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They are all nonsmooth mechanical systems but they differ in

◮ the presence of perfect nonlinear joints,

◮ the presence of finite rotations,

◮ the presence of Control (sensors & actuators)

◮ the desired properties in design and development which influence the
numerical simulation and prototyping



An excursion into
Nonsmooth Dynamics

Vincent Acary

From Mechanics. . .

History and Motivations

The smooth multibody
dynamics

The Non smooth Lagrangian
Dynamics

The Moreau’s sweeping
process

State–of–the–art

Objectives & means

Academic examples.

Background

Local error estimates for the
Moreau’s Time–stepping
scheme

Any Order scheme

to Control,. . .

To Electronics.

References

Unilateral constraints as an inclusion

Definition (Perfect unilateral constraints on the smooth
dynamics)

8

>

>

<

>

>

:

M(q)
dv

dt
+ F (t, q, v) = r

−r ∈ NC(t)(q(t))

(1)

where

◮ r = ∇qg(q, t) λ is the generalized reactions due to the constraints.

◮ Finite set of ν unilateral constraints on the generalized coordinates :

g(q, t) = [gα(q, t) > 0, α ∈ {1 . . . ν}]T . (2)

◮ Admissible set C(t)

C(t) = {q ∈ M(t), gα(q, t) > 0, α ∈ {1 . . . ν}} . (3)

◮ Normal Cone to C(t)

NC(t)(q(t)) =

8

>

<

>

:

y ∈ R
n | y = −

X

α

λα∇gα(q, t),

λα > 0, λαgα(q, t) = 0

9

>

=

>

;

(4)
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Non Smooth Lagrangian Dynamics

Fundamental assumptions.

◮ The velocity v = q̇ is of Bounded Variations (B.V)
➜ The equation are written in terms of a right continuous B.V.
(R.C.B.V.) function, v+ such that

v+ = q̇+ (5)

◮ q is related to this velocity by

q(t) = q(t0) +

Z t

t0

v+(t) dt (6)

◮ The acceleration, ( q̈ in the usual sense) is hence a differential
measure dv associated with v such that

dv(]a, b]) =

Z

]a,b]
dv = v+(b) − v+(a) (7)



An excursion into
Nonsmooth Dynamics

Vincent Acary

From Mechanics. . .

History and Motivations

The smooth multibody
dynamics

The Non smooth Lagrangian
Dynamics

The Moreau’s sweeping
process

State–of–the–art

Objectives & means

Academic examples.

Background

Local error estimates for the
Moreau’s Time–stepping
scheme

Any Order scheme

to Control,. . .

To Electronics.

References

Non Smooth Lagrangian Dynamics

Definition (Non Smooth Lagrangian Dynamics)

8

>

<

>

:

M(q)dv + F (t, q, v+)dt = di

v+ = q̇+

(8)

where di is the reaction measure and dt is the Lebesgue measure.

Remarks

◮ The non smooth Dynamics contains the impact equations and the
smooth evolution in a single equation.

◮ The formulation allows one to take into account very complex
behaviors, especially, finite accumulation (Zeno-state).

◮ This formulation is sound from a mathematical Analysis point of view.

References
[Schatzman, 1973, 1978, Moreau, 1983, 1988]
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Decomposition of measure



dv = γ dt+ (v+ − v−) dν+ dvs

di = f dt+ p dν+ dis
(9)

where

◮ γ = q̈ is the acceleration defined in the usual sense.

◮ f is the Lebesgue measurable force,

◮ v+ − v− is the difference between the right continuous and the left
continuous functions associated with the B.V. function v = q̇,

◮ dν is a purely atomic measure concentrated at the time ti of
discontinuities of v , i.e. where (v+ − v−) 6= 0,i.e. dν =

P

i δti

◮ p is the purely atomic impact percussions such that pdν =
P

i piδti

◮ dvS and diS are singular measures with the respect to dt + dη.
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Impact equations and Smooth Lagrangian dynamics

Substituting the decomposition of measures into the non smooth
Lagrangian Dynamics, one obtains

Definition (Impact equations)

M(q)(v+ − v−)dν = pdν, (10)

or
M(q(ti ))(v

+(ti ) − v−(ti )) = pi , (11)

Definition (Smooth Dynamics between impacts)

M(q)γdt + F (t, q, v)dt = fdt (12)

or

M(q)γ+ + F (t, q, v+) = f + [dt − a.e.] (13)
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The Moreau’s sweeping process of second order

Definition (Moreau [1983, 1988])
A key stone of this formulation is the inclusion in terms of velocity.
Indeed, the inclusion (1) is “replaced” by the following inclusion

8

>

>

>

>

>

<

>

>

>

>

>

:

M(q)dv + F (t, q, v+)dt = di

v+ = q̇+

−di ∈ NTC (q)(v
+)

(14)

Comments
This formulation provides a common framework for the non smooth
dynamics containing inelastic impacts without decomposition.
➜ Foundation for the time–stepping approaches.
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The Moreau’s sweeping process of second order

Comments

◮ The inclusion concerns measures. Therefore, it is necessary to define
what is the inclusion of a measure into a cone.

◮ The inclusion in terms of velocity v+ rather than of the coordinates q.

Interpretation

◮ Inclusion of measure, −di ∈ K
◮ Case di = r ′dt = fdt.

−f ∈ K (15)

◮ Case di = piδi .
−pi ∈ K (16)

◮ Inclusion in terms of the velocity. Viability Lemma
If q(t0) ∈ C(t0), then

v+ ∈ TC (q), t > t0 ⇒ q(t) ∈ C(t), t > t0

➜ The unilateral constraints on q are satisfied. The equivalence
needs at least an impact inelastic rule.
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The Newton-Moreau impact rule

− di ∈ NTC (q(t))(v
+(t) + ev−(t)) (17)

where e is a coefficient of restitution.

Velocity level formulation. Index reduction

−λ ∈ NR+ (y)  −λ ∈ NT
R+ (ẏ)

m

0 6 y ⊥ λ > 0  if y 6 0 then 0 6 ẏ ⊥ λ > 0

(18)
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State–of–the–art

Numerical time–integration methods for Nonsmooth Multibody systems
(NSMBS):

Nonsmooth event capturing methods (Time–stepping methods)

� robust, stable and proof of convergence

� low kinematic level for the constraints

� able to deal with finite accumulation

� very low order of accuracy even in free flight motions

Nonsmooth event tracking methods (Event–driven methods)

� high level integration of free flight motions

� no proof of convergence

� sensibility to numerical thresholds

� reformulation of constraints at higher kinematic levels.

� unable to deal with finite accumulation
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Objectives
Design nonsmooth event capturing methods with

◮ same properties as standard methods (robustness, accumulation, . . . )

◮ Higher resolution (ratio error/computational cost)

◮ Higher order of accuracy

Means

1. Adaptive time–step size and order strategies for standard methods

2. Mixed integrators with rough pre-detection of events

3. Splitting strategies

4. Ad hoc detection of discontinuity and order of discontinuity methods.
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NonSmooth Multibody Systems (NSMBS)

Academic examples
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(a) Bouncing ball example
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m
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(b) Linear Oscillator example

Figure: Academic test examples with analytical solutions



An excursion into
Nonsmooth Dynamics

Vincent Acary

From Mechanics. . .

History and Motivations

The smooth multibody
dynamics

The Non smooth Lagrangian
Dynamics

The Moreau’s sweeping
process

State–of–the–art

Objectives & means

Academic examples.

Background

Local error estimates for the
Moreau’s Time–stepping
scheme

Any Order scheme

to Control,. . .

To Electronics.

References

NonSmooth Multibody Systems (NSMBS)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

time (s)

Exact Solution. Bouncing Ball Example

position
velocity

Figure: Analytical solutions. Bouncing ball example]



An excursion into
Nonsmooth Dynamics

Vincent Acary

From Mechanics. . .

History and Motivations

The smooth multibody
dynamics

The Non smooth Lagrangian
Dynamics

The Moreau’s sweeping
process

State–of–the–art

Objectives & means

Academic examples.

Background

Local error estimates for the
Moreau’s Time–stepping
scheme

Any Order scheme

to Control,. . .

To Electronics.

References

NonSmooth Multibody Systems (NSMBS)

-7

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0  0.5  1  1.5  2  2.5  3  3.5  4

time (s)

Exact Solution. Linear Oscillator Example

position
velocity

Figure: Analytical solutions. Linear Oscillator



An excursion into
Nonsmooth Dynamics

Vincent Acary

From Mechanics. . .

History and Motivations

The smooth multibody
dynamics

The Non smooth Lagrangian
Dynamics

The Moreau’s sweeping
process

State–of–the–art

Objectives & means

Academic examples.

Background

Local error estimates for the
Moreau’s Time–stepping
scheme

Any Order scheme

to Control,. . .

To Electronics.

References

Moreau–Jean’s Time stepping scheme [Moreau, 1988] and
[Jean, 1999]

Principle of NSCD

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

M(qk+θ)(vk+1 − vk) − hF̃k+θ = G(qk+θ)Pk+1, (19a)

qk+1 = qk + hvk+θ, (19b)

Uk+1 = GT (qk+θ) vk+1 (19c)

−Pk+1 ∈ NT
IRm

+
(ỹk+γ )(Uk+1 + eUk ), (19d)

ỹk+γ = yk + hγUk , γ ∈ [0, 1]. (19e)

with θ ∈ [0, 1], γ > 0 and xk+α = (1 − α)xk+1 + αxk and ỹk+γ is a
prediction of the constraints.
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Schatzman’s Time stepping scheme [Paoli and Schatzman,
2002]

Principle

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

M(qk + 1)(qk+1 − 2qk + qk−1) − h2F (tk+θ, qk+θ, vk+θ) = pk+1,(20a)

vk+1 =
qk+1 − qk−1

2h
, (20b)

−pk+1 ∈ NK

„

qk+1 + eqk−1

1 + e

«

, (20c)

where NK defined the normal cone to K .
For K = {q ∈ IRn, y = g(q) > 0}

0 6 g

„

qk+1 + eqk−1

1 + e

«

⊥ ∇g

„

qk+1 + eqk−1

1 + e

«

Pk+1 > 0 (21)
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Comparison

Shared mathematical properties

◮ Convergence results for one constraints

◮ Convergence results for multiple constraints problems with acute
kinetic angles

◮ No theoretical proof of order

Mechanical properties

◮ Position vs. velocity constraints

◮ Respect of the impact in one step (Moreau–Jean) vs.
Two-steps(Schatzman)

◮ Linearized constraints rather than nonlinear.
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Empirical order of convergence. Moreau–Jean’s
time–stepping scheme
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Figure: Empirical order of convergence of the Moreau–Jean’s time-stepping scheme.
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Local error estimates for the Moreau-Jean’s time–stepping

Assumption 1 : Existence and uniqueness
A unique global solution over [0, T ] for Moreau’s sweeping process is
assumed such that q( · ) is absolutely continuous and admits a right
velocity v+( · ) at every instant t of [0, T ] and such that the function
v+ ∈ LBV ([0, T ], R

n).

➜ Assumption 1 is ensured in the framework introduced by Ballard
[Ballard, 2000] who proves the existence and uniqueness of a solution in a
general framework mainly based on the analyticity of data.

Assumption 2 : Smoothness of data
The following smoothness on the data will be assumed: a) the inertia
operator M(q) is assumed to be of class Cp and definite positive, b) the
force mapping F (t, q, v) is assumed to be of class Cp , c) the constraint
functions g(q) are assumed to be of class Cp+1 and d) the Jacobian
matrix G(q) = ∇T

q g(q) is assumed to have full-row rank.
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Local error estimates for the Moreau-Jean’s time–stepping

Lemma
Let I = [tk , tk+1]. Let us assume that the function f ∈ BV (I , R

n). Then
we have the following inequality for the θ–method, θ ∈ [0, 1],

‚

‚

‚

‚

‚

Z tk+1

tk

f (s) ds − h(θf (tk+1) + (1 − θ)f (tk ))

‚

‚

‚

‚

‚

6 C(θ)(tk+1 − tk ) var(f , I ),

(22)
where var(f , I ) ∈ R is the variation of f on I and C(θ) = θ if θ > 1/2 and
C(θ) = 1 − θ otherwise. Furthermore, the value of C(θ) yields a sharp
bound in (22).
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Local error estimates for the Moreau-Jean’s time–stepping

Proposition
Under Assumptions 1 and 2, the local order of consistency of the
Moreau-Jean time–stepping scheme for the generalized coordinates is

eq = qk+1 − q(t + h) = O(h)

and at least for the velocities

ev = v+(tk + h) − vk+1 = O(1)

.

Comments
The bounds are reached if an impact is located within the time–step and
the activation of the constraint is not correct.
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Higher Order Time–stepping schemes

Background
Work of Mannshardt [1978] on time–integration schemes of any order for
ODE/DAEs with discontinuities (with tranversality assumption)

Principle

◮ Let us assume only one event per time–step at instants t∗.

◮ Choose any ODE/DAE solvers of order p

◮ Perform a rough location of the event inside the time step of length h
Find an interval [ta, tb] such that

t∗ ∈ [ta, tb] and |tb − ta| = Chp+1 + O(hp+2) (23)

Dichotomy, Newton, Local Interpolants, Dense output,. . .

◮ Perform an integration on [tk , ta] with the ODE solver of order p

◮ Perform an integration on [ta, tb] with Moreau’s time–stepping
scheme

◮ Perform an integration on [tb, tk+1] with the ODE solver of order p
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Integration of the smooth dynamics

Mainly for the sake of simplicity, the numerical integration over a smooth
period is made with a Runge–Kutta (RK) method on the following index-1
DAE,

8

>

<

>

:

M(q(t))v̇(t) = F (t, q(t), v(t)) + G(q)λ(t),

q̇(t) = v(t),

γ(t) = G(q(t))v̇(t) = 0.

(24)

In practice, the time–integration is performed for the following system

8

>

<

>

:

M(q(t))v̇(t) = F (t, q(t), v(t)) + G(q)λ(t),

q̇(t) = v(t),

0 6 γ(t) = G(q(t))v̇(t) ⊥ λ(t) > 0

(25)

on the time–interval I where the index set I(t) of active constraints is
assumed to be constant on I and λ(t) > 0 for all t ∈ I .



An excursion into
Nonsmooth Dynamics

Vincent Acary

From Mechanics. . .

History and Motivations

The smooth multibody
dynamics

The Non smooth Lagrangian
Dynamics

The Moreau’s sweeping
process

State–of–the–art

Objectives & means

Academic examples.

Background

Local error estimates for the
Moreau’s Time–stepping
scheme

Any Order scheme

to Control,. . .

To Electronics.

References

Integration of the smooth dynamics

Using the standard notation for the RK methods (see Hairer et al. [1993]
for details), the complementarity problem that we have to solve at each
time–step reads

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

tki = tk + cih,

vk+1 = vk + h
Ps

i=1 biV
′
ki ,

qk+1 = qk + h
Ps

i=1 biVki ,

V ′
ki = M−1(Qki ) [F (tki , Qki , Vki ) + G(Qki )λki ] ,

Vki = vk + h
Ps

j=1 aijV
′
nj ,

Qki = qk + h
Ps

j=1 aijVnj ,

0 6 γki = G(Qki )V
′
ki ⊥ λki > 0.

(26)
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Assumption 3
Let I a smooth period time–interval. We assume that

1. the local order of the RK method (26) is p that is

eq = ev = O(hp+1) (27)

2. starting from inconsistent initial value q̃k such that
q̃k − qk = O(hp+1), the error made by the RK method (26) is

q̃k+1 − qk+1 = O(hp+1) (28)
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Theorem
Let us assume that Assumptions 1, 2 and 3 hold. The local error of
consistency of the scheme is of order p in the generalized coordinates that
is

eq = O(hp+1). (29)
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Results on the linear oscillator
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(a) The linear oscillator example with implicit Runge Kutta Method

Figure: Precision Work diagram for the Moreau’s time-stepping scheme coupled with
Runge–Kutta method.
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Higher Order Time–stepping schemes

Finite accumulation

◮ Repeat the whole process on the remaining part of the interval [tb, tk ]

◮ By induction, repeat this process up to the end of the original time
step.
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Results on the Bouncing Ball

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0.0001  0.001  0.01  0.1

er
ro

r 
(lo

g 
sc

al
e)

time step (log scale)

 (Moreau)
 (Moreau RADAU IIA 3)
 (Moreau RADAU IIA 5)
 (Moreau Lobatto IIIA 2)
 (Moreau Lobatto IIIA 4)
 (Moreau Lobatto IIIA 6)

(a) The Bouncing Ball example with implicit Runge Kutta Method

Figure: Precision Work diagram for the Moreau’s time-stepping scheme.
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General extensions
Numerical experiments.
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To electronics (Nonsmooth modeling of switched Electrical circuits)
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Sliding Mode Control for dummies

Basic principles on a naive example
Problem: Stabilization of this simple dynamics



x(t0) = x0 ∈ R

ẋ = f , |f | 6 1,
(30)

at the origin x = 0.

Naive solution:


x(t0) = x0 ∈ R

ẋ = f + u, |f | < 1,
(31)

◮ “Push on right” if the state is at the right of 0

u = −1 if x > 0 (32)

◮ “Push on right” if the state is at the left of 0

u = +1 if x > 0 (33)

◮ “balance the external load” in 0

u = −f if x = 0 (34)
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Sliding Mode Control for dummies

Basic principles on a naive example

◮ Switched control based on the sign function

u = −sign(x) =

8

>

<

>

:

−1 for x > 0

+1 for x < 0

? for x = 0

(35)

Definition of u at x = 0 ?

◮ Discontinuous ODEs
ẋ = f − sign(x) (36)

Notion of solutions ?

Mathematical framework

◮ Multivalued maximal monotone operator

u = −sgn(x) =

8

>

<

>

:

−1 for x > 0

+1 for x < 0

[−1, 1] for x = 0

(37)

◮ Filippov’s differential inclusions
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In the continuous setting

◮ Robust control w.r.t external uncertainties

◮ Finite time convergence to target

➜ SMC is the most widely used non linear control in industrial practice.

In the discrete setting
Digital implementation of SMC suffers from “chattering” due to explicit
approximation

xk+1 − xk = f − sgn(xk ) (38)

This causes

◮ Wear and damage in actuators

◮ Need for complex filtering systems which entails the good properties
of continuous SMC.
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Figure: A simple example for x0 = 1.01 at t0 = 0.
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Implicit Implementation of SMC

Our background

◮ Nonsmooth modelling of Friction

◮ Well–posedness analysis of Monotone Differential Inclusions

◮ Implicit numerical time integration for DI.

Objectives

◮ Study the implicit Euler discretization of a class of differential
inclusions with sliding surfaces (⊂ Filippov’s systems)

◮ Show that this numerical method permits a smooth stabilization on
the sliding surface, in a finite number of steps

◮ Show how this may be used in real-time implementations of sliding
mode control
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To start with we consider the simplest case:

ẋ(t) ∈ −sgn(x(t)) =

8

<

:

1 if x(t) < 0
−1 if x(t) > 0
[-1,1] if x(t) = 0

, x(0) = x0 (39)

with x(t) ∈ R. This system possesses a unique Lipschitz continuous
solution for any x0. The backward Euler discretization of (39) reads as:

8

<

:

xk+1 − xk = −hsk+1

sk+1 ∈ sgn(xk+1)
(40)
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As is known the explicit Euler discretization of such discontinuous systems
yields spurious oscillations around the switching surface [Galias et al, IEEE
TAC and CAS 2006, 2007, 2008].

 this means that the derivative of the switching function while sliding
occurs, is very badly estimated.

Both the explicit and the implicit methods converge (the approximated
solution xN( · ) tends to the Filippov’s solution as h → 0).
However or the backward Euler method the following holds:

Lemma
For all h > 0 and x0 ∈ R, there exists k0 such that xk0+n = 0 and
xk0+n+1 − xk0+n

h
= 0 for all n > 1.
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On this simple case this has the following graphical interpretation, as the
intersection of two graphs:

xi

−h

h

xk xk+1 xk+2
xk−1

si

Figure: Iterations of the backward Euler method.
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An interesting property is that the smooth stabilization and the finite-time
convergence on the switching surface, hold (more or less) independently of
the step h > 0:

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2

t

x(t)
−s(t)

(a) h = 0.2

Figure: A simple example for x0 = 1.01 at t0 = 0.
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Figure: A simple example for x0 = 1.01 at t0 = 0.
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Figure: A simple example for x0 = 1.01 at t0 = 0.
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General Extensions

We shall focus on inclusions of the form:
8

<

:

ẋ(t) ∈ f (t, x(t)) − B Sgn(Cx(t) + D), a.e. on (0, T )

x(0) = x0

(41)

with

B ∈ R
n×m

Sgn(Cx(t) + D)
∆
= (sgn(C1x + D1), ..., sgn(Cmx + Dm))T ∈ R

m, where
sgn( · ) is multivalued at 0.
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Well-posedness of the differential inclusions (41)

Proposition
Consider the differential inclusion in (41). Suppose that

◮ There exists L > 0 such that for all t ∈ [0, T ], for all x1, x2 ∈ R
n, one has

||f (t, x1) − f (t, x2)|| 6 L||x1 − x2||.

◮ There exists a function Φ( · ) such that for all R > 0:

Φ(R) = sup



‖
∂f

∂t
( · , v) ‖

L2((0,T );Rn) | ‖ v ‖
L2((0,T );Rn)6 R

ff

< +∞.

If there exists an n × n matrix P = PT > 0 such that

PB•i = CT
i• (42)

for all 1 6 i 6m, then for any initial data the differential inclusion (41)
has a unique solution x : (0, T ) → R

n that is Lipschitz continuous.

Sketch of the proof

◮ Change of state variables z = Rx where R = RT > 0 and R2 = P.

◮ Use a result in [Bastien-Schatzman ESAIM M2AN 2002] to conclude.
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◮ The existence of a positive definite P such that PB = CT is satisfied
in many instances of sliding-mode control: observer-based
sliding-mode control, Lyapunov-based discontinuous robust control.

◮ This is an “input-output” constraint on the system, constraining the
relative degree of the triple (A, B, C).

◮ It is satisfied when (A, B, C) is positive real (dissipative).



An excursion into
Nonsmooth Dynamics

Vincent Acary

From Mechanics. . .

to Control,. . .

Sliding mode control

Implicit Implementation of
SMC

General extensions

Numerical experiments.

Conclusions

To Electronics.

References

Time-discretization of (41)

The differential inclusion in (41) is therefore discretized as follows:

( xk+1 − xk

h
∈ f (tk , xk ) − BSgn(Cxk+1 + D), a.e. on (0, T )

x(0) = x0

(43)

From [Bastien-Schatzman ESAIM M2AN 2002] we have that:

Proposition
Under Proposition 2 conditions, there exists η such that for all h > 0 one
has

For all t ∈ [0, T ], ||x(t) − xN(t)|| 6 η
√

h (44)

Moreover
limh→0+ maxt∈[0,T ] ||x(t) − xN(t)||2 +

R t
0 ||x(s) − xN(s)||2ds = 0.
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However we have more: the discrete state reaches the sliding surface
(when it exists) in a finite number of steps, and stabilizes on it in a
smooth way.

Let y(t)
∆
= Cx(t) + D.

Lemma
Let us assume that a sliding mode occurs for the index α ⊂ {1 . . . m},
that is yα(t) = 0, t > t∗. Let C and B be such that (42) holds and
Cα•B•α > 0. Then there exists hc > 0 such that ∀h < hc , there exists
k0 ∈ IN such that yk0+n = Cxk0+n+1 + D = 0 for all integers n > 1.

Such algorithms are similar to proximal algorithms which possess finite-time

stabilization properties [Baji and Cabot, Set-Valued Analysis 2006].
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Remarks

◮ Contrarily to other methods that reduce (not suppress...) chattering,
the discrete-time sliding surface is equal to the continuous-time
sliding surface.

◮ At each step one has to solve a generalized equation with unknown
xk+1 that takes the form of a mixed linear complementarity system
(MLCP).

◮ Specific MLCP solvers are needed to implement the method.
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Numerical experiments

Let us consider the following two examples:

ẋ =

»

0 1
0 −c1

–

x −
»

0
α

–

sgn(
ˆ

c1 1
˜

x). (45)

(codimension one sliding surface)

B =

»

1 2
2 −1

–

, C =

»

1 2
2 −1

–

, D = 0, f (x(t), t) = 0 (46)

(codimension two sliding surface)



An excursion into
Nonsmooth Dynamics

Vincent Acary

From Mechanics. . .

to Control,. . .

Sliding mode control

Implicit Implementation of
SMC

General extensions

Numerical experiments.

Conclusions

To Electronics.

References

Numerical experiments
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Figure: Equivalent control based SMC, c1 = 1, α = 1 and x0 = [0, 2.21]T . State
x1(t) versus x2(t).
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Numerical experiments
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Figure: Equivalent control based SMC, c1 = 1, α = 1 and x0 = [0, 2.21]T . State
x1(t) versus x2(t).
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Numerical experiments
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Figure: Equivalent control based SMC, c1 = 1, α = 1 and x0 = [0, 2.21]T . State
x1(t) versus x2(t).
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Numerical experiments

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2

time t

x1(t)
x2(t)

st
at

e
x 1

(t
)

an
d

x 2
(t

)

(a) state x1(t) and x2(t) versus
time

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  0.2  0.4  0.6  0.8  1

x1(t)

x 2
(t

)

and
x

(b) phase portrait x2(t) versus
x1(t)

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2

time t

s1(t)
s2(t)

s
va

lu
es

state

(c) sgn function s1(t) and s2(t)

Figure: Multiple Sliding surface. h = 0.02, x(0) = [1.0,−1.0]T

The system reaches firstly the sliding surface 2x2 + x1 = 0 without any chattering,

The system then slides on the surface up to reaching the second sliding surface

2x1 − x2 = 0 and comes to rest at the origin.
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The Filippov’s example with switches accumulation

B =

»

1 −2
2 1

–

, C =

»

1 0
0 1

–

, D = 0, f (x(t), t) = 0. (47)

The trajectories may slide on the codimension 2 surface given by Cx = 0.
The origin is attained after an infinite number of switches in finite time.
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Figure: Multiple Sliding surface. Filippov Example. h = 0.002, x(0) = [1.0,−1.0]T

The results show that the system reaches the origin without any
chattering.
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Conclusions

The implicit Euler method allows one to nicely simulate the main features
of sliding-mode systems:

◮ Finite-time stabilization on the switching surface (of codimension
> 1)

◮ Smooth stabilization on the switching surface

It extends to the discrete-time implementation with ZOH discretization:
looks like a promising solution for discrete-time sliding modes.
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From Mechanics of divided materials to multi-body and robotic systems,

To control (Sliding mode control Theory)

To electronics (Nonsmooth modeling of switched Electrical circuits)
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The RLC circuit with a diode

Example
A LC oscillator supplying a load resistor through a half-wave rectifier (see
figure 14).

iR

R

C
iD

vD

vR

vL

iL

L

vC

iC

v2

v1

Figure: Electrical oscillator with half-wave rectifier
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The RLC circuit with a diode

Example
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The RLC circuit with a diode

Example

◮ Kirchhoff laws :
vL = vC

vR + vD = vC

iC + iL + iR = 0
iR = iD

◮ Branch constitutive equations for linear devices are :

iC = Cv̇C

vL = Li̇L
vR = RiR

◮ ”branch constitutive equation” of the diode

0 ∈ F(iD , VD)
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The RLC circuit with a diode

Example
The following dynamical system is obtained :

„

v̇L

i̇L

«

=

„

0 −1
C

1
L

0

« · „

vL

iL

«

+

„

−1
C
0

« · iD
vD = vL − RiD

0 ∈ F(vD , iD)

with the state variable x
∆
=

„

vL

iL

«

and λ
∆
= iD , y

∆
= vD , we get

8

>

<

>

:

ẋ = Ax + Bλ, x ∈ IRn, λ ∈ IRm

y = Cx + Dλ

0 ∈ F(y , λ)

(48)
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Diode behavior

A modeling choice

smooth modeling nonsmooth modeling

i(t)

v(t)
0

(a)

0

(b)

i(t)

v(t)

−b

−a

i(t) = is exp(− v(t)
α

− 1) 0 6 i(t) + b ⊥ v(t) + a > 0

Figure: Two models of diodes.
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Diode behavior

Why a nonsmooth modeling ?

◮ To avoid stiff nonlinear models by using ideal constraints.

◮ To model the ideal behavior of switched components without articifial
regularization
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The diode–bridge rectifier

IDF2

LC

R

1

2 3

IC

VC

IL

VRVL

IR

IDR1

IDF1 IDR2

Figure: The Diode-bridge rectifier
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The diode–bridge rectifier
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Figure: The Diode-bridge rectifier. Standard results
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The diode–bridge rectifier

Differential systems
The dynamical equations are formulated as

8

>

<

>

:

ẋ = Ax + Bλ, x ∈ IRn, λ ∈ IRm

y = Cx + Dλ

0 6 y ⊥ λ > 0

(49)

choosing :

x =

»

VL

IL

–

, and y =

2

6

6

4

IDR1

IDF2

V2 − V1

V1 − V3

3

7

7

5

, λ =

2

6

6

4

V2

−V3

IDF1

IDR2

3

7

7

5

, (50)

and with

A =

»

0 −1/C
1/L 0

–

, B =

»

0 −1/C 1/C 0
0 0 0 0

–

C =

2

6

6

4

0 0
0 0
−1 0
1 0

3

7

7

5

, D =

2

6

6

4

1/R 1/R −1 0
1/R 1/R 0 −1
1 0 0 0
0 1 0 0

3

7

7

5

(51)
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A typical example of nonsmooth systems

Linear Complementarity Systems (LCS)

8

>

<

>

:

ẋ = Ax + Bλ, x ∈ IRn, λ ∈ IRm

y = Cx + Dλ

0 6 y ⊥ λ > 0

(52)
with A ∈ IRn×n, B ∈ IRn×m

C ∈ IRm×n, D ∈ IRm×m, for m constraints.

λ

y0

Piecewise linear systems
λ

y0

1

−1

λ

y0

1

−1

λ

y0

1

−1

Saturation Relay Relay with dead zone
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A slightly more general class of nonsmooth systems

Differential inclusion into normal cones
8

>

<

>

:

ẋ = Ax + Bλ, x ∈ IRn, λ ∈ IRm

y = Cx + Dλ

−y ∈ NK (λ)

(53)

where K is a convex set and NK (λ) stands for the normal cone to K taken
at λ

Usual examples for K

◮ K = R
m, then we obtain linear time invariant DAE

− y ∈ NRm (λ) ⇐⇒ y = 0, λ ∈ R
m (54)

◮ K = R
m
+ , then we obtain Linear Complementarity Systems (LCS)

− y ∈ NR
m
+
(λ) ⇐⇒ 0 6 y ⊥ λ > 0 (55)

◮ K = [−1, 1]m, then we obtain linear relay systems ( related to
Filippov’s DI and sliding mode control).

− y ∈ N[−1,1]m (λ) ⇐⇒ λ ∈ sgn(y) (56)
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Objectives

Our background

◮ Nonsmooth modeling of unilateral constraints and friction

◮ Nonsmooth analysis of dynamics with jumps.

Our Objectives

◮ Understand what can be the nature of the solutions (uniqueness,
smoothness).

◮ How perform the numerical time–integration ?

◮ Open issues for the time–integration of large dynamical systems
arising in electrical network applications.
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Some results

Nature of solutions for K ∈ R
m
+

The nature of solutions depends on

◮ the relative degree (index) between y and λ

◮ the possible consistency of the solution

The main types of solutions are

◮ C1 solutions when λ is a lipschitz function of x (relative degree 0)

◮ absolutely continuous solutions (relative degree 1)

◮ solutions of Bounded Variations (relative degree 2)
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Some results

Numerical time–integration methods
The time integration methods depends on the solution

◮ C1 solutions : Standard DAE integrators of low order

◮ absolutely continuous solutions : Implicit first order scheme

◮ solutions of Bounded Variations : Moreau’s catching up algorithm
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Some results

Industrial circuits and automatic circuit equations formulation

◮ Adaptation of the standard Modified Nodal Analysis (MNA)
to the nonsmooth elements to obtain

Problem (DGE)

M(X , t)Ẋ = D(X , t) + U(t) + R ] Differential Algebraic Equations

y = G(X , λ, t)
R = H(X , λ, t)

–

Input/output relations
on nonsmooth components

0 ∈ F (y , λ, t) + T (y , λ, t) ] Generalized equation

X = [V , IL, IV, INS]T ] Variable definition
(57)

➜ Difficulties to discuss the nature of solution and then to adapt the time
numerical method
➜ In electrical circuits, the main difficulty is induced by the topology of
the circuit rather than the inherent non–linearity of the components.
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Applications to industrial electrical networks

comparator ampli

+

+

−
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Vcomp

Vramp(t)

Verror (t)
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IL
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Voutput

Rload

Cp

Figure: Buck converter.
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Applications to industrial electrical networks
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Figure: Siconos buck converter simulation using standard parameters.
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Applications to industrial electrical networks
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Figure: Siconos buck converter simulation using sliding mode parameters.
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Figure: Delta-Sigma converter.
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Open issues

For more general formulations and more complex systems, are we able to
infer the nature of the solutions? That is to say,

◮ Define and predict an equivalent notion to index and relative degree
for instance, for a matrix D semi-definite positive.

◮ Given passive components, are we able to forecast the nature of the
solutions from some topological considerations ? (as for the DAE
case.)

◮ Adapt the time–stepping schemes in an hierarchical way in taking
into account the ”index” of each variable.
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and towards

◮ Dynamics of gene regulatory networks (cell physiology)

◮ . . .
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Thank you for your attention.
Happy Birthday Michel and thank you again
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