Skip to Main content Skip to Navigation
Journal articles

A Symmetry Preserving Algorithm for Matrix Scaling

Abstract : We present an iterative algorithm which asymptotically scales the $\infty$-norm of each row and each column of a matrix to one. This scaling algorithm preserves symmetry of the original matrix and shows fast linear convergence with an asymptotic rate of $1/2$. We discuss extensions of the algorithm to the one-norm, and by inference to other norms. For the 1-norm case, we show again that convergence is linear, with the rate dependent on the spectrum of the scaled matrix. We demonstrate experimentally that the scaling algorithm improves the conditioning of the matrix and that it helps direct solvers by reducing the need for pivoting. In particular, for symmetric matrices the theoretical and experimental results highlight the potential of the proposed algorithm over existing alternatives.
Complete list of metadata

Cited literature [30 references]  Display  Hide  Download
Contributor : Bora Uçar <>
Submitted on : Friday, January 30, 2015 - 9:47:50 AM
Last modification on : Monday, December 14, 2020 - 3:06:06 PM
Long-term archiving on: : Thursday, September 10, 2015 - 4:10:25 PM


Files produced by the author(s)




Philip A. Knight, Daniel Ruiz, Bora Uçar. A Symmetry Preserving Algorithm for Matrix Scaling. SIAM Journal on Matrix Analysis and Applications, Society for Industrial and Applied Mathematics, 2014, 35 (3), pp.25. ⟨10.1137/110825753⟩. ⟨inria-00569250v4⟩



Record views


Files downloads