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Abstract. In speech recognition, phonemes have demonstrated their ef-
ficacy to model the words of a language. While they are well defined for
languages, their extension to human actions is not straightforward. In
this paper, we study such an extension and propose an unsupervised
framework to find phoneme-like units for actions, which we call actemes,
using 3D data and without any prior assumptions. To this purpose, build
on an earlier proposed framework in speech literature to automatically
find actemes in the training data. We experimentally show that actions
defined in terms of actemes and actions defined by whole units give simi-
lar recognition results. We define actions out of the training set in terms
of these actemes to see whether the actemes generalize to unseen actions.
The results show that although the acteme definitions of the actions are
not always semantically meaningful, they yield optimal recognition accu-
racy and constitute a promising direction of research for action modeling.

1 Introduction

Recognition of human actions is an important part of research in dynamic scene
understanding. The applications of classifying human actions in a video extend
from video indexing and retrieval, video surveillance, human-robot and human-
computer interactions. There are several challenges which arise while tackling
the problem of human action recognition. One such fundamental problem is the
temporal representation of actions. Phonemes in spoken language are the small-
est or distinct segmental unit of sound which can be combined or concatenated
to form words. This fact is exploited in speech recognition where Hidden Markov
Models (HMMs) are learned on these phonemes. These models are combined to
define the words of a vocabulary. Motivated from speech recognition, we inves-
tigate whether such a hierarchical definition is possible for human actions using
sub-action units which we call actemes.

Intuitively, there must exist a restricted set of generic motions of a human
body which can define all actions. This set, if it exists, can be likened to a set of
phonemes which can define every word in the dictionary from a given language.
There are certain advantages if such actemes can be learned. Firstly, the actemes
would allow us to define a large number of actions in a compact representation.
Secondly, the advantage of having a hierarchy i.e. where an action is described
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as sequence of actemes is that when a new action is added to the list of actions
to be recognized, this new action can be described in terms of actemes thus
obviating the need for learning a new model every time an action is added.

The concept of phoneme definition for words exist from linguists. No such
widely accepted definitions of actemes exist for human actions. Several researchers
have tried to come up with such definitions. Green et. al.[1] proposes the use of
35 Dynemes which form the basic units of human actions or skills. The dynemes
are defined in terms joint angles. An HMM model is used for action recognition.
Another work by [2] defines kinetemes on the joint angle space of human motion.
These kinetemes form the basic unit of a human activity language. Using these
kinetemes and language grammar like rules the authors propose to construct any
complex human action. Bregler [3] defines Movemes as linear dynamical systems
over which an HMM model is learned for recognition. Since the space of all pos-
sible human motions is very large and since no widely acceptable definition exist
it is better to automatically come up with these definitions for actemes as op-
posed to [1]. Also, we assume no rules while labelling the actions in terms of the
learned actemes, as done in [2] instead we use the recognition algorithm it self
to provide the labelling. In [3], the author proposes a method to automatically
learn the Movemes from the training set. The results shown in this paper are
evaluated on actions consisting on repeated segments such as walking, running
and skipping. In such a scenario the basic blocks constructing the actions are
obvious and eliminate the need for labelling the actions in terms of Movemes. In
this paper, for the experiments we evaluate the efficacy of our proposed method
exclusively on actions which do not consist of repeated segments.

In this paper, we build on a speech recognition formalism [4, 5], which pro-
poses to design a recognizer terms of acoustic subword units (ASWU).This
method assumes no prior information while learning the ASWUs from words. It
learns these definitions in an unsupervised data-driven manner. We apply this
method from speech recognition for obtaining actemes because it is completely
data-driven and makes no prior assumptions on the definitions of actemes. This
is a completely different way to approach the problem of human action represen-
tation and recognition than the earlier proposed methods. Secondly, the number
of actemes per action is also known so a data-driven approach is best suited to
come up with acteme units. To summarize, the main contributions of the paper
are the following:

1. We use a speech recognition formalism to learn the actemes and the repre-
sentation of actions in terms of the actemes in an unsupervised framework.

2. We show that actions from outside the training set can be represented in
terms of these learned actemes and recognized without explicitly learning a
new model for the actions.

2 Related Work

Automatic annotation of actions in videos is a challenging task and various
action recognition methods can be grouped together depending on the types
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of features used and the method employed to model the temporal and spatial
representations of actions. A brief survey of temporal representations similar to
ours has been discussed in Sec. 1. We restrict our survey to 2D silhouettes, 3D
visual hulls and key frames as features. The recognition methods discussed are
HMMs and dynamic time warping (DTW) based methods. For a detailed survey
of action recognition methods see [6].

The earliest features used were silhouettes extracted from each frame over
time and an HMM was learned from them [7]. These were used to recognize
tennis strokes from single views. A later paper [8] describes temporal templates
for human action recognition. [9] extends the 2D temporal templates to 3D vol-
umes. [10] also describes a view invariant recognition method where they learn
parametric HMMs from 3D data and use the HMMs as a generative model to
synthesize 2D action sequences closest to an unknown 2D test action sequence.
Another way of classifying actions is by using dynamic time warping (DTW). [11]
learns the warping bounds for the actions from the training data. [12] proposes to
use distance between linear dynamical systems for action classification. [13],[14]
perform action recognition by defining actions as trajectories on the Grasmann
Steifel manifold. [15] extends the DTW framework using average templates with
multiple features to model intra-class variances and perform simultaneous recog-
nition and localization of actions in a video sequence. All these methods learn
the model on entire actions.

Another popular method is to define actions as a set of poses or key frames or
exemplars [16]. They use single key frames to recognize backhand and forehand
in tennis. There also has been work which uses short snippets of frames [17] to
recognize actions instead of a single frame. In [18], the authors use the forward
selection algorithm to find the most discriminative set of exemplars to describe
an action vocabulary. [19] model actions as a sequence of atomic body poses
where the authors consider the order in which the poses appeared. In this paper,
we express action interms of sequence of short segments or actemes instead of
sequence of key poses.

3 The Method

To learn the actemes we employ a method proposed in speech recognition [4,
5]. Actemes are equivalent to phonemes or ASWUs and the whole actions are
equivalent to a word. In this method, the authors propose to 1) optimal cut
the words into piecewise stationary segments, 2) get a reduced set of ASWUs
by applying K-means on the means of each optimal segment , 3) learn HMMs
on these ASWU, 4) apply the connected word Viterbi algorithm to label the
training data in terms these ASWU to generate a lexicon or a phonetic definition
for each word in terms of the ASWUs, and 5) then use this definition in the
Viterbi framework to perform recognition. Instead of using HMMs to model
the actemes we use the earlier proposed average template models [15] and the
one-pass dynamic programming algorithm [20] for labeling and the modified one-
pass dynamic programming algorithm [21] for recognition. The average template
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model is shown to outperform the HMMs in [15] . Figure 1 and Figure 2, explains
the building blocks of the algorithm. These building blocks are explained in the
following sub-sections from 3.1 to 3.5.

Fig. 1. In this figure, we have the block diagram of the acteme training steps
.

Fig. 2. In this figure, we have the block diagram of the steps for recognition
.

3.1 Feature Computation

The features needed to interface with a time synchronous onepass-DP algorithm
should be a set of feature vectors over time given by E = {e1, e2, . . . , eb, . . . , eT }
where eb is a vector of dimension c at a given time instant b. In this paper, we
use 3D visual hulls as our features. We then compute motion history volumes
(MHVs) [9] to recognize action using DTW. The MHVs store the motion history
on a 3D occupancy grid in a given window. In this paper, we use a short window
of size 5. The occupancy grid of the MHVs is of the size 64×64×64 for each frame.
Since the actors are allowed to change their view point freely we convert the
Cartesian coordinates to cylindrical coordinates followed by Fourier transform
on this occupancy grid. This Fourier magnitudes ,of size 16×16×16, are invariant
to the rotation around the z-axis. We perform further dimensionality reduction
using principal component analysis to reduce the feature vector to a size of 100.
Therefore, in this paper we have c = 100.
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3.2 Temporal Segmentation

Several approaches using HMMs have been used for action, gesture and sign
language recognition. The implicit assumption of using a left to right HMMs
for recognition is that the action is composed of piecewise stationary regions.
These regions are modelled by the states of the HMM. Hence the number of
states is an important parameter to correctly estimate for action recognition.
The piecewise stationary regions in a word are the phonemes and if we fit a
left to right HMM model with the number of states equal to the number of
phonemes we get a good recognition accuracy [5]. Also the steady state regions
are most likely to lie between abrupt motion changes or discontinuities which
can be used for temporal segmentation [22] using MHVs. We do not take the
approach of using velocity discontinuities because actions like ”‘stand”’ or ”‘sit
down”’ do not have abrupt changes in the direction of velocity. We motivate our
strategy to cut actions into relevant regions by assuming that the actions can be
decomposed into piecewise stationary regions. The method cuts the actions into
segments such that the global distortion of these segments w.r.t their means is
minimized. This can be formulated as a dynamic programming problem [23].

Consider an action template defined as set of features over time by E where
eb is a feature vector corresponding to the bth frame of size c = 100 and the
action is performed over T time instances. The task here is to segment E into f
homogeneous segments by minimizing the sum of the distances between frames
of the segments to their respective means. Let the segment boundaries for a
given action template be G = {g1, g2, gi, . . . , gf} where gi are integers indicating
the frame numbers of the boundaries. The ith segment starts at gi−1 + 1 and
ends at gi; g1 = 0 and gf = T . The optimal boundaries G∗ can be found by
minimizing the following function over all possible segmentations:

D1(f, T ) =

i=f∑
i=1

gi∑
b=gi−1+1

d1(eb, ēi) (1)

where D1(f, T ) is the total accumulated distance for segmenting E into f
segments. The mean of the ith segment is given by ēi which is the average of the
frames of the ith segment given by H =

{
egi−1+1, . . . , egi

}
. The distance metric

used is euclidean; d1(eb, µi) = ‖eb − ēi‖.
The problem of solving for optimal boundaries can be efficiently solved using

a treillis realization. This can be achieved by solving the following dynamic
programming recursions as given in [23],[24]:

D1(i, gi) = min
gi−1

[D1(i− 1, gi−1) + d1(eb, ēi)] where b = gi−1 + 1 to gi (2)

where D1(i, gi) is the cost of dividing the template E into i segments till the
frame gi where i < f . This cost is given by the minimum over cost accumulated
by dividing E into i − 1 segments till frame gi−1 plus the distance of the ith
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segment with its mean. The optimal segmentation can be found by backtracking
through the trellis starting from minD(f, T ).

If the number of segments f for a given word is equal to the number of
phonemes in that particular word then ASWUs are equivalent to phonemes of
that language otherwise the ASWUs are not semantically meaningful. The num-
ber of phonemes in a given word is not always known because of the pronuncia-
tion. In [4, 5], it is shown that even if ASWUs are not semantically meaningful
the algorithm still provides a good recognition accuracy. Since the number of
actemes in an actions are unknown the method given in [4, 5] is more suited
to be applied to the problem of action recognition using actemes as opposed to
other approaches [1–3] motivated from speech recognition systems.

3.3 Clustering and Computing average-template Model

This procedure to segment each action template into f segments is repeated for
all actions in the training set. Therefore, if there are N training instances of all
actions then we will have a set of f×N variable length temporal segments. To get
a compact representation we apply K-means on this set of temporal segments to
get the K actemes. Since, we assumed that each segments is piecewise stationary
we represent each segment in this set by its mean and apply the K-means on the
these segment means.

To represent the cluster corresponding to each of the acteme we compute a
temporal average or nominal template [25] over all the instances of a a given
acteme. In this section, we describe a method to represent each acteme as an av-
erage of the templates in that cluster of actemes. The average pattern or average-
template Rk is computed by mapping the segments, H = {H1, H2, . . . ,Hl, . . .},
in the cluster corresponding to the acteme k using DTW. We use Euclidean
distance as the local distance d2(i, j) between the frame i of Rk and frame j
of H. If I is the length of Rk and J is the length of H, the path is forced to
begin at the point D2(1, 1) and end at D2(I, J) on the trellis to compute the
accumulated distance D2(i, j) . This accumulated distance is defined as:

D2(i, j) = min[D2(i− 2, j − 1) + 3d2(i, j),

D2(i− 1, j − 1) + 2d2(i, j),

D2(i− 1, j − 2) + 3d2(i, j)] (3)

where i is the frame index of the average reference pattern Rk and j is the frame
index of the train pattern H.

Backtracking from the point D2(I, J) on the treillis yields the optimal path
p = [im, jm] and the corresponding mapped set of feature vectors [Rk(im), H(jm)].
Here m, is the index of a point on the optimal path p. The average reference
pattern Rk

l for an activity is computed by the successive weighted averaging of
l instances as follows:

Rk
l (m) =

(
1− 1

l

)
Rk

l−1(im) +
1

l
Hl(jm),m = 1 . . .M (4)
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where M is the number of points on the optimal path p and Rk
l−1(im) is the

average of the previous l − 1 templates. The new time axis for the instance Rk
l

is computed as:

p1(m) =

(
1− 1

l

)
im +

1

l
jm,m = 1 . . .M (5)

We linearly transform this new time axis to a constant length P where P is the
average length of all segments in the cluster of acteme k. The transformation is
done as follows:

p2(m) =
P

M
p1(m) (6)

as p2(m) would have non-integer values we define a time axis p3(m′) where m′ =
1, 2, 3 . . . P . The feature values of the average pattern Rk

l (m) are interpolated to
get the new average pattern representing the cluster corresponding to acteme k
Rk

l (m′).

3.4 Labelling

In this section, we discuss the method to label each of the training sequences
in terms of the learned K learned actemes. We use a ’connected word recogni-
tion’ algorithm based on the one-pass DP, well known in speech recognition [20].
Continuous labelling of action templates in terms of actemes is a difficult task
to do on line, primarily because this involves the problem of jointly determin-
ing the optimal number of actemes M∗ in the train sequence O, their bound-
aries S∗ = {s∗0, s∗1, s∗m−1, s∗m, . . . , s∗M∗} and associated optimal acteme indices
I∗ = {i∗1, i∗2, . . . , i∗m, . . . , i∗M∗} (where vi∗m ∈ V ), by minimizing a measure of dis-
tance D(O,R) between the train sequence O and a typical reference acteme tem-
plate sequence R = {Rvi1

, Rvi2
, . . . , Rvim

, . . . , RviM
} each drawn from V . The

decoding problem of determining (M∗, S∗, I∗) is solved by minimizing D(O,R)
over the variables (M,B, I) using the time-synchronous one-pass DP decoding
algorithm.

To compute the optimal cumulative distance, we use two types of transition
rules (a) for acteme interior i.e. Within Acteme Recursion (b) for acteme bound-
ary i.e Cross-Acteme Recursion. These recursions are computed for all frames
of the train action template w.r.t the all frames of all average template acteme
models in a left to right time synchronous manner. These recursions would then
result in many possible paths. The optimal action sequence or path will be the
one which corresponds to the minimum cumulative distance (Termination and
Backtracking).

We now provide the mathematical details pertaining to the above intuitive
explanation of the algorithm. The acteme vocabulary of size K is given by V =
{v1, v2, . . . , vK}. Each acteme corresponds to a reference pattern Rvk(k′), where
k′ = 1, 2, 3 . . . Pvk ; Pvk is the number of frames of the average template vthk
acteme where k = 1, 2, 3 . . .K. The train action template frame index is given
by q and Q is the length of the train action template O. During the labelling pass
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the sequence of warping is given by the average-templates. The local distance
between one frame of the average template of a given acteme and a frame of the
training action sequence is computed in the following way:

d(q, k′, v) = ‖Rv(k′)−O(q)‖ (7)

Let D denote the global accumulated distance between the train action frame
and the reference pattern frame. The one-pass DP decoding would look to min-
imize the global accumulated distance over all the frames of the train action
pattern. The following steps give a method to accumulate the global distance
between a given train action frame and a frame of the reference pattern to find
a globally optimal path:

1. Within acteme recursion: This recursion is computed for all frames Q of
the train action pattern and all frames k′ of all reference patterns except for
k′ = 1 i.e. the recursions are applied to to all frames except at the acteme
beginning. This recursion can be denoted as:

D(q, k′, v) = d(q, k′, v) + min
k′−2≤r≤k′

(D(q − 1, r, v)) (8)

2. Cross-acteme Recursions: This recursion is computed for allQ test frames
and for k′ = 1 frames of all reference patterns. This recursion allows a transi-
tion into the first frame of a given reference pattern from the last frame of all
other reference pattern including the given reference pattern or it allows the
path to be in the last frame of that given reference pattern i.e. the algorithm
either stays in the particular acteme or transits into the first frame on any
other acteme depending on which of the two paths yields a minimum score.
It can be denoted as:

D(q, 1, v) = d(q, 1, v) + min[ min
1≤v≤K

[D(q − 1, Pv, v)], D(q − 1, 1, v)] (9)

3. Termination and Backtracking: To find the best acteme sequence the
algorithm uses the following termination condition at the train action frame
Q:

D∗ = min
1≤v≤K

[D(Q,Pv, v)] (10)

The algorithm checks for the minimum accumulated distance for the best
path at the last frame of every reference pattern at the train action frame Q.
The best path is backtracked from that point through back-pointers stored
during the Within Acteme and Cross Acteme recursions.

The output of running the onepass-DP algorithm will be a sequence of op-
timal acteme indices I* for every training action template. For eg. the a given
sequence O could be labelled as {v3, v2, v7} . This is a completely unsupervised
labelling by an onepass DP algorithm which is also the same algorithm we use
for recognition. We choose the acteme representation or lexicon which repeats
itself the most number of times as the model for a given action while recogni-
tion. Since, there is intra class variance in the manner in which different actors
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perform the action we find that upto 4 lexicons have to be used to get results
close to our baseline. This is true in the case of speech recognition where a given
word can be pronounced by different by different speakers one phonetic repre-
sentation is not enough to obtain good recognition results. The lexicons chosen
are in descending order of their occurrence while labelling the training data.

3.5 Recognition

While recognizing the actions we assume that the action boundaries in the video
sequence are known. Therefore, we only recognize the action and do not localize it
in the video sequence. This assumption is necessary as isolated action recognition
is the true test of the efficacy of this approach as it gives only substitution errors
i.e. the an action can be recognized as itself or confused as some other action.
Simultaneous recognition and localization causes insertion and deletion errors.

We use the method proposed in [21] to perform action recognition when
each action is defined in terms of actemes. The proposed algorithm can be used
for simultaneous recognition and localization of action in a video sequence. We
switch off the Cross-Word transitions [21] since we are only recognizing the
actions and assume that the boundaries in the video sequence are known.

Let the number of action to be recognized be W = {w1, w2, . . . , wm, . . . , wM}
where m = 1 . . .M is the total number of actions in the recognition vocabulary.
The number of lexicons per actions is defined as l which is the constant and same
for every action to be recognized in the vocabulary. The lth representation of
each action wm in terms of the actemes given by {al1m, al2m, . . . , aljm, . . . , alNam

}
where j = 1 . . . Nam is the number of actemes representing the action wm and l =
1 . . . L. The local distance between the test sequence and the average templates
be d(m, aljm, l, k

′, q) where k′ = 1, 2, 3 . . . Pal
jm

; Pal
jm

is the number of frames

of the average template aljm acteme. The test action sequence consist of q =
1 . . . q . . . Q frames. The local distance is given by euclidean distance between the
k′th frame of the average template representing each acteme and the qth frame
of the test data. The dynamic time warping time synchronously calculates the
minimum global accumalted distance D(m, aljm, l, k

′, q) to reach the k′th frame

of the word wm represented by lexicon l till the qth of the test action sequence.
Since, the cross action recursions are switched off there are only with action
recursions which can be divided into two types:

1. Within Acteme recursions: These recursions are applied for all frames of
the average template of each of the acteme except for the template beginning
i.e. k′ = 1

D(m, aljm, l, k
′, q) = d(m, aljm, l, k

′, q)+ min
k′−2≤r≤k′

[D(m, aljm, l, r, q−1)] (11)

2. Cross Acteme recursions: The actions are represented by variable number
of actemes in a given order. This order is given in the labelling step. There-
fore, in this recursion the transition occurs into the first frame of the average
template of each acteme from the last frame of the average template of the
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previous acteme. This is known as forced alignment of the concatenated ac-
tion model to the test sequence. This recursion are applied at the first frame
k′ = 1 of every acteme except the first. This step can be mathematically
denoted as:

D(m, aljm, l, k
′ = 1, q) =min[D(m, aljm, l, k

′ = 1, q − 1), (12)

D(m, al(j−1)m, l, Pal
(j−1)m

, q − 1)]

where j = 2 to Nam

3. Termination and Backtracking: The action is assumed to begin at the
first frame of the average template of the first acteme of the given action
and end at the last frame of the last acteme of the same action. Therefore,
the optimal accumulated distance D∗ can be obtained by checking the last
frames of the last actemes of all actions with all representative lexicons at
the last frame Q of the test sequence:

D∗ = min
m=1...M

min
l=1...L

D(m, alNam
, l, Pal

Nam
, Q) (13)

The test sequence is classified as the action index m for which the D is minimum.

4 Experimental Results

In this section, we show that the actions described as actemes give equivalent
performance to the actions when modelled as whole units themselves. We add
actions which are not included in the training set to check whether the learned
actemes generalize to unseen data. We evaluate our method on the INRIA XMAS
dataset. In our experiments, we assume that the boundaries of the actions in the
video sequences are known.

For the first set of experiments,we use a reduced vocabulary of check watch,
sit down, get up, punch and kick. The recognition experiments are performed on
the set of 10 actors and are validated by the standard leave-one-out testing proce-
dure.In these experiments, we show that the actions described by actemes give
equivalent recognition performance to actions described as whole units them-
selves. We first obtain the 100 dimensional feature vectors in time from the 3D
visual hulls using the procedure described in Sec. 3.1. We apply the temporal
segmentation procedure on all available training instances of each actions to get
2 and 3 segments respectively. If the method tries to cut the actions into more
than three segments we observe that the actions start breaking into segments
which are only 1-2 frames long. These segments cannot be averaged with longer
segments to learn an average template model because the warping of very short
with long segments is meaningless [5].

We apply K-means on these cut segments and plot the recognition results
with K varying from 10 to 50 in the steps of 10. Due to the intra class variance
observed in the performance of the actions we increase the number of lexicons
per actions from 1 to 4 in the descending order of their occurrence. We find that
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both help in increasing the recognition accuracy. The recognition results of the
first set of experiments are given in Fig. 3. We observe two facts from this result:

1. For the case where training actions are cut into 2 segments the recognition
accuracy increases till two lexicons and then it starts to decrease. This is
because there is trade off between the number of lexicons per actions and
the recognition accuracy as increasing the number of lexicons per actions
also increases the possibility of confusions.

2. Recognition accuracy is better when the actions are segmented into 3 parts
than 2 parts because if we observe the reduced vocabulary of actions apart
for stand up and sit down in the XMAS dataset they consist of three parts
an initial movement, the main action and the relaxation part. In sit down,
there is an initial movement of bending the back, crossing the legs sitting
down and coming to a relaxed pose after sitting down. Stand up is exact
opposite of sitting down.

In the second set of experiments in the paper, we add the following set of
actions one at a time to the cross arms, scratch head, pick up to the list of
actions to be recognized. Thus, forming a vocabulary of 6 actions every time one
of the 3 actions is added. The training instances of these actions are not used to
train the actemes. We only use the training instances from these actions to get
the lexical representation of the added action in terms of the actemes learned
from the earlier 5 actions.

We observe that the recognition accuracy is the best for pick up because the
initial part of pick up is very similar to the sit down and the latter part of pick
is similar to the stand up action. Therefore, the actemes for pick up are present
in the reduced vocabulary of 5 actions. The next best performance is achieved
by cross arms again because the action check watch is similar to it. The actions
scratch head action when added to the vocabulary of 5 action gives the worst
recognition result because there are no actions in the reduced vocabulary of 5
actions similar to the scratch head action. The recognition results for the second
set of experiments are given in Fig. 4 to Fig. 6.

We compare our results with other methods which were applied to the IN-
RIA XMAS database. We model these whole units of actions using an average
template model as discussed in 3.3 and perform isolated action recognition [15]
to get the recognition baseline. This baseline is shown as the blue baseline in
Fig. 3 to Fig. 6. We also compare our results with the recognition method pro-
posed in [9]. The size of the FFT features used to obtain recognition results
16× 16× 16. We compare our method with the approach in [11] which proposes
another method to learn average or nominal trajectories.The average trajectories
are computed using the 100 dimensional features described in Sec. 3.1 . We find
that the proposed acteme based representation performs slightly better than the
method proposed in [11] and comes close to the recognition performance of [15, 9]
for the first set of experiments using 5 actions. For the second set of experiments
we find the for added actions, cross arms, pick up, which have a similar action
in the 5 action training set the results are comparable to all the baselines. The
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recognition accuracy in the actemes column is the recognition accuracy achieved
for 3 cuts and K = 50. All the methods use leave-one-out testing strategy. [9]
uses a best segment representative of the action. While actemes,[15] and [11] use
the boundaries extracted from the ground truth.

Table 1. Comparison of actemes representation with other Recognition Methods

Added LDA PCA Mahala- Average Actemes Average
Action [9] [9] nobis [9] Template [15] This Paper Trajectory[11]

None 94.67 86.67 95.33 95.33 94.00 92.00

CrossArms 97.78 81.67 97.79 97.79 87.29 86.74

ScratchHead 92.22 77.22 93.33 97.78 81.67 91.11

PickUp 96.67 83.89 94.44 97.24 91.71 92.82

In the experimental section, we have discussed the efficacy of the actemes
w.r.t. the recognition accuracy. The representation of check watch and sit down
actions in terms of the actemes is shown in the video uploaded with the paper.

Fig. 3. Recognition accuracy plots for 2 and 3 segments cuts. We can see that the
recognition accuracy of acteme based representation is close to the baseline of actions
when modelled as whole units themselves.

Fig. 4. Recognition accuracy plots for 2 and 3 segments cuts with Cross Arms as
the added action. We can see that for the 3 cut case this 6 word vocabulary gives
satisfactory results
.

5 Conclusion and Future Work

To conclude, we have demonstrated an unsupervised framework to learn a set of
actemes from a given training database to represent actions. We experimentally
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Fig. 5. Recognition accuracy plots for 2 and 3 segments cuts with Scratch Head as
the added action. We observe that the recognition results are poor because the scratch
head does not have a similar action in reduced vocabulary of 5 actions used to learn
the actemes
.

Fig. 6. Recognition accuracy plots for 2 and 3 segments cuts with Pick Up as the added
action. We observe that the recognition results are good because the actemes for pick
up are present in the Stand Up and Sit Down action
.

show that actions defined in terms of these actemes can give the similar recog-
nition accuracy as compared to the whole unit themselves. We also showed that
satisfactory recognition results can be achieved even with action which are not in-
cluded in the training set for learning the actemes. For future work we would like
to explore techniques which can be semi-supervised to learn semantically mean-
ingful actemes. We would also like to extend this framework to bag-of-words like
approaches. The next obvious step would be to do simultaneous recognition and
localization of actions in a video sequence.
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