Writing without propagation.

8. Results

8.1. Validation

Numerical validation is an important issue in
GPU computing, since most calculations are per-
formed using single precision. This topic being
thoroughly studied for GPU implementations of
LBM in [19], we will rather focus on physical valida-
tion. We used the well-known lid-driven cavity test
case, comparing velocity coordinates with results
published by Albensoeder and Kuhlmann in [20].
More precisely, for velocity u(u, v, w), we gathered
u on line x = L/2 and y = L/2, as well as w on
line z = L/2 and y = L/2. For Reynolds number
Re = 1,000, our LBGK code outcomes are in quite
good accordance with the reference values. Not sur-
prisingly, the MRT implementation achieves almost
perfect correspondence as shown in figure 10.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Albensoeder & Kuhlmann (JCP 206)
u
w

Figure 10: Validation for Re = 1,000

8.2. Performances

Binaries for nVidia GPUs are generated through
a two stages process (see [21]). First, the nvopencc

program compiles CUDA code into Parallel Thread
eXecution (PTX) pseudo assembly language. Sec-
ond, the ocg assembler translates the PTX code
into actual binary. Analysing PTX outputs allows
to enumerate the floating point operations in a ker-
nel and thence to evaluate the actual algorithmic
complexity of the computations. Table 3 assem-
bles the obtained results for both the LBGK and
the MRT kernels (rcp stands for reciprocal, mad for
multiply-add).

add sub mul div rcp mad cycles

LBGK 63 30 48 0 1 34 716

MRT 76 80 51 0 0 18 900

Table 3: Algorithmic complexity of LBGK and MRT kernels

Though being more complex than LBGK, MRT
has almost the same computational cost. It is worth
noting that this cost is of the same order of mag-
nitude than one single global memory transaction,
that is to say 400 to 600 cycles. Thus, taking
the hardware scheduler into account, the impact
of computations on global processing time is neg-
ligible. Most of the execution time of our kernels

8

is consumed by data transfer, the remaining being
probably induced by scheduling. In terms of opti-
misation, increasing the occupancy rate of the SMs
is not especially crucial.

The former opinion is supported by the analysis
of the performances of our implementations. Mil-
lion Lattice node Updates Per Second (MLUPS)
is the usual unit for performance measurement in
LBM. For both implementations, memory address-
ing is analogous to the one used in code 1. There-
fore, the size of the blocks corresponds to the size of
the cavity. Tables 4 and 5 show the obtained per-
formances on a Debian GNU/Linux 5.0 workstation
fitted with a GeForce GTX 295 graphics card.

643 963 1283 1603

Performance (MLUPS) 471 512 481 482

Ratio to max. throughput 79% 86% 81% 81%

Occupancy rate 31% 19% 25% 16%

Table 4: Performances for LBGK

643 963 1283 1603

Performance (MLUPS) 484 513 516 503

Ratio to max. throughput 81% 86% 86% 84%

Occupancy rate 25% 19% 25% 16%

Table 5: Performances for MRT

One may notice that the data transfer rate is
rather close to maximum. Global memory through-
put is presently the limiting factor for LBM compu-
tations on GPU. Moreover, it is worth mentioning
that these satisfactory performances are achieved
with quite low SM occupancy.

Confronting the obtained performances to pub-
lished results corroborates our approach. Depend-
ing on the size of the cavity, we observe 2× to 3×
speed-up compared to the performances mentioned
in [12, 14]. Yet these studies were led on GeForce
8800 GTX graphics cards, which belong to the pre-
vious generation though being comparable to the
hardware we used in terms of memory throughput.
Therefore, these comparisons should be considered
with care, and we additionally compared a D2Q9
version of our code to the one published in [5] on
the GTX 295 obtaining a 15% betterment of the
performances.

9. Summary

The present study proposes a model for data
transfer on the latest generation of nVidia GPUs.
Optimisation principles, leading to efficient imple-
mentations of 3D LBM on GPUs, are drawn as well.
We state the impact of global memory transfer as
the main limiting factor for now. Our implementa-
tions achieved up to 86% of the effective maximal
throughput of global memory. On the 3D lid-driven
cavity test case, we obtained 2× to 3× speed-up
over previously published implementations. More-
over, we show that, compared to LBGK, the more
stable and accurate MRT, despite its higher com-
putational cost, yields equivalent performances on
GPUs. Our approach, being simpler than the previ-
ous ones, exerts less pressure on hardware. Hence,
our method will allow to implement more complex
models in the near future.

References

[1] J. Dongarra, S. Moore, G. Peterson, S. Tomov,
J. Allred, V. Natoli, D. Richie, Exploring new architec-
tures in accelerating CFD for Air Force applications,
in: Proceedings of HPCMP Users Group Conference,
Citeseer, 2008, pp. 14–17.

[2] S. Tomov, J. Dongarra, M. Baboulin, Towards dense
linear algebra for hybrid GPU accelerated manycore
systems.

[3] T. Halfhill, Parallel processing with CUDA, Micropro-
cessor Journal.

[4] nVidia, Compute Unified Device Architecture Program-
ming Guide version 2.2 (April 2009).

[5] J. Tölke, Implementation of a Lattice Boltzmann ker-
nel using the Compute Unified Device Architecture de-
veloped by nVIDIA, Computing and Visualization in
Science 1–11.

[6] G. R. McNamara, G. Zanetti, Use of the Boltzmann
Equation to Simulate Lattice-Gas Automata, Phys.
Rev. Lett. 61 (1988) 2332–2335.

[7] Y. H. Qian, D. d’Humières, P. Lallemand, Lattice
BGK models for Navier-Stokes equation, Europhys.
Lett 17 (6) (1992) 479–484.

[8] D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lalle-
mand, L. Luo, Multiple-relaxation-time lattice Boltz-
mann models in three dimensions, Philosophical Trans-
actions: Mathematical, Physical and Engineering Sci-
ences (2002) 437–451.

[9] T. Pohl, M. Kowarschik, J. Wilke, K. Iglberger,
U. Rüde, Optimization and Profiling of the Cache Per-
formance of Parallel Lattice Boltzmann Codes, Parallel
Processing Letters 13 (4) (2003) 549–560.

[10] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone,
D. B. Kirk, W. H. Wen-mei, Optimization principles
and application performance evaluation of a multi-
threaded GPU using CUDA, in: Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and practice
of parallel programming, ACM New York, NY, USA,
2008, pp. 73–82.

9

[11] J. L. Henning, SPEC CPU2006 Benchmark Descrip-
tions, ACM SIGARCH Computer Architecture News
34 (4) (2006) 1–17.

[12] J. Habich, Performance Evaluation of Numeric Com-
pute Kernels on nVIDIA GPUs, Master Thesis.

[13] J. Tölke, M. Krafczyk, TeraFLOP computing on a desk-
top PC with GPUs for 3D CFD, International Journal
of Computational Fluid Dynamics 22 (7) (2008) 443–
456.

[14] P. Bailey, J. Myre, S. D. C. Walsh, D. J. Lilja, M. O.
Saar, Accelerating Lattice Boltzmann Fluid Flow Sim-
ulations Using Graphics Processors (2008).

[15] nVidia, CUDA Profiler version 2.2 (2009).
[16] K. Martin, B. Hoffman, Mastering CMake, A Cross-

Platform Build System, Kitware Inc, Clifton Park NY,
2008.

[17] W. J. Schroeder, K. Martin, L. S. Avila, C. C. Law,
The VTK User’s Guide, Kitware Inc, Clifton Park NY,
2006.

[18] Q. Zou, X. He, On pressure and velocity flow boundary
conditions and bounceback for the lattice Boltzmann
BGK model, Arxiv preprint comp-gas/9611001.

[19] F. Kuznik, C. Obrecht, G. Rusaouën, J.-J. Roux,
LBM Based Flow Simulation Using GPU Computing
Processor, Computers and Mathematics with Applica-
tions (27).

[20] S. Albensoeder, H. C. Kuhlmann, Accurate three-
dimensional lid-driven cavity flow, Journal of Compu-
tational Physics 206 (2) (2005) 536–558.

[21] M. Murphy, NVIDIA’s Experience with Open64,
nVidia.

10

