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Abstract

In this paper, we consider the problem of tracking non-

rigid surfaces and propose a generic data-driven mesh de-

formation framework. In contrast to methods using strong

prior models, this framework assumes little on the observed

surface and hence easily generalizes to most free-form sur-

faces while effectively handling large deformations. To this

aim, the reference surface is divided into elementary surface

cells or patches. This strategy ensures robustness by provid-

ing natural integration domains over the surface for noisy

data, while enabling to express simple patch-level rigidity

constraints. In addition, we associate to this scheme a ro-

bust numerical optimization that solves for physically plau-

sible surface deformations given arbitrary constraints. In

order to demonstrate the versatility of the proposed frame-

work, we conducted experiments on open and closed sur-

faces, with possibly non-connected components, that un-

dergo large deformations and fast motions. We also per-

formed quantitative and qualitative evaluations in multi-

cameras and monocular environments, and with different

types of data including 2D correspondences and 3D point

clouds.

1. Introduction

Recovering the temporal evolution of a deformable sur-

face is a fundamental task in computer vision, with a large

variety of applications ranging from the motion capture of

articulated shapes, such as human bodies, to the intricate

deformation of complex surfaces such as clothes. Methods

that solve for this problem usually infer surface evolutions

from motion or geometric cues. This information can be

provided by motion capture systems or one of the numer-

ous available static 3D acquisition modalities. In this infer-

ence, methods are faced with the challenging estimation of

the time-consistent deformation of a surface from cues that

can be sparse and noisy. Such an estimation is an ill posed

Figure 1. Tracking of a complex surface, composed of discon-

nected components, using multi-view reconstructions.

problem and prior knowledge must be introduced in order to

limit the range of possible deformations. Existing methods

differ in the priors they consider.

Many approaches are based on strong shape priors, e.g.

parametric models [18, 7] machine learning [4] or modal

approaches [14], that reduce the dimensionality of the de-

formation search space. While increasing robustness, these

approaches lack generality and they quickly loose precision

when the observations can not be explained by the assumed

model, which often occurs in practice. Other approaches

make less assumptions and recover the temporal evolution

of a surface by computing the deformation of a reference

mesh. The problem becomes then an optimization over ver-

tex positions, where prior knowledge acts as a regulariza-

tion term over vertex displacements. Among the existing

schemes, several methods try to enforce physically plausi-

ble deformations by simulating resistance to stretching and

bending [3, 8]. To this purpose, they usually operate at the

vertex level where the noise has a strong influence, hence

leading to difficult non-linear optimizations.

Our motivation in this work is to provide a generic

data-driven mesh deformation framework that assumes lit-

tle knowledge on the tracked surface and can hence cover

a large range of applications and shapes (see for instance

Figure 1). We adopt a strategy that divides the original sur-

face into regions, or patches, to which vertices are attached.

These patches are used to locally average data terms and

to enforce inter-patch rigidity constraints with respect to a



reference pose. They therefore define an abstraction layer

above surface vertices that allows for coarse to fine sam-

pling of the recovered deformation through increasing patch

resolutions. This appears to be an important feature that en-

ables to handle, in a unified way, noisy data and large defor-

mations while still recovering local details.

Our work builds on tools developed in the computer

graphics community [2, 17, 12] to consistently deform

meshes in physical simulations or geometric modelling ap-

plications. We extend their use to applications involving

noisy data, through our surface patch framework and a ro-

bust numerical optimizer. We have successfully applied this

method to various scenarios and we demonstrate its ability

to adapt to two different contexts: monocular cloth tracking

and multi-camera setups.

The rest of this paper is as follows: Section 2 recalls ex-

isting works that deal with surface tracking. In Section 3 the

proposed framework is presented in more details. Section 4

shows how it performs in different applications. In Sec-

tion 5, we discuss the issues and limitations of our frame-

work.

2. Related Work

As mentioned before, methods that solve for surface

tracking from visual data differ by the prior knowledge they

consider about the observed surfaces. This prior knowledge

can range from strong priors on shape models to smooth

rigidity constraints between vertices on a mesh. Closely re-

lated to our work, a large class of approaches deforms a

mesh template with various constraints to ensure plausible

deformations and fixed topology.

Dimension Reduction Some methods use very strong

constraints on the deformations to increase their robustness.

While efficient this limits the application domain. In the

widely studied case of human motion capture, Vlasic [18]

and Gall [7], for instance, optimize the pose of skeletal

models before fitting the surface to visual data. Other ap-

proaches proceed by first learning deformation modes of

the object of interest. Chai [4], in the case of data-driven

face animation, tracks a low number of facial features and

maps them back onto a linear combination of previously

acquired high resolution motion data using machine learn-

ing techniques and a database of laser scanned faces. Salz-

mann [14] recovers the 3D deformation of a piece of cloth

by using Principal Component Analysis on a randomly gen-

erated set of possible configurations to constrain the space

of acceptable deformations and to reduce the optimization

complexity.

Mesh Based Regularizations More generic methods use

physics-inspired models to ensure as rigid as possible defor-

mations. This is usually achieved by penalizing the change

of differential properties of the surface such as edge length

or curvature with respect to a rest state [8]. However, as

discussed in a recent survey [3] the importance of local

rotations of the surface when computing these differential

properties makes the surface deformation problem inher-

ently non-linear. This means that although operating at a

fine scale allows to recover detailed changes of curvature,

increases in mesh resolution can make the associated non-

linear optimization computationally impractical. Recently,

a number of computer vision works, e.g. [11, 6] used rigid-

ity priors based on the preservation of Laplacian coordinates

and on the implicit optimization of the local transforma-

tions [15]. Although these Laplacian editing methods be-

have well for their original purpose, that is as interpolation

algorithms between manually set constraints, their use as

regularization term for large motions in noisy environments

must be handled with care. In fact [18, 7] only use it to pre-

serve the small scale details of the surface once the general

motion has been found, while [5] starts by using a variation

of the technique on a coarse tetrahedral mesh before using

it to solve for small deformations.

Other Regularizations Other works in geometric mod-

elling decouple the complexity of the original geome-

try from the representation of the deformation by using

a coarse control structure. For example, Summers and

Li [17, 10] optimize their cost function on a deformation

graph, while Botsch embeds the surface in extruded volu-

metric prisms [1] or in a cubic lattice [2]. However, they

avoid linearisation artifacts by embracing non-linearity and

optimizing explicitly on the local rotations of the surface.

Our method extends this class of approaches for defor-

mations driven by visual data. Decoupling the original ge-

ometry from the representation of the deformation is of

particular interest as it allows to use the original vertices

as sampling domain for data terms while benefiting from

averaging effects when integrating the information on the

control structure. Moreover, optimizing explicitly on local

transformations of the surface allows a finer integration of

the elementary motion cues that are sampled on the vertices.

3. Patch based deformation framework

The presented framework deals with mesh deformation.

The reference shape is discretized as a set of vertices and

triangles (ν, τ) and defined as a reference position func-

tion x
0 : ν 7→ R

3. As this mesh is deformed to mini-

mize an energy function, a position function x is iteratively

re-estimated. However, optimizing directly on these posi-

tions can become computationally infeasible as the mesh

resolution increases. Moreover, and as discussed in Sec-

tion 2, the success of methods based on dimension reduc-



Figure 2. Patches with the Stanford armadillo (173k vertices) with

a maximum patch radius of 30.

tion demonstrates that the deformation belongs to low di-

mensional spaces in many applications. Consequently, the

mesh should advantageously be seen as a sampling domain

over which the actual optimization is performed at some

higher level: an abstract representation of the shape decou-

pled from the complexity of the original geometry. Em-

bedding the shape in a lower dimensional control mesh or

lattice is a common way to achieve this decoupling.

In this section we describe an algorithm to divide the

original mesh into surface cells called patches. We present

then the associated deformation framework as well as how

rigidity priors are encoded on this simplified control struc-

ture. In this framework, the optimal local rigid transforma-

tions of patches are searched for with respect to various data

terms that are sampled and averaged on patches. These data

terms are application dependent and details are given in the

section 4 along with experimental results.

3.1. Patches

Surface patches define a shape representation that should

ideally follow the intrinsic structure of the shape, e.g. rigid

parts. However, in the absence of prior knowledge on this

structure, patches are preferably regularly distributed over

the surface. To this purpose, we consider geodesic distances

and derive an efficient greedy algorithm. The idea is to ran-

domly choose a vertex to be the centre of the first patch and

then to grow this patch until a maximum radius is reached.

The subsequent patch centres are chosen among the unas-

signed vertices which lie on the most patch boundaries. The

front of a new patch is propagated from the centre until a

maximum radius is reached or until the processed vertex is

closer to the centre of another patch. Applied on hexagonal

lattices, this technique produces regularly sampled patches.

Figure 2 illustrates the algorithm behaviour.

Based on this representation of the surface we model the

pose of the patch Pi with a rotation matrix Ri and with the

position of its center of mass ci. These parameters encode a

rigid transformation with respect to the world coordinates.

Given a vertex v on the mesh whose position on the refer-

ence pose was x
0 , and assuming v to move with the patch

Pi, then its new position xi(v) as predicted by Pi is :

xi(v) = Ri(x
0(v) − c

0
i ) + ci, (1)

where c
0
i is the position of Pi’s center of mass in the refer-

ence pose.

Since different patches yield different predictions for

the point positions, the predicted coordinates are linearly

blended to recover the deformed mesh. We found that a sim-

ple weighting scheme consisting in compactly supported

Gaussians performed well. Each patch Pi defines a weight-

ing function αi(ν) : ν 7→ R whose support is the union

of Pi and the adjacent patches. We used Gaussians of the

Euclidean distance to the centre of mass of Pi as functions

and normalized them so they would add up to 1 at every

vertex. These {αi}i∈patches are only evaluated once on the

reference mesh.

Rigidity Constraints Rigidity constraints can easily be

expressed in this framework by enforcing the predictions of

a point position by neighbouring patches to be consistent.

We chose to use the the union of Pi and Pj as the region

where two neighbouring patches should agree. This yields

for each vertex v ∈ Pi ∪ Pj a rigidity term Eij
v :

Eij
v = (αi(v) + αj(v)) ‖xi(v) − xj(v)‖2. (2)

It is worth of notice that we chose to use the blending ba-

sis functions {αi}i∈patches as weights in the rigidity term.

Weighting the contribution of vertices in equation (2) al-

lows a finer control on the local rigidity of the mesh. In

practice we ran our experiments using the sum of the nor-

malized blending basis functions. The total rigidity term is

then simply defined as :

Erigidity =
1

2

∑

Pi∈patches

∑

Pj∈Ni

∑

v∈Pi∪Pj

Eij
v , (3)

where Ni is the set of patches neighbours to Pi.

3.2. Numerical Optimization

The mesh deformation can be expressed as the following

optimization problem:

argmin
{Ri,ci}i∈patches

krErigidity +
∑

f2, (4)

where kr weights the regularization contribution and the f

functions are the data terms that depend on the application.



A direct optimization of the above non-linear term involves

rotations whose parametrization must be chosen with care.

In contrast to [17, 10], we do not run the optimization ex-

plicitly on the parameters {Ri, ci}i∈patches. We follow in-

stead [12, 1] that propose to use local perturbations of exist-

ing rotations with affine updates of the current rigid trans-

formations as a numerically safer way to optimize with re-

spect to rotations.

To simplify notations, xi, αi denote the position and

weight xi(v), αi(v) of v respectively. The affine update is

parametrized with a 6×1 vector ωi = (ui,vi) and operates

on the transformed vertex positions :

xi 7→ xi + (xi − ci) × ui + vi. (5)

This parameterization is affine in ωi and can be rewritten

as :

xi 7→ xi + Ki(xi) ωi (6)

where Ki(xi) =
[

[xi − ci]× I
]

.

Using the above parametrization, we can linearise both the

regularization term and the data term up to first order as

shown below. Thus the optimization of expression (4) be-

comes a quadratic problem for which we can derive an iter-

ative scheme similar to Gauss Newton. The following para-

graphs detail this scheme.

First-order approximations of the data term Any cost

function f of vertices positions x can have its gradient wrt.

ωi expressed using the chain rule and the fact that Ki(xi)
is precisely the Jacobian of xi wrt. ωi.

[

∂f
∂ωi

]

=
[

∂f
∂xi

] [

∂xi

∂ωi

]

=
[

∂f
∂xi

]

Ki(xi). (7)

Therefore, the first order approximations of f yields the fol-

lowing quadratic form for f2 :

f2(ωi) ≃ ‖
[

∂f
∂ωi

]

ωi + f‖2. (8)

First-order approximations of the rigidity term The lo-

cal rigidity energy Eij
v described in equation (2) can also be

rewritten using a first order development of the positions

xi,xj wrt. ωi, ωj respectively as :

Eij
v (ωi) ≃ (αi + αj) ‖(xi + Ki(xi) ωi)

− (xj + Kj(xj) ωj)‖
2. (9)

Grouping all the ωi’s in a 6 × Npatches vector ω and us-

ing matrix notations, the local quadratic approximation of

Erigidity becomes :

Erigidity(ω) ≃ ‖WGω − Wb‖2, (10)

where the Ki(xi) and −Kj(xj) are stacked on the lines of

a matrix G, their respective weights αi + αj in a matrix W

and their right hand side xj − xi in a vector vector b.

Finding an energy-decreasing step Finally expressions

(8) and (10) lead to the following quadratic approximation

of equation (4) :

argmin
ω

‖







kr WG
[

∂f1

∂ω

]

...






ω −







kr Wb

f1

...






‖2. (11)

Solving the above least-squares problem yields a step ω.

However the local affine updates from equation (6) are not

rigid updates of the transformations as they induce scaling

effects. In [1, 2] it is suggested that the closest rigid trans-

formation can be efficiently recovered using the Horn algo-

rithm [9]. For each patch Pi and a given update ωi, the Horn

algorithm is applied between the x0 and the corresponding

xi+Ki(xi) ωi to get an updated approximation of (Ri, ci).

Note that importantly, once we have recovered the up-

dated {Ri, ci}i∈patches from ω and computed the resulting

interpolated mesh, there is no guarantee that the original

energy of equation (4) decreases. We thus scale the ω vec-

tor so that the corresponding updated {Ri, ci}i∈patches de-

creases the energy. Finally, we iteratively solve (11) and

recover rigid transformations from ω until convergence.

Remarks In practice, the G matrix is never explicitly ma-

nipulated to solve (11) but instead it is easier to compute

6Npatches × 6Npatches matrix G
T
W

T
WG. This matrix

is very sparse except for 6 × 6 blocks and is a Laplacian

matrix on the graph of patches. It is rank-deficient. If the

mesh has only one connected component, its kernel is of di-

mension 6 which corresponds to the 6 degrees of freedom

of one patch. This means that the row space of the gradients

of the data functions must be at least of dimension 6.

4. Applications and Experiments

4.1. Monocular Cloth Tracking

Recovering the evolutions of 3D surfaces from 2D infor-

mation is a highly under-constrained problem. Prior knowl-

edge is therefore required to ensure consistent deforma-

tions. In this section we show that our framework, equipped

with simple surface rigidity priors, performs well in this sit-

uation. We use the data made available by the EPFL com-

puter vision group for that purpose [13]. It consists of a

reference 3D mesh model of a piece of cloth and of a list of

correspondences for each video frame. Each of these cor-

respondences maps a 3D position on the reference mesh,

expressed in barycentric coordinates, to a 2D position in

the image. We use these correspondences in our framework

by simply defining for each of them two data functions fu

and fv that measure the reprojection error of a 3D vertex on

each image axis.



Figure 3. Results on the cloth dataset [13]. On the top row, the mesh overlay on the original data demonstrates a low reprojection error,

while the bottom row shows that the recovered 3D deformations are physically plausible. Note on the two first images that in absence of

matches, the rigidity constraints make the mesh return locally to its rest pose (flat cloth).
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Figure 4. Results on synthetic monocular data: we present the 3D error of the recovered deformation for different levels of noise on the 2D

matches. As in [13] we plot this error as a function of the average curvature over the ground truth mesh. Here the curvature is computed

by averaging the angles between adjacent triangles.

Qualitative Evaluation: the cloth dataset Figure 3

presents overlays of the tracked mesh over the input images.

They demonstrate low residual reprojection errors. The fig-

ure also shows side views of the corresponding 3D shape il-

lustrating the coherence of the recovered 3D deformations.

On this dataset, the computation time was approximately of

5 frames per second.

Quantitative evaluation : resilience to noise This exper-

iment is based on motion capture data of the deformation

of a real piece of cloth. In a way similar to [13] we syn-

thesized 2D-3D correspondences and added centered 2D-

Gaussian noises to evaluate the behavior of our framework

in the presence of noise. Figure 4 shows the results of the

quantitative evaluation. We evaluated our algorithm using

1, 2.5 and 10 matches per triangle on the reference mesh,

composed of 96 triangles. The presented error is the aver-

age 3D distance of the recovered vertices to their ground

truth positions. Following [13], we do not plot the temporal

evolution of the error but sort the frames using the average

curvature over the ground truth mesh and plot the error in

respect to it.

4.2. Multi­camera environment

A major application of mesh tracking methods concerns

multi-camera environments. In this context, our framework

deforms a reference model across time so that it fits in-

dependently reconstructed sets of points and normals that

were obtained using multi-view reconstructions. The pro-

cedure is similar to the ICP algorithm as it constantly re-

evaluates point correspondences between the template and

the target point clouds.

We ran our experiments on several standard datasets in

the field (see Figures 5, 6 and 7). Interestingly, [18, 7] tackle

these sequences using strong assumptions on the articulated

nature of the mesh in the form of a skeletal model. In con-

trast, and closer to our framework, [5] assumes only the vol-

umetric nature of the tracked object. Our method goes fur-



Figure 5. Results on the MIT bounce sequence [18]. A simplified version of the provided template mesh is used as reference. It is deformed

across time (top row) to fit the points and normals of visual hull models (bottom row).

Figure 6. On the Free sequence from the SurfCap project [16], the first reconstruction is used as reference mesh and deformed to fit the

points and normals of independently reconstructed photoconsistent mesh models. We show on the bottom row the overlay of the resulting

mesh deformation on the original image data.

ther and is purely surface-based. Note that similarly to [18],

we only use geometric data and do not consider geodesic or

photometric sparse feature matches.

Data Term The energy term that is to be minimized at

each step is the sum of the distances from the target geom-

etry points to the deformed template :

f2

ICP =
∑

xt∈TargetCloud

min
v∈ν

‖x(v) − xt‖
2. (12)

As in the original ICP algorithm, we compute dense asso-

ciations between the target geometry and the current defor-

mation of the template. However, false associations affect

the minimization more than in a rigid ICP, due to the many



degrees of freedom of the deformation. To regularize these

correspondences we use the Horn algorithm [9] to compute

for each patch Pi an average rigid motion mapping its ver-

tices in the reference pose to their targets. This computed

rigid transformation defines a function x
ICP
i that applies to

the patch Pi and its neighborhood Pj ∈ Ni. Residual er-

rors on each of them are computed as the average distance

between the predicted patches and the target surface. This

yields weights wi|i and {wi|j}Pj∈Ni
. We then introduce for

each vertex v ∈ Pi a sum of quadratic terms to be mini-

mized :

f2

ICP ≃
∑

Pi∈patches

∑

v∈Pi

(

wi|i‖x(v) − x
ICP
i (v)‖2

+
∑

j∈Ni

wi|j‖x(v) − x
ICP
j (v)‖2

)

.

(13)

These terms yield easily computable Jacobians wrt. ω using

the equation (7) and fit exactly our framework as elements

of the local quadratic approximation of the cost function.

In practice, the optimization loop operates at three differ-

ent levels of resolution, in a coarse-to-fine manner, starting

with large averaging effects for point correspondences to in-

crease the convergence speed. The first two levels use the

result of the previous frame as the reference pose for rigidity

priors. This allows to preserve small scale deformations be-

fore the third and last optimization. This last high resolution

optimization is usually initialized close to the solution and

uses the first mesh of the sequence as rigidity prior, which

prevents long term drifting in the rigidity.

Results We present results on different type of sequences.

Figure 5 shows the behavior of our algorithm when con-

fronted to noisy voxel carving reconstructions. Figure 6 il-

lustrates a long sequence with complex deformations and

fast motion. These figures show that on standard sequences

our algorithm provides qualitatively comparable results to

state of the art methods, while requiring much less knowl-

edge on the object of interest. Figure 7 shows our results

on a scene involving three distinct objects. Such complex

scenes are very challenging for state of the art approaches

and have to the best of our knowledge not been addressed

until now.

5. Discussion and future work

Although its versatility was demonstrated in the previous

section, the presented framework has limitations. Firstly,

representing surface deformations using patches and assum-

ing each one transforms rigidly increases the robustness.

However, it limits the ability to recover curvature changes at

scales smaller that the patch radius. Secondly, using a ref-

erence mesh constrains the topological nature of the object

that can not evolve over the sequence. In the results shown

in Figure 7 for example, the reference mesh (top line) is

topologically suitable in that the three objects are three dis-

tinct connected components.

6. Conclusion

We presented a mesh deformation framework which

successfully deals with noisy data coming form different

sources, large deformations and fast motion. It assumes

little knowledge on the nature of the observed surfaces

and uses a simple strategy to divide the original shape

into regularly sampled regions called patches. The mo-

tion constraints inferred from the data terms are averaged

on every patch, while a rigidity constraint between adja-

cent patches ensures physically plausible deformations. We

demonstrated the versatility and efficiency of our approach

by evaluating it on two different applications: monocular

cloth tracking and surface tracking in multi-camera environ-

ments. The flexibility of our method is especially outlined

by the results on the ball sequence where three distinct ob-

jects interact. To the best of our knowledge surface tracking

in this kind of complex scene has not been addressed by

previous works.
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