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Abstract: A challenge in Web Services architectures is to compose basic ser-
vices to obtain larger applications. Before using a service, a designer must
ensure that it is compatible with the needs of the application. This means that
inputs and outputs of the service comply with the intended ranges of data in
the composite framework, but also that the service eventually returns a value.
In this paper, we address the compatibility problem for modules described with
Distributed Active XML (DAXML), a language for Web Services design. We
first show that the behavior of non-recursive DAXML specifications with finite
data can be represented as bounded labeled Petri nets. We then define compat-
ibility of a DAXML service with some needs in terms of a home space property
in the underlying Petri net. We use this result to define compatibility between
DAXML modules, and prove its decidability. Finally, we give a faster semi-
decision algorithm to verify compatibility between arbitrary sets of modules,
without building the Petri net depicting the behavior of all modules.

Key-words: Web Services; Compatibility; Termination; Petri Nets



Compatibilité entre schémas DAXML
Résumé : Dans le domaine des architectures de services web, la composition de
services est un défi majeur devant permettre d’obtenir des applications à grande
échelle. Avant d’utiliser un service, un créateur d’application doit s’assurer
que ce service est compatible avec ses besoins. Cela implique non seulement
que les plages d’entrée et de sortie du service satisfont à certains critères,
mais également que le service garantisse un retour. Dans cet article, nous
nous intéressons à la compatibilité entre modules décrits à l’aide de Distributed
Active XML (DAXML), un langage pour la mise en oeuvre de services web.
Nous montrons dans un premier temps que le comportement de spécifications
DAXML non-récursives et à données finies peut être représenté par un réseau
de Petri borné. Nous exprimons alors la compatibilité entre services DAXML
en termes d’espace d’accueil du réseau de Petri sous-jacent. Nous utilisons ces
constructions pour définir la compatibilité entre modules DAXML, et montrer
sa décidabilité. Nous terminons en proposant un semi-algorithme permettant
de vérifier plus rapidement la compatibilité entre des ensembles quelconques de
modules, sans pour cela avoir besoin de construire l’intégralité du réseau de
Petri décrivant leur comportement global.

Mots-clés : Services web ; Compatibilité ; Terminaison ; Réseaux de Petri
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1 Introduction
Web Services composition and discovery is a challenging topic: distinct services
from several providers must be assembled to build a web application from the
orchestration of smaller bricks. These bricks are not only computation tasks,
that could be performed locally, but can also involve access to information owned
by the service provider. Services are very often described as an interface, that
specifies how to call a service, interact with it, and the range of values that
shall be returned. Discovering a service then amounts to finding in a repository
the service that complies with the needs of the orchestration. Attempts such as
WSDL [16] have been proposed to collect information about services, but it is
now admitted that finding the right service for some need is not a completely
automatizable task, as the service description, which remains informal, is the
main element that helps selecting services in a repository. The automatizable
part hence mainly concerns the verification of whether the interface of a service
matches the needs of an user. In particular, it means that a service called with
correct parameters terminates, and return results within the range specified by
the service interface. Once a pool of building service bricks have been chosen, the
orchestration invokes them and collects answers using a middleware (CORBA,
DCOM), communication protocols over the web (e.g., SOAP), or simply the
standard HTTP protocol (as is done in REST).

Several languages have been proposed for services orchestrations. Without
being exhaustive, one can cite BPEL [14], ORC [11], XML nets [12, 5], or more
recently Active XML (AXML) [2]. BPEL, ORC, and XML nets explicitly de-
scribe the workflows in Web Service compositions, while AXML makes them
explicit at runtime. In this work, we mainly focus on a variant called Dis-
tributed AXML (or DAXML for short) [3], that takes distribution of data and
services into account. One advantage in using DAXML is that it is at the same
time a formal model and a running implementation [2]. Once a Web Service
composition is proved correct, it should run as designed if adequate and reliable
communication means between components are provided.

In this work, we propose a new notion of compatibility between services,
described with DAXML, where needs are described as input/output interfaces.
This notion of compatibility holds when a service terminates and returns correct
outputs. We show that this compatibility relation is decidable for a subset of
DAXML that bounds recursion and deals with finite data. The decidability of
compatibility relies on a translation from the considered fragment of DAXML
to Petri nets. Compatibility consists in syntactic criteria (that ensure that
services are called with correct data and return expected values) as in previous
work [3], plus an additional termination constraint that can be brought back to a
home space property of the underlying net. We then build on this compatibility
relation to define compatibility between DAXML modules with respect to a
map that pairs needs and services of the composed peers. As checking a home
space property is a costly operation, we then provide a faster semi-decision
algorithm that checks compatibility of DAXML modules without building the
whole associated net.

The translation from DAXML to Petri nets uses two new operations that
merge two labeled nets, or conversely split them into separated components.
These two operations emphasize distribution of actions over a set of processes.
Furthermore, the merging operation allows to identify recurrent behavioral pat-
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4 B. Masson, L. Hélouët, A. Benveniste

terns within a behavior. Thanks to these two operations, our translation from
DAXML to labeled Petri nets becomes more than a simple operational conver-
sion of DAXML semantics, and allows to work with finite nets.

This paper is organized as follows: Section 2 defines syntax and semantics of
DAXML. Section 3 defines the translation from DAXML documents to labeled
Petri nets. Section 4 builds on this translation to show that termination of a ser-
vice is decidable for a fragment of DAXML. Section 5 studies the distributivity
of compatibility, and proposes a semi-decision algorithm to check compatibility
of DAXML modules, before conclusion.

2 Distributed Active XML
Active XML (AXML) is a declarative language that was proposed by [1]. It
mainly consists in XML documents with embedded service calls that transform
these documents. This model has been extended to include guards [2], and
distribution [3, 9]. In this latter version, one can consider a Distributed AXML
(DAXML) model as a set of semi-structured documents (trees) and services
located on distinct machines called peers. Services are programs, that run locally
to a peer and transform a document. They modify locally the trees owned by
their peer, but can also be called by a distant peer. A peer can hence call distant
services that are known only via an interface, that depicts inputs and outputs
to a distant program located on another machine.

Services are described as guarded rewriting rules, plus return conditions.
Guards can then be used to model complex workflows as in ORC or BPEL.
DAXML is then a powerful model, and can simulate Turing machines [2]. The
model itself is similar to XML nets [12], in that a service queries a document
whenever a guard holds. However, XML nets use a high-level Petri net repre-
sentation of the workflow, while DAXML is defined by formal declarative rules
which do not make the workflow explicit. Moreover, the definition of DAXML
allows “lazy evaluation” of services, i.e., a service can return the address to a
new service, letting the orchestrator choose whether he wants to call it or not.

In DAXML, distant calls are performed by a peer when no local service can
fulfill the operation provided by the called peer. The needs of a peer are given
under the form of a requirements interface (or simply interface), i.e., a pair
of patterns that describes the range of inputs and the range of outputs that
a service implementing the needed functionality should accept at calling time,
and return after completion. A natural question is then whether a service f and
an interface I are compatible. A static notion of compatibility was proposed
in [3]: f is compatible with I if it accepts all input parameters described in I
and only returns output values allowed by I. However, this definition is purely
static: it does not guarantee that a call will eventually return. In the rest of
this section, we formalize the notions of DAXML schemas, services, interfaces.

2.1 Trees, Patterns, and Services
We consider DAXML documents as unordered and unranked (arbitrary number
of children) trees, labeled with tags, data values, and service names. A DAXML
document is a labeled tree T = (N,E, µ), where N is a set of nodes, E is the
set of directed edges, and µ is a labeling function. Internal nodes of a tree are
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Compatibility between DAXML Schemas 5

labeled with tags from a set T , and leaves can be labeled with tags T , data
values V, services F = {!α, ?α, α | α ∈ F} where F is the set of services. The
symbol !α indicates that service α is waiting to be called, ?α that it is currently
being called, and α that it has been completed. We will consider that all these
sets are disjoint, that T and F are finite sets, but that V can be infinite.

Within this setting, a forest is a set of labeled trees, often expressed as a
disjoint union F = ]i Ti, and T can also be used as a synonym for forest {T}.
A subtree of a tree T is a tree rooted at some internal node n of T that contains
all successors and edges of T starting from node n. All trees are assumed to be
reduced, i.e., they do not contain isomorphic subtrees rooted at the same node.

DAXML documents are semi-structured data, that can be queried. Several
query mechanisms have been proposed in the literature (Xquery, Xpath, tree
patterns, etc.). In the sequel, we will use tree patterns for simple boolean
queries, and build on these patterns to define queries returning semi-structured
data. A tree pattern is a tuple G = (M,H, c, µM , µH) in which (M,H, µM )
is a tree labeled with elements of T ] V ] F plus a wildcard ? (or possibly
with variables from a finite disjoint set X at the leaves), c is a node of M
called the constructor node, and µH is a function that labels edges as child
edges or descendant edges. A tree pattern G holds at tree T , written T |= G,
when there is at least one mapping h from nodes of G to nodes of T , such that h
respects labeling (µM (n) = µ(h(n)) whenever µM (n) 6= ?), child and descendant
relations (the image by h of two nodes (n, n′) such that µH(n, n′) = child is
an edge of T , and the image by h of two nodes (n, n′) such that µH(n, n′) =
descendant are in the closure of the edge relation), and such that nodes labeled
with variables are sent onto nodes with data values in T . This way, a matching
h assigns values to the variables of a tree pattern. A pattern is a tuple G =
({G1, . . . , Gk} , cond), where G1, . . . Gk are tree patterns, and cond is a boolean
condition on the values taken by variables in G1, . . . , Gk. We will say that G
holds in a forest F , denoted F |= G, iff there exists a matching for each tree
pattern to a tree of F such that the variable assignment satisfies condition cond.
Patterns only indicate whether a given shape appears in a forest, and are hence
boolean queries returning yes/no answers. They will in particular be used to
guard against service calls and returns, thus a pattern may be called a guard.
We now detail how to extract data from documents.

An expansion of a pattern G is a forest F such that for every tree pattern
G of G, there is a tree T in F such that G holds in T , and G does not hold in
subtrees of T . Note that there can be infinitely many expansions of a pattern
(essentially because of wildcards and descendant edges). Expansions will be
used to define forests accepted as parameters of a service, or returned as results.
The set of all expansions of G is denoted [G]. Examples of expansions are
shown on Fig. 1, we refer interested readers to Appendix A for a more formal
definition.

A query is a pair Q = (B,H) such that B and H are patterns. B is called the
body of the query and H the head. In addition, H does not contain descendant
edges nor wildcards (?). The semi-structured document (forest) returned by a
query on a forest F is an expansion of H that takes as valuations the valuations
found from all possible matchings of B in F . We denote this forest by Q(F ).
Intuitively, B is used to collect data from a forest, and H to return them as
a semi-structured document. Queries are used to define services in DAXML.
Each peer in an AXML system will distinguish between internal services, invoked
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Figure 1: Two different expansions of a tree pattern, for the set of valuations
V = {v1, v2}, with v1(X) = 10, v2(X) = 20, v1(Y ) = v2(Y ) = 5. The dotted
arrows indicate how a wildcard can be turned into an arbitrary tag, while the
descendant edge is expanded by 0 or 2 nodes (a1 and a2).

locally to query local documents, and external services, which are only known
as a set of requirements interfaces. We will denote by F = Fint ] Fext the set
of all services, and differentiate internal services Fint and external ones Fext.

An internal service (or function) is a tuple f = (Gc, Qc, {(Gr
i , Q

r
i )}i∈{1,...,Kf}).

An internal service of a peer p can be called when its call guard Gc holds on
local document owned by p. Calling it results in application of the call query
Qc to this document. The result of the query is kept temporarily in memory,
in a tree called the workspace of the call. The service returns when one of
its return guards Gr

i holds on the workspace, and the returned value is com-
puted by application of Qri to the workspace; service processing is described
more precisely in the rest of this section. An external service (or interface) is a
pair I = (Pc, {Pr

i }i∈{1,...,KI}), where Pc and each Pr
i are patterns. Intuitively,

Pc describes possible values that a service implementing I should accept, and
{Pr

i }i∈{1,...,KI} the set of expected legal returns. External services can be imple-
mented by internal services provided by another peer, or left unimplemented.
We will say that an internal service f implements an external service I, and
write f ‖= I if all expansions of I can be accepted as input of f , and if all values
returned by f (the expansions of each Hr

i in return queries of f) satisfy one of
the return patterns in {Pr

i }i∈{1,...,KI}. The property f ‖= I is decidable when
variables range over finite domains [3].

Proposition 2.1 ([3]). Let I be an interface which variables range over finite
domains, and f = (Gc, Qc, {(Gr

i , Q
r
i )}i∈{1,...,Kf}) be a service with variables

in each Hr
i , i ∈ {1, . . . ,Kf}, ranging over finite domains. Then it is decidable

whether f ‖= I.

This implementation relation is purely static: even if all values that can
be returned by internal services meet some requirements, return queries are
guarded, and hence nothing guarantees that an internal service will ever return
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Compatibility between DAXML Schemas 7

a value. In general, it is undecidable whether some guard can be eventually
satisfied within a DAXML system. However, we will show later that we can
impose restrictions on DAXML to ensure decidability of services termination.

2.2 DAXML Schemas and Instances
The dynamics of DAXML models is seen as a sequence of service calls and
returns. We first formalize DAXML schemas to describe a system, i.e., a set
of peers, each of them “owning” local data (DAXML documents) and a set of
internal or external services. Each peer accesses only its data, and invokes its
local services, or distant services offered by another peer via a call to one of its
external services.

Definition 2.1 (DAXML schema). A DAXML schema (schema for short) is a
tuple S = (P,Fint,Fext, ν, γ), where

• P is a finite set of peers, denoted p, q, . . .;
• Fint is a finite set of internal services (functions), denoted f, g, . . .; and
Fext is a finite disjoint set of external services (interfaces), denoted I, J, . . .;

• ν : Fint ] Fext → P is the localization map, it localizes each internal or
external service on a peer;

• γ : Fext → Fint is a partial function, called implementation map, that
maps some interfaces to functions, with the additional constraints that
for all I ∈ dom(γ), ν(I) 6= ν(γ(I)) and γ(I) ‖= I.

If dom(γ) = Fext, the schema S is said to be closed. When f = γ(I), we say
that f implements interface I in S.

DAXML schemas define data and services distributed over a set of peers.
We can easily compose two schemas S1 and S2, by doing the disjoint union of
their documents and services. In addition to this union, we parameterize com-
position by a partial function called a pairing map that pairs external services
of a schema with internal services located on different peers that implement
them. Let ξ ⊆ Fext1 ∪ Fext2 → Fint1 ∪ Fint2 be a pairing map between S1
and S2, then we necessarily have that, for every interface such that ξ(I) is de-
fined, ξ(I) ‖= I and ν(ξ(I)) 6= ν(I). The composition S1 ‖ξ S2 is a schema
S =

(
P1 ] P2,F1

int ] F2
int,F1

ext ] F2
ext, ν

1 ] ν2, γ
)
, where γ = γ1 ] γ2 ] ξ. We

furthermore require that ξ(F1
ext) ⊆ F2

int and ξ(F2
ext) ⊆ F1

int. We can also define
the union ξ = ξ1∪ξ2 of two pairing maps ξ1, ξ2 such that dom(ξ1)∩dom(ξ2) = ∅,
by ξ(I) = ξ1(I) if I ∈ dom(ξ1) and ξ(I) = ξ2(I) if I ∈ dom(ξ2).

Note that services may return trees that embed new service calls. Hence,
DAXML schemas can encode recursive behaviors. Most of undecidable issues in
DAXML occur due to this recursion. It is however possible to trace dependencies
between service calls to detect if such recursion can occur. The call graph of a
schema S is an oriented graph CGS = (F = Fint∪Fext, EC) where (f, g) ∈ EC
if:

• f ∈ Fint, g ∈ F and there exists a node labeled with !g in a head of a
call or return query of f , or

• f ∈ Fext, g ∈ F , and there exists a node labeled with !g in one of the
return patterns of f , or

• g implements f in S.
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8 B. Masson, L. Hélouët, A. Benveniste

A DAXML schema is called recursive if its call graph contains cycles.
The “state” of a schema at some time t is defined as follows. Each peer owns

local data and memorizes the status of local or distant services invocations (that
may eventually return a value). This memorized information is represented as
DAXML trees: some of them store the current data of a peer, the others contain
“active” computations and are called workspaces of a service. A workspace is
simply a tree that is created by the owner of the service when it is called,
modified by its execution, and deleted when the service returns. Hence, the
computation of services is done within a delimited area for each invocation.
As several instances of the same service might be running at the same moment,
workspaces are connected to their calling node. This is formalized by the notion
of DAXML instance.

Definition 2.2 (DAXML instance). A DAXML instance (instance for short)
over a schema S = (P,Fint,Fext, ν, γ) is a tuple D = (F, eval, `), where

• F is a forest. We denote by Fa ⊆ F the subset of trees from F whose
root is labeled with aα ∈ T for some α ∈ Fint ∪ dom(γ) (i.e., α is either
a function or an implemented interface), and let N be the set of nodes of
F labeled with ?α for some α ∈ Fint ∪ dom(γ), called active nodes;

• eval : N → Fa is a bijection which maps an active node n labeled with
?α to a tree of F whose root node is labeled with aα, this tree eval(n)
is called the workspace of n; in addition, if α is an interface in dom(γ),
then the root node of eval(n) has a child labeled with f , ?f or !f , with
f = γ(α);

• ` : F → P maps every tree of F to a peer, such that for all nodes n (in
the following, T (n) denotes the tree containing n):
– if n is labeled with ?f , f ∈ Fint, then `(T (n)) = `(eval(n)) = ν(f)

[for internal functions, the workspace is created on the peer on which
the function is localized];

– if n is labeled with ?I, I ∈ dom(γ), then `(eval(n)) = ν(γ(I)) 6=
ν(I) = `(T (n)) [for implemented interfaces, the workspace is created
on the peer on which the function implementing the interface is
localized, which has to be different from the one making the call,
because of the definition of γ in Definition 2.1].

Intuitively, in an instance D = (F, eval, `), F represents the memory used
by each peer, eval maps service references to the workspaces that have been
created to evaluate them, and ` localizes all trees on a peer. An instance may
be represented as on Fig. 2: peers are delimited by dashed circles, they own a
document which is a forest of trees, some of which being workspaces. The eval
function is represented by the dotted arrows, and depict relation from a calling
node to a workspace (?I to tree aI and node ?g to tree ag).

The set of all instances D over a schema S is denoted DS , it contains all
triples (F, eval, `) which satisfy the conditions of Definition 2.2, for S fixed. We
will say that two instances D = (F, eval, `) and D′ = (F ′, eval′, `′) are isomor-
phic if there exists a bijective function h : F → F ′ that preserves labeling and
edges, locality of trees (i.e., `(n) = `′(h(n)) ) and eval functions (i.e., eval(n) is
defined iff eval′(h(n)) is also defined, and then, h(eval(n)) = eval′(h(n)) ). The
existence of such an isomorphism between two instances D and D′ is denoted
D ≡ D′.
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Compatibility between DAXML Schemas 9

!f ?I

p
aI ag

?g

q

Figure 2: Illustration of a DAXML instance over a schema with two peers p
and q, where peer p owns the service f and the interface I, implemented by
service g on peer q.

The union of two instances D ] D′ is the disjoint union (F ] F ′, eval ]
eval′, `] `′) of their forests, locality and evaluation functions. It is defined even
when D and D′ are not over the same schema. The projection of an instance
on a subset of peers P ′ ⊆ P is the restriction of the forest, eval and ` functions
to trees located on a peer of P ′ and is denoted by DP′ .

Remark 2.1. If P = P1]P2, it may not always be the case that D = DP1]DP2 .
Indeed the eval function is not preserved by projection in general. For example,
suppose the schema contains an interface I and a function f such that f = γ(I),
ν(f) ∈ P1 and ν(I) ∈ P2. If there is a running call to I in D, projecting puts
the workspace in a forest of DP1 , while the node responsible for the ongoing call
is in a forest of DP2 . Thus, the link between them provided by eval is destroyed
during the projection and can not be restored by the union. In all other cases
(interfaces implemented in the same set of peers, or no such ongoing interface
call in D), the equality holds.

2.3 Events

The possible evolutions of a schema are described by events, which transform
an instance D into an instance D′. The set of events is denoted E , then, a move
by event e ∈ E is written D e−−→ D′. In the sequel, D = (F, eval, `) and D′ =
(F ′, eval′, `′) are two instances over the same schema S = (P,Fint,Fext, ν, γ).
Moreover, f =

(
Gc, Qc, {(Gr

i , Q
r
i )}i∈{1,...,Kf}

)
∈ Fint denotes a function and

I =
(
Pc, {Pr

i }i∈{1,...,KI}
)
∈ Fext an interface.

Let us define the different event types: internal service calls and returns,
external service calls and returns when an interface is implemented, and internal
service calls and returns when an interface is not yet implemented. Despite the
apparent complexity of the rules, one should only keep in mind that a move is a
guarded action that represents either a call or a return, and simply transforms
a document instance into another one. For the sake of clarity, we will not
provide more formal details on DAXML semantics, and refer interested readers
to Appendix B or [3].

An internal service call f c occurs only when F contains a node n labeled
with a label of the form !f , where f is a local service name, and when the call
guard of f holds on the part of the document owned by the peer ν(f) that
owns f . The result of this call is to change the label of n to ?f (indicating that
service f is currently processed), to create a new tree (the workspace) computed
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10 B. Masson, L. Hélouët, A. Benveniste

by application of the call query Qc to the part of F owned by ν(f), and to link
it to n by updating function eval.

The return of an internal service fr is allowed when one of the return
guards of the service holds on the workspace associated to the considered call.
Then, the corresponding return query is applied to the workspace, and the
computed result appended as a sibling of the calling node. Finally, the label of
the calling node is changed to f , and the workspace is deleted.

A call to an implemented external service Icf is allowed when a node
n labeled with !I exists in F , and I is an external service owned by a peer p,
that is implemented by a service f , owned by another peer q. Furthermore, a
matching for the input pattern of I can be found in the siblings of node n (i.e.,
external service has correct parameters). The result of the call is to change the
label of n to ?I, create a new workspace on peer q that contains all parameters
of the call plus a node labeled with !f , and connect it to the calling node by
updating function eval. In other words, p sends to q a demand to execute f .

A return from an implemented external service Irf can occur only
when the implementation f has returned its value. It consists in copying the
results that have been appended to the original workspace as siblings of the
calling node, and delete the workspace.

A call to a non-implemented external service Ic is allowed when a
node n labeled with !I exists in F , and I has no implementation. Furthermore,
a matching for the input pattern of I can be found in the siblings of node n
(that is this external service has correct parameters). This call simply changes
the label of n to ?I. As there is no implementation for I, the call is is supposed
processed by a peer of the environment, and no workspace is created.

A return from a non-implemented external service Ir is not guarded,
and consists in changing the label of a node from ?I to I, and appending as
a sibling of this node an expansion of one of the return patterns of the exter-
nal service I, chosen non-deterministically (descendant edges are expanded and
variables are replaced by a value in their domain, see Appendix A for details).

In Section 4, we will also allow DAXML peers to receive calls from their
environment, but for the moment, this possibility is ignored. We extend the
move relation to sequences of events σ = e1e2 . . . ei, with D

σ−−→ D′ if and only
if there exist instances D1, . . . , Di−1 such that D e1−−→ D1

e2−−→ · · · ei−−→ D′.
If there is a (possibly empty) sequence σ such that D σ−−→ D′, D′ is reachable
from D. The set of instances reachable from D is denoted RD(D).

3 Petri Net Representation of DAXML Behav-
ior

Here we show how to represent the behavior of DAXML schemas with labeled
Petri nets. We first recall basic notions on labeled Petri nets, and describe a
simple representation. Then, we introduce an operation that merges two nets,
while highlighting concurrency of events.

3.1 Basic Definitions
Let us start by a small reminder of (labeled) Petri nets. For more information
on Petri nets and their properties, see for example [7].
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Compatibility between DAXML Schemas 11

Definition 3.1. A labeled net is a tuple (Σ,Θ,Φ,Λ, λ) where Σ is the set of
places, Θ is the set of transitions, Φ ⊆ (Σ×Θ)∪(Θ×Σ) is the flow relation seen
as a set of (directed) arcs between places and transitions, Λ is the set of labels,
and λ : Θ → Λ is the labeling function. A subnet of (Σ,Θ,Φ,Λ, λ) is a labeled
net (Σ′,Θ′,Φ′,Λ, λ′), where Σ′ ⊆ Σ, Θ′ ⊆ Θ, Φ′ ⊆

(
(Σ′ ×Θ′) ∪ (Θ′ × Σ′)

)
∩ Φ,

and λ′ = λ|Θ′ is the restriction of function λ to the domain Θ′.

The “state” of a labeled net is represented by a marking, i.e., a mapping
m : Σ → N, where N is the set of non-negative integers. For s ∈ Σ, the value
m(s) is the number of tokens in place s.

Definition 3.2 (LPN). A labeled Petri net (LPN) is a tuple (Σ,Θ,Φ,Λ, λ,m0)
where (Σ,Θ,Φ,Λ, λ) is a labeled net and m0 : Σ→ N is the initial marking.

If N = (Σ,Θ,Φ,Λ, λ) is a labeled net and m a marking, we also denote by
(N,m) the LPN (Σ,Θ,Φ,Λ, λ,m). A labeled net, or an LPN, is finite if the sets
of places and transitions are finite.

Consider an LPN P = (Σ,Θ,Φ,Λ, λ,m). A transition t is enabled in P if
all the places preceeding it contain at least one token, i.e., t ∈ Θ is enabled
if and only if for all s ∈ Σ such that (s, t) ∈ Φ, m(s) ≥ 1; this is denoted by
m[t〉. If transition t is enabled, it may fire and generate a new marking m′ by
removing a token in each predecessor place of t, and adding a token in each
successor place: this is denoted m [t〉 m′, where the new marking m′ is such
that m′(s) = m(s) − 1 for all s ∈ Θ such that (s, t) ∈ Φ, m′(s) = m(s) + 1 for
all s ∈ Θ such that (t, s) ∈ Φ, and m′(s) = m(s) otherwise (including the case
where (s, t), (t, s) ∈ Φ).

A sequence of transitions wich can be fired one after the other is called
an occurrence sequence (denoted σ in general), we naturally extend the firing
notation to (potentially empty) occurrence sequences by m [σ〉 m′. Then, we
say that m′ is a reachable marking from m, and we denote RM(m) the set of
markings which can be reached from m. The LPN P is bounded if there exists
k ∈ N such that for all markings m′ ∈ RM(m), for all places s of P , m′(s) < k.
Equivalently, a finite LPN P is bounded if and only if RM(m) is finite.

Definition 3.3 (bisimulation equivalent LPNs). Consider two LPNs P = (N,m0)
and P ′ = (N ′,m′0), and a relation R ⊆ RM(m0)×RM(m′0) between markings
of P and P ′. The LPNs P and P ′ are bisimulation equivalent with respect to
R (denoted P ≡R P ′) if the reachability graphs of their markings are bisimi-
lar [13, 15], i.e., if:

(i) (m0,m
′
0) ∈ R;

(ii) for any m ∈ RM(m0), m′ ∈ RM(m′0) such that (m,m′) ∈ R:
• for any transition t and marking m1 ∈ RM(m0) such that m [t〉m1,

there exist a transition t′ and a marking m′1 ∈ RM(m′0) such that
m′ [t′〉m′1, λ(t) = λ′(t′), and (m1,m

′
1) ∈ R;

• for any transition t′ and markingm′1 ∈ RM(m′0) such thatm′[t′〉m′1,
there exist a transition t and a marking m1 ∈ RM(m0) such that
m [t〉m1, λ(t) = λ′(t′), and (m1,m

′
1) ∈ R.

In the rest of the paper, we use LPNs to define the behavior of systems
described with DAXML. Intuitively, the places of such Petri nets will represent
the status of all actors in the system, that is the memorized data and the state
of all started processes.
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12 B. Masson, L. Hélouët, A. Benveniste

3.2 Basic Petri Net Representation

The behavior of a DAXML schema S, starting from the initial instance D0, can
be conveniently described by the LPN PS,D0 = (Σ,Θ,Φ,Λ, λ,m0), where:

• Σ = RD(D0), the places are the instances reachable from D0;
• Λ = E , the labels are the events, which can be function or interface calls

or returns;
• Θ ⊆ Σ×Σ, Φ, and λ are such that for any D,D′ ∈ RD(D0), if there exists

an event e ∈ E with D e−−→ D′, then t = (D,D′) ∈ Θ, (D, t), (t,D′) ∈ Φ,
and λ(t) = e;

• m0(D0) = 1, and for all D ∈ RD(D0) \D0, m0(D) = 0.
Let NS,D0 be the labeled net such that PS,D0 = (NS,D0 ,m0). Note that

the forest of the initial instance D0 will only contain service requests !α and
no running or completed calls, so that the domain of eval is initially empty.
Figure 3 illustrates this construction. As usual, places are represented by circles,
transitions by rectangles and their labels, and the markings by tokens inside
the places. In this figure, each place represents a document. Transitions are
labeled with events from the set E , which represent respectively calls to services,
or returns from invocations. Note from this drawing that all actions are not
necessarily allowed from any state. For instance, calling service g from document
D0 prevents calling service f afterwards.

D0

f c

D1

fr

D2

gc

D3

gr

D4

gc

D5

gr

D6

Figure 3: LPN illustrating the behavior of a simple DAXML schema.

The tokens (here, there is only one, initially in place D0) indicate the current
state of the modeled DAXML system. This mapping from tokens to instances
is formalized in the following definition.

Definition 3.4. The instance generated by a marking m is the disjoint union
of instances D(m) =

⊎
D∈Σ

⊎m(D)
k=1 Dk

D, where for all D, for all k, Dk
D is an

instance isomorphic to D (one for each token in D).
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Compatibility between DAXML Schemas 13

Basically, D(m) is the union of all the places containing tokens, with as
many copies as there are tokens in each place. It represents the current global
“state” of the DAXML schema.

Note that in general, an LPN PS,D0 is not deterministic. Indeed, events
are simply labels: call event abstracts away the exact reference (node of the
document) that leads to the call, a return event abstracts away the service
calls that is completed and the returned parameters, etc. Hence different places
(representing different instances) can be reached from a single place by several
transitions having the same label. It is not necessarily confluent either, in the
sense that starting from a given place, following two transitions labeled with e1
and e2 respectively may not lead to the same place as if we had followed two
transitions labeled with e2 and e1. This is mainly because services may reuse
the nodes returned by other services, thus creating different workspaces and
return instances, which depend on the order of their call and return.

Also note that such an LPN is not necessarily finite. Indeed, the transitions
labeled with Ir depict non-implemented services returns, that add returned val-
ues (an expansion of a pattern) to an existing document. If an external service
has a return pattern with an infinite number of expansions, this automatically
leads to infinite branching in the LPN, so that it may not be constructed or anal-
ysed automatically. However, particular (realistic) restrictions on the model lead
to interesting simplifications. If we assume finite domains for the variables, as
well as query and interface patterns of bounded height (in particular this means
that services always return trees of bounded height), it is sufficient to consider
expansions of return patterns of bounded height when a non-implemented ser-
vice returns. With this restriction, there is always a finite number of possible
Ir transitions leaving a given instance. Besides, some occurrence sequences can
be infinite due to services calling one another. However, if we assume that the
call graph of a DAXML schema has no cycles, then a call to a service returns
after a finite number of computation steps. As there is only a finite number
of service requests (!α) in an initial instance, and no unbounded recursion, all
occurrence sequences are finite. If all these assumptions hold, then the LPN is
finite and bounded; we call these the finiteness hypotheses and denote them F.

3.3 Merging Nets
The “internal” behavior of a schema is well described by such a labeled Petri
net, but at this stage, it is no more than a labeled transition system, i.e., an
interleaved behavior. In order to make concurrency visible, we split an instance
into several documents. In that case, the behavior of one schema would be de-
scribed by the union of several Petri nets acting in parallel, independently from
each other. The only form of interaction comes from the fact that for internal
service calls, the guards have to be checked among all documents located on the
peer initiating the call, thus adding new arcs in the flow relation between some
transitions (the function call or return) and places (the part of the document
which satisfies the call or return guard). This is defined by a merge operator ⊕.

Notation. Let S∗ be schema S where all guards evaluate to true, and D ∈ DS .
The labeled net NS,D is a subnet of NS∗,D = (Σ ] Σ∗,Θ ]Θ∗,Φ ] Φ∗,Λ, λ∗).
All extra data added (new places, transitions and flow relation) is marked with
a star, and the labeling function is such that λ = λ∗|Θ.
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14 B. Masson, L. Hélouët, A. Benveniste

Definition 3.5 (merge). For a given schema S and two instances D1, D2 ∈ DS ,
define the labeled nets NS,Di = (Σi,Θi,Φi,Λi, λi), for i ∈ {1, 2}. Their merge is
the labeled net NS,D1⊕NS,D2 = (Σ′1]Σ′2,Θ′1]Θ′2,Φ′,Λ1]Λ2, λ). The elements
of Σ′i,Θ′i, for i ∈ {1, 2}, of Φ′, and the function λ are constructed inductively as
follows.

(i) Σi ⊆ Σ′i and Θi ⊆ Θ′i, for i ∈ {1, 2}; Φ1,Φ2 ⊆ Φ′.
(ii) λ(t) = λi(t) if t ∈ Θi, for i ∈ {1, 2}.
(iii) For all instances D ∈ Σ′i, D′ ∈ Σ∗i , Dl ∈ Σ′jl , 1 ≤ l ≤ k for some k, for

each transition t ∈ Θ∗i , with i, j1, . . . , jk ∈ {1, 2}, if there exist a node n
in a forest F of the instance D, a forest Fl in each Dl, and a function
f ∈ Fint, which are such that

• n is labeled with !f ,
• λ∗i (t) = f c,
• ν(f) = `(F ) = `(F1) = · · · = `(Fk),
• (∪kl=1Fl ∪ F ) |= Gc,
• for all F ′ ( ∪kl=1Fl, (F ′ ∪ F ) |6= Gc;

[in simple words, all the items above mean that the event D fc−−−→ D′ is
made possible by forests inside documents D1, . . . , Dk, and that each of
these forests is necessary for the guard to hold;]
then we create a fresh transition t′ ∈ Θ′i labeled with λ(t′) = f c, we add
D′ ∈ Σ′i, and add to the flow relation the arcs (Dl, t

′), (t′, Dl), (D, t′),
(t′, D′) ∈ Φ′, for 1 ≤ l ≤ k.
We finally add all the newly reachable instances RD(D′) to Σ′i, as well
as the corresponding transitions and arcs to Θ′i and Φ′ respectively.

Note that guards can be slightly more complex than presented in this paper.
We kept them as simple as possible for readability reasons. However, imple-
menting the whole complexity of guards as presented in [3] would not impose
any change to our LPN model.

Figure 3.3 illustrates how merging can enhance the behavior of an LPN
associated with a DAXML instance. It preserves the respective behaviors of
both of the merged LPNs, adding new possibilities allowed by the presence of
the documents of the other component.

The following proposition allows to use the notation
⊕

D∈DNS,D, for a set
of instances D with more than 2 elements.

Proposition 3.1. ⊕ is associative and commutative.

Proof. Commutativity follows from the definition of ⊕ (symmetric roles of Σ1
and Σ2, etc.).

Associativity is less obvious. Take 3 instances D1, D2, D3 over the same
schema S, denote Ni = NS,Di and Nij = Ni ⊕Nj for i, j ∈ {1, 2, 3}. We show
that N12⊕N3 = N1⊕N23. Let D be some place in N12⊕N3. If D was already
in N1, N2, or N3, then D is in N1 ⊕ N23. If D was added while merging N1
and N2, step (iii) of Definition 3.5 tells us that there are places in N1 and N2
which permitted its creation: these places are also present in N1 and in N23,
so D will also be added in N1 ⊕N23. A similar reasoning, iterated once more,
gives the same result if D is introduced when merging N12 and N3. This works
as well for transitions and flow relation, thus proving that N12⊕N3 is a subnet
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D0

f c

D1

fr

D2

gc

D3

gr

D4

gc

D5

gr

D6

D′0

hc1

D′1

hr1

D′2

hc2
D′3

hr2

D′4

f c

f c

D7

fr

D8

of N1 ⊕ N23. Finally, the other direction is done similarly and we obtain the
equality.

So far, we have considered behavioral equivalence of nets (Definition 3.3).
However, this equivalence is not sufficient to compare systems that manipulate
documents. We need, in addition to behaviors, to ensure that the manipulated
documents are isomorphic.

Definition 3.6 (equivalent LPNs). Two LPNs P and P ′ whose places are
DAXML instances are equivalent, denoted P ≡ P ′, if they are bisimulation
equivalent for the relation R≡ defined by (m,m′) ∈ R≡ if and only if D(m) ≡
D(m′).

The following theorem is a first step towards “splitting” instances, to simplify
the behavioral study. It states that given several instances, the merged LPN of
these instances has the same behavior as the LPN of their union.

Theorem 3.2. Given a schema S and a finite set K, consider D =
⊎
k∈K Dk ∈

DS. Denote PS,D = (NS,D,m0) as usual, and P ′S,D =
(⊕

k∈K NS,Dk ,m
′
0
)
, with

m′0(D′) = 1 if D′ = Dk for some k ∈ K, m′0(D′) = 0 otherwise. Then, the
LPNs PS,D and P ′S,D are equivalent.

Proof. Since D =
⊎
k∈K Dk, it holds that D(m0) ≡ D(m′0).

Consider some markings m,m1 ∈ RM(m0), m′ ∈ RM(m′0), and a transi-
tion t such that D(m) ≡ D(m′) and m [t〉m1 in PS,D. We show that there exist
a marking m′1 and a transition t′ such that m′ [t′〉m′1 in P ′S,D, with λ(t) = λ′(t′)
and D(m) ≡ D(m′).
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16 B. Masson, L. Hélouët, A. Benveniste

If λ(t) 6∈ {f c | f ∈ Fint}, then by definition, the event is not guarded
(case of interface returns), or its guard has to hold in the same tree as the node
responsible for the call (interface calls), or it holds in a tree in the same instance
as this node (function returns, the guard has to hold in the workspace, which is
necessarily in the same instance as the caller node, to maintain the eval link).
So, a transition t′ labeled with λ(t) can be fired in P ′S,D without using step (iii)
of Definition 3.5. Thus, there exists m′1 such that m′ [t′〉m′1 in P ′S,D. Moreover,
because D(m) ≡ D(m′), it is possible to fire the transition with the same result
as in PS,D, hence to choose t′ and m′1 such that D(m1) ≡ D(m′1).

If λ(t) = f c for some f ∈ Fint, then since D(m) ≡ D(m′) and the call guard
of f is satisfied in D(m), it is also satisfied using a forest of trees F from D(m′).
Recall that D =

⊎
k∈K Dk, let Dk be the instance which contains the tree from

D containing the node responsible of the firing of t in PS,D. If all trees of F
belong to Dk, we reach the same conclusion as previously, a transition t′ with
the same label is enabled in P ′S,D and can lead to an instance isomorphic to
D(m1). Otherwise, because of step (iii) of Definition 3.5, a transition labeled
with f c should also be enabled in P ′S,D because the trees of F can all be found in
places with tokens, which by construction are predecessors of all the transitions
labeled with f c. It suffices to fire the one which gives the same result as in PS,D,
and with the tokens from the guard returning to their place we obtain a marking
m′1 and a transition t′ such that m′ [t′〉m′1, λ(t) = λ′(t′), and D(m1) ≡ D(m′1).

The converse direction can be solved with a similar case study over the
enabled transitions labels, if there are m ∈ RM(m0), m′,m′1 ∈ RM(m′0) and t′
such thatD(m) ≡ D(m′) andm′ [t′〉m′1 in P ′S,D, then there existm1 ∈ RM(m0)
and t such that m [σ〉m1 in PS,D, with λ(t) = λ′(t′) and D(m1) ≡ D(m′1).

A first consequence of this result is that in order to reduce the number
of places of an LPN PS,D, which could grow exponentially in the number of
service calls, one can merge all the LPNs obtained by splitting the instance
D instead. This technique makes explicit the concurrency which can be found
in the DAXML framework, and provides a better view over the sequences of
related events than the simple interleaving found in PS,D.

The following proposition shows that merging preserves equivalence of LPNs.
Proposition 3.3. Given two labeled nets N1 and N2 and markings over these
nets m1 and m2 such that (N1,m1) ≡ (N2,m2), then (N1 ⊕ N,m′1) ≡ (N2 ⊕
N,m′2), for any labeled net N and any markings m′1,m′2 such that for i ∈ {1, 2},
m′i(D) = mi(D) if D is a place of Ni, m′1(D) = m′2(D) if D is a place of N ,
and m′1(D) = m′2(D) = 0 otherwise.
Proof. Initially, D(m′1) ≡ D(m′2) because D(m1) ≡ D(m2) (since (N1,m1) ≡
(N2,m2)), and the other places are either empty, or are shared between the two
nets and contain the same number of tokens.

Then, reasoning by case-study over the label of the transitions that can be
fired on the two LPNs, in the same way as it was done in the proof of Theorem 3.2
above, one gets the result.

4 Compatibility between Schemas
In this section we define and study two notions of “behavioral” compatibility
between two DAXML schemas, where the first schema provides a service for
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which the other schema only knows the interface. This notion of compatibility
is important for a distributed system, since it allows for component-based design
and orchestration of services. It is stronger than the implementation relation [3],
which is only a kind of “static” compatibility notion, in the sense that it does
not take into account the possible internal behaviors of both schemas.

First, we introduce definitions which are useful to model the treatment of
incoming calls. Then, we define weak and strong compatibility, and show that
with the assumptions F ensuring a finite LPN representation, these properties
are decidable (Theorem 4.2).

4.1 Environment Calls and Fairness
We introduce two more events, corresponding to the reception of an external
call from the environment, and to its return once the service is completed.
Note that they are complementary to non-implemented interface calls and re-
turns: they create (and delete) the workspace on the proper peer, for a non-
implemented interface on a peer outside the current schema. Consider a schema
S = (P,Fint,Fext, ν, γ) and an internal service f = (Gc, (Bc,Hc), {(Gr

i , Q
r
i )}i∈{1,...,Kf}) ∈

Fint.
A reception of environment call to a local service f is an event Ecf . Such

an environment call can occur at any time, and simply consists in adding to the
existing document a new tree (workspace) containing a reference to the called
service (!f) and the parameters of the call (a forest F ). We furthermore suppose
that the call parameters are compatible with the called services, that is, F is an
arbitrary element of

[
Bc
]
. Recall that

[
Bc
]
is the set of expansions (Section 2,

or Definition A.3), of Bc, i.e., the set of admitted parameters of f .
A return to the environment Erf can occur only when the called service

has completed its task. The effect of this return is to delete the whole tree that
was originally created for this service call.

We give a formal semantics of environment calls and returns in Appendix C.
Allowing environment calls/returns slightly modifies the definition of instances,
as in this settings, the workspace delimiting the computation of a service f is
not related to any node by function eval. If we want to close the schema, that
is compose it with another schema that makes explicit all interfaces that refer
to f , the joint behavior of both descriptions adds the appropriate links in eval,
merge Ic and Ecf into Icf , and Ir and Erf into Irf for every I such that γ(I) = f .

These events easily integrate into our LPN representation.

Notation. For a forest F , we denote by Tf (F ) a tree whose root is labeled
with aEf , such that the children of the root are all the trees from F and a node
labeled with !f . It represents the workspace W defined above for the reception
of an environment call associated with f , where the parameters consist of the
trees of F . Furthermore, let Df (F ) be the instance (Tf (F ), eval, `) where eval
is undefined, and `(Tf (F )) = ν(f).

In the labeled net NS,Df (F ), denote by Drf (F ) all the places representing a
successful computation of the environment call, i.e., D ∈ Drf (F ) if it respects
all conditions described above in the return to environment event.

Define the labeled net Nf
S,D as follows, where D is an instance over S.
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1. First, consider N1 = NS,D ⊕
⊕

F∈[Bc]NS,Df (F ). The nets NS,Df (F ) rep-
resent the processing of an environment call to f with parameters F .

2. Add an additional place, named s. For all F ∈
[
Bc
]
, add a transition in

N1 labeled with Ecf , whose unique predecessor is s and whose successors
are s and Df (F ). This allows to arbitrarily add tokens (provided there
was initially a token in s) to the place Df (F ), representing the reception
of a new environment call. Denote N2 the resulting net.

3. For all F ∈
[
Bc
]
, for all places D in Drf (F ), add a transition in N2 labeled

with Erf , with no successors and the place D as unique predecessor. This
removes a token when the environment call is complete, representing the
return to environment. The resulting net is Nf

S,D.

It is clear that the LPN P fS,D = (Nf
S,D,m

′), where m′0(D) = m′0(s) = 1 and
m′0 equals 0 for any other place, represents the behavior of the DAXML schema
S accepting environment calls to the local function f , starting from the in-
stance D. Indeed, m [t〉 m′ in P fS,D if and only if schema S allows a move

D(m) λ(t)−−−−→ D(m′). Figure 4 illustrates such an LPN by showing the extra
place and transitions.

D

D1

Ecf

Erf

D2 D3

Ecf Ecf

Erf Erf Erf

s

Figure 4: LPN describing the behavior of a schema receiving environment calls
to a function f . To simplify, here

[
Bc
]

=
{
F 1, F 2, F 3} and Di = Df (F i), for

1 ≤ i ≤ 3. The triangles abstract the LPNs initiated by the instance on top of
them, the dashed arrows represent the arcs introduced by the mergings.

These labeled nets can be easily generalized to any set Fenv ⊆ Fint of internal
functions which can be triggered by an environment call. In this case, the
construction leads to the labeled net NFenvS,D . In particular, NFintS,D is the labeled
net accepting any environment call. We use similar notation for the LPNs. The
set Fenv can be seen as a “prototype” of the public functionalities that a schema
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provides to the environment. It is fixed when the schema is defined, and can
thus be seen as an additional element of a schema.

With the finiteness hypotheses F, the sets
[
Bc
]
are finite for all functions f ,

hence only a finite number of nets NS,Df (F ) are merged to the initial net NS,D.
Each of these merged nets are finite, so NFenvS,D is also finite, for any (finite) set
Fenv ⊆ Fint. The main difference with the initial LPN PS,D is that PFenvS,D is not
bounded: since the transitions labeled with Ecf , for some f ∈ Fenv, can occur
at any time, there can be an arbitrary number of tokens on any of the Df (F )
places. The structure used to model the behavior of an extended schema is
finite, but it admits infinite behaviors. As a consequence, a token might remain
in a place forever even in infinite occurrence sequences of PFenvS,D , because some
other transitions may keep firing.

To deal with these infinite occurrence sequences, we introduce a fairness
notion [4, 8], and more particularly the weak fairness assumption [4, 10] (some-
times also called finite delay property).

Definition 4.1 (Weak fairness). For an LPN with set of transitions Θ and
initial marking m0, an infinite occurrence sequence σ = t1t2 · · · is weakly fair if
for all t ∈ Θ, if there exists i ∈ N such that for all j ≥ i, m0 [t1 · · · tj〉m and
m[t〉, then there exist infinitely many positions k ∈ N such that tk = t.

In other words, if starting from a given time a transition is continuously en-
abled, then weak fairness guarantees that this transition is fired infinitely often.
In particular, this fairness assumption prevents an LPN PFenvS,D from continu-
ously firing one of the transitions labeled with Ecf , unless no other transition is
enabled, thus ensuring that requests progress.

4.2 Decidability of Compatibility

Intuitively, a compatibility notion should ensure reliable termination of internal
and external services. While the implementation relation guarantees that the
parameters and returns of an interface call have a correct “type”, compatibility
should guarantee that an environment call, sent through an interface, will always
be treated and completed.

The following definition builds the labeled nets and LPNs that we use to
define compatibility. The basic idea is to start from a net NFenvS,D and add places
and transitions to “select” a single request, to check whether it is processed. One
LPN allows further environment calls to be received once the selected request
has been initiated, while the other does not. Figure 5 shows the general structure
of the LPNs we are defining.

Definition 4.2. For a schema S, an instance D ∈ DS , a function f ∈ Fenv ⊆
Fint and a forest F ∈

[
Bc
]
, where Bc is the body of the call query of f , we

define the labeled nets NFenvS,D (F ) and NFenvS,D [F ]. For both nets, we start by
constructing NFenvS,D ⊕ NS,Df (F ). That is, we add to NFenvS,D a copy of the net
associated to the execution of f with parameters F . From now on, Df (F )
(abusively) denotes the merged copy of the existing place Df (F ). Add a new
transition t labeled with Ecf .
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• In NFenvS,D (F ), add arcs (s, t) and (t,Df (F )) to the flow relation: the token
inside s is used to select an environment call associated with f , preventing
any further incoming calls to be received.

• In NFenvS,D [F ], add a new place s′ and two arcs (s′, t) and (t,Df (F )): the
copied places have no effect on the rest of the net.

Moreover, define the LPNs PFenvS,D (F ) = (NFenvS,D (F ),m′′0) and PFenvS,D [F ] =
(NFenvS,D [F ],m′′0), with m′′0(D) = m′′0(s) = 1 (and m′′0(s′) = 1 in PS,D[F ]), and
m′′0(D′) = 0 for all other places D′.

PFenvS,D

D s

Ecf Ecf

Df (F )

(a) The LPN P Fenv
S,D (F ).

PFenvS,D

D s

Ecf

s′

Ecf

Df (F )

(b) The LPN P Fenv
S,D [F ].

Figure 5: Example of LPNs PFenvS,D (F ) (left) and PFenvS,D [F ] (right). The rect-
angle symbolizes the LPN PFenvS,D , as represented on Fig. 4. New elements are
thickened, they are used to select one environment call and process it separately
from the rest. Some interactions due to the merge may still appear, they are
indicated by dashed arrows.

We introduce two versions of compatibility, a weak and a strong one, depend-
ing on whether receptions of environment calls are allowed during the treatment
of an ongoing environment call.

Definition 4.3 ((Strong) compatibility). For two schemas S1 and S2 with
I ∈ F1

ext, f ∈ Fenv ⊆ F2
int, and f ‖= I, then S1 and S2 are (strongly) (I, f)-

compatible for an initial instance D (denoted S1
ICfD S2) iff after any sequence

of receptions of environment calls from Fenv, every event Ecf in PFenvS,D induced
by a call to I is eventually followed by a corresponding response Erf .

Formally, let Pc represent the call pattern of I. Then, S1
ICfD S2 if and

only if for all F ∈ [Pc], for all m ∈ RM(m′′0) in the LPN PFenvS,D (F ), there exists
m′ ∈ RM(m) such that m′(D′) = 1 for some place D′ ∈ Drf (F ).

Definition 4.4 (Weak compatibility). For two schemas S1 and S2 with I ∈
F1
ext, f ∈ Fenv ⊆ F2

int, and f ‖= I, then S1 and S2 are weakly (I, f)-compatible
for an initial instanceD (denoted S1

IC∼
f
D S2) iff there is a sequence of receptions

of environment calls from Fenv such that every event Ecf in PFenvS,D induced by
a call to I is eventually followed by a corresponding response Erf .

Formally, let Pc represent the call pattern of I. Then, S1
IC∼

f
D S2 if and

only if for all F ∈ [Pc], for all m ∈ RM(m′′0) in the LPN PFenvS,D [F ], there exists
m′ ∈ RM(m) such that m′(D′) = 1 for some place D′ ∈ Drf (F ).
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Note that an environment call may not terminate in general, but it may if
we restrict to forests F ∈ [Pc]. So, the fact that a particular environment call
does not return does not imply that the two schemas are not (I, f)-compatible.

The difference between the two notions resides in the fact that once the
selected Ecf has been received, the LPN used for strong compatibility refuses
any further environment calls (the context is fixed), while the one used for weak
compatibility may accept them if they help processing the selected environment
call. As a consequence, S1

ICfD S2 implies S1
IC∼

f
D S2.

The schemas S1 and S2 are (strongly) [resp., weakly] compatible for the
instances D1 and D2 with respect to a pairing map ξ (refer to Sect. 2.2 for
definition) if and only if for all I ∈ dom(ξ) ∩ F1

ext, ξ(I) ‖= I and S1
ICξ(I)D2 S2

[resp., S1
IC∼

ξ(I)
D2 S2], and for all I ∈ dom(ξ) ∩ F2

ext, ξ(I) ‖= I and S2
ICξ(I)D1 S1

[resp., S2
IC∼

ξ(I)
D1 S1]. Strong and weak compatibility are denoted respectively

S1
D1

ξ
./D2 S2 and S1

D1
ξ
./∼ D2 S2, and as for schema composition, ξ may be

omitted when it is given in the context.
Compatibility together with fairness (Definition 4.1) ensure that any envi-

ronment call will be answered in finite time. For weak compatibility, this is also
true, provided the necessary environment calls (if any) have been received. We
can prove the decidability of these important properties in our settings.

Theorem 4.1. Given two schemas S1 and S2, an interface I ∈ F1
ext and a

function f ∈ Fenv ⊆ F2
int such that f ‖= I, with the finiteness hypotheses F,

(I, f)-compatibility and weak (I, f)-compatibility are decidable.

Proof. We state both (I, f)-compatibility properties in terms of home spaces. A
home space [6] is a set of markingsM which can be reached from any reachable
marking, i.e., M is a home space of an LPN (N,m) if for all m′ ∈ RM(m),
RM(m′) ∩M 6= ∅.

Assume that the set of functions which can be triggered by an environment
call is Fenv ⊆ F2

int, with f ∈ Fenv. Denote by Bc the body of the call query of
f , and by Pc the call pattern of I. Consider an instance D over S2 and a forest
F ∈ [Pc]. Note that since f ‖= I, it also holds that F ∈

[
Bc
]
, so PFenvS2,D (F )

is well defined. Let Mr(F ) be the set of markings of PFenvS2,D (F ) in which the
environment call Ecf with parameters F can return, i.e., Mr(F ) = {m | ∃D ∈
Drf (F ),m(D) = 1}. Also define the sets of markingsMD with at least one token
in place D, i.e.,MD = {m | m = mD+

∑
D′∈D kD′ ·mD′ with kD′ ∈ N}, where

D denotes the set of places of PS2,D(F ), and for any D ∈ D, mD is the marking
such that mD(D) = 1 and mD(D′) = 0 if D′ 6= D. The setsMD are linear sets,
of base mD and of period {mD′ | D′ ∈ D}. Observe that the set of markings
Mr(F ) can also be seen asMr(F ) =

⋃
D∈Dr

f
(F )MD.

Strong (I, f)-compatibility is equivalent to showing that for the external
service I of schema S1, for a given set Fenv ⊆ F2

int containing f , for all F ∈ [Pc],
Mr(F ) is a home space of PFenvS2,D (F ). It was proved in [6] that this property is
decidable for finite unions of linear sets with the same period, which we have seen
is the case here forMr(F ). Thus, given some forest F ∈ [Pc], the home space
property ofMr(F ) in PFenvS2,D (F ) is decidable. Besides, since the assumptions F
hold, there are finitely many values for F in [Pc], hence the decidability result.

Weak (I, f)-compatibility is decided similarly, by testing home spaces of the
LPNs PFenvS2,D [F ], F ∈ [Pc].
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Theorem 4.2. With the finiteness hypotheses F, compatibility and weak com-
patibility are decidable.

Proof. Consider a pairing map ξ between two schemas S1 and S2, two instances
D1 and D2 over S1 and S2 respectively, and two set of functions F ienv ⊆ F iint,
i ∈ {1, 2}, which can be triggered by environment calls. It suffices to check that
for all I ∈ dom(ξ), ξ(I) ‖= I, and S1

ICξ(I)D2 S2 if I ∈ F2
ext or S2

ICξ(I)D1 S1

if I ∈ F1
ext (or the respective weak (I, ξ(I))-compatibility equations if weak

compatibility is considered).
For a given pair of services (I, f), with finite variable domains assumption,

implementation relation is decidable (Proposition 2.1), as well as strong or weak
(I, f)-compatibility (Theorem 4.1). Therefore, since dom(ξ) ⊆

(
F1
ext ∪ F2

ext

)
is

finite, weak and strong compatibility can be decided.

5 Distributivity of Compatibility
We now study an interesting property of compatibility. We prove in Theorem 5.4
that if several schemas are pairwise-compatible, then any of their compositions
are also compatible. This is useful because it allows a faster semi-algorithm to
decide whether two schemas are compatible, by checking compatibility between
smaller sets of services. In practice, this can also be used by a company which
provides services to another, and wants to hide the fact that it delegates part
of its tasks to another service provider.

5.1 Splitting Nets
We introduce a second operation on labeled nets, called splitting. It will be
used to shorten the proofs in this section, but it is also an interesting concept:
this operation “splits” the places of a net to obtain several interacting subnets.
Each of these places is the restriction of the global instance to a set of peers.
Before defining it, we need to make explicit the projection of a labeled net over
a subset of peers.

Definition 5.1 (projection). Given a schema S, an instance D ∈ DS and a
subset P ′ ⊆ P of the peers of S, the projection of NS,D over P ′ is the labeled
net denoted by NP′S,D which is defined as follows.

(i) First, project all the places (instances) of NS,D over P ′ as defined at the
end of Section 2.2;

(ii) The rest corresponds to the projection of a transition system over the
non-empty places:

• if any projected instance D′P
′
is empty, remove it and all its succes-

sors (places and transitions);
• inductively merge the isomorphic instances separated by a single

transition, removing this transition;
• merge the transitions which have the same predecessor and successor,

and the same label.

Let us now define the split operation. Intuitively, splitting a net extracts
external service calls and computation from a net. This operation allows to
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isolate the computation steps of a service in a subnet involving places (instances)
localized on a given set of peers, hence emphasizing the distribution of services.
The construction is illustrated in Fig. 6, a formal description follows.

D

Icf
gc

f c

gc
f c

fr

gc
fr

Irf Irf

gr

p, q

split over

{{p}, {q}}

D{p} = D

Icf

gc

Irf Irf

gr

p

f c

fr

q

Figure 6: Split of the net NS,D over {{p} , {q}}. We assume two distinct peers
p and q in schema S, and services f, g, I such that f ‖= I and ν(f) = q,
ν(I) = ν(g) = p. For simplicity, the initial instance D contains documents
located exclusively on p, but data is created on q when I is called. Such a call
induces a call to service f on q (thick transitions), but also allows to call g on
p. Service g may only return after I has completed. In this simple example,
we also assume that merging the workspace of I and the net projected on p
introduces no new arc in the flow relations.

Definition 5.2 (split). Given a schema S with set of peers P, an instance
D ∈ DS and a partition of P into P1 ] P2, we denote by NP1,P2

S,D the split of
NS,D over {P1,P2}. This labeled net is constructed as follows.

(i) For all I ∈ dom(γ) and f = γ(I) such that ν(I) ∈ Pi and ν(f) 6∈ Pi
(for some i ∈ {1, 2}), let ΘI be the sets of transitions from the net NS,D
which are labeled with Icf . Let δ be the function which associates each
transition t in some ΘI with the set of transitions corresponding to return
of the interface call initiated by t. Consequently, every transition in δ(t) is
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labeled with Irf if t is labeled with Icf . The sets ΘI are used to characterize
the transitions which create workspaces in peers not in Pi, with Pi ⊃ ν(I),
for i ∈ {1, 2}.

(ii) For each i ∈ {1, 2}, start by projecting NS,D on the peers Pi, to obtain
NPiS,D as described in Definition 5.1.

(iii) For each I ∈ dom(γ), for each t ∈ ΘI , create a new net N(t) isomorphic to
the net NS,Df (F ), where F are the parameters of the call to I in transition
t. Consider N1 = NP1

S,D ⊕N
P2
S,D ⊕

(⊕
I∈dom(γ)

⊕
t∈ΘI N(t)

)
, this merges

the nets corresponding to the implemented interface calls.
(iv) For every I ∈ dom(γ), for every transition t in ΘI , add to N1 the arc

(t,D), where D is the initial place of N(t). Also add the arcs (D′, t′),
with t′ ∈ δ(t), for each D′ which is a place of N(t) in which I may return
with the results expected by t′.

(v) Since we may have added transitions corresponding to implemented inter-
face calls in the nets N(t), steps (i) to (iv) should be iterated on the nets
N(t) until there are no more. Note that with the no-recursion hypothesis,
the process stops and the net remains finite. The resulting net is NP1,P2

S,D .

We easily extend the split operation to more than two sets of peers, and
denote it NP1,...,Pk

S,D = N
(Pi)
S,D for a family of pairwise-disjoint sets of peers Pi

(1 ≤ i ≤ k), with
⊎k
i=1 Pi = P. The corresponding LPN is P (Pi)

S,D = (N (Pi)
S,D ,m

′
0),

with m′0(DPi) = 1 for each 1 ≤ i ≤ k and m′0(D′) = 0 for all other places D′.
Remark 5.1. Splitting a net destroys the eval link between the active nodes
making implemented interface calls, and their respective workspaces, as written
in Remark 2.1. However, this link still exists in the split net, since each interface
call is associated with a fresh subnet N(t) (see item (iii) of Definition 5.2).
Thus, it can be restored without ambiguity when generating an instance from
a marking of a split LPN (this is a minor change in Definition 3.4).

The following theorem states that splitting preserves the global behavior.

Theorem 5.1. Given a schema S with set of peers P and an instance D over
S, consider a family of sets of peers Pk, k ∈ K, for some finite set K such that⊎
k∈K Pk = P. The LPNs PS,D and P (Pk)

S,D are equivalent.

Proof. We follow the same scheme as in the proof of Theorem 3.2. Since we
can assume there are no running interface calls in D (it is supposed to be
an initial instance), the eval function is preserved when projecting, therefore
D(m′0) =

⊎
k∈K D

Pk = D (see Remark 2.1) and D(m0) ≡ D(m′0). We also use
Remark 5.1 to generate correct instances from markings.

This theorem leads to a more general result, useful in the proof of our main
result given in Theorem 5.4, which provides more efficient means to check com-
patibility.

Corollary 5.2. For any schema S containing a function f ∈ Fenv ⊆ Fint
whose call query has body Bc, for any forest F ∈

[
Bc
]
, instance D ∈ DS, and

partition of the peers of S into P1]P2, the LPNs PFenvS,D (F ) and PFenvS,D (F )P1,P2

are equivalent. Similarly, PFenvS,D [F ] and PFenvS,D [F ]P1,P2 are equivalent.
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Proof. Simply note that the underlying net of PFenvS,D (F ) is the merging of several
nets of the form NS,Di , for a finite family of instances (Di) over S, to which one
place and a finite number of transitions are added (see Figure 5).

By a simple extension of Theorem 5.1, each LPN (NS,Di ,mi) is equivalent
with (NP1,P2

S,Di
,m′i), if mi is a marking such that all places but Di are empty and

Di contains an arbitrary number of tokens (this is useful because this place may
have received an arbitrary number of tokens, due to the extra place). The mark-
ing m′i is the result of the projection on P1 and P2, i.e., m′i(D

Pj
i ) = mi(Di) for

j ∈ {1, 2} and m′i(D) = 0 otherwise. By Proposition 3.3, the merging of these
nets preserves equivalence. Finally, the addition of the extra places and transi-
tions (input and output of the merged nets) also preserves the property, since
these places do not contain trees which satisfy any guard and these transitions
do not require any guard to hold, hence the result.

The same technique applies to PFenvS,D [F ].

5.2 Distributivity and Semi-Decision Algorithm for Com-
patibility

We now show that compatibility “distributes” over schemas: if a set of schemas
are pairwise-compatible, then any composition of several of them is compati-
ble with any other composition (Theorem 5.4). Recall that composition ‖ξ of
schemas w.r.t. a pairing map ξ is defined in Section 2.2.

This result has two practical consequences. One is a faster way to check
compatibility between large schemas, another is to preserve confidentiality, since
a schema does not need to know what resources another schema uses to answer
its requests.

All the results in this section are proved for strong compatibility, but work
nevertheless with weak compatibility.

The following lemma is a first step towards proving Theorem 5.4. In its
proof, notation F1

env tξ F2
env refers to the set of functions that can be triggered

by an environmental call in schema S1 ‖ξ S2, it is a subset of F1
env ∪ F2

env and
a superset of F1

env ∪ F2
env \ ξ(dom(ξ)): some functions of a set F ienv may not

remain in F1
env tξ F2

env, because they implement interfaces of S3−i and are not
provided to the environment anymore.

Lemma 5.3. Consider three instances D1, D2, D3 over three schemas S1, S2, S3.
If S3

D3
ξ13
./ D1 S1

D1
ξ12
./ D2 S2

D2
ξ23
./ D3 S3, then S3

D3
ξ123
./ D1]D2 (S1 ‖ξ12 S

2)
for any pairing maps ξ12, ξ13, ξ23 such that dom(ξ13) ∩ dom(ξ23) = ∅, with
ξ123 = ξ13 ∪ ξ23.

Proof. Obviously, for any I ∈ (F1
ext ∪ F2

ext) ∩ dom(ξ123), f ∈ F3
env ⊆ F3

int such
that f ‖= I, then (S1 ‖ξ12 S

2) ICfD3 S3. Indeed, suppose I ∈ F1
ext (and thus

I ∈ dom(ξ13)), denote by Pc its call pattern. Since S1
ICfD3 S3, we already know

that the different LPNs PF
3
env

S3,D3(F ), for F ∈ [Pc], have the property required in
Definition 4.3. The case I ∈ F2

ext is identical.
For the other direction, assume I ∈ F3

ext ∩ dom(ξ123). Because dom(ξ13) ∩
dom(ξ23) = ∅, either I ∈ dom(ξ13) or I ∈ dom(ξ23), assume the first one
(the other case is similar) and consider f = ξ13(I) ∈ F1

env. By compatibility
hypothesis between S1 and S3, f ‖= I. We want to show that for any F ∈ [Pc],
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for any reachable marking m in the LPN P
F1
envtξF

2
env

S1‖ξ12S
2,D1]D2(F ), there exists a

marking m′ ∈ RM(m) such that m′(D) = 1 for some D ∈ Drf (F ).
Fix some F ∈

[
Pc
]
, let m be a reachable marking of PF

1
envtξF

2
env

S1‖ξ12S
2,D1]D2(F ).

Let us split this LPN to obtain P = P
F1
envtξF

2
env

S1‖ξ12S
2,D1]D2(F )P1,P2 , where Pi is the

set of peers of schema Si. By Corollary 5.2, P ≡ PF
1
envtξF

2
env

S1‖ξ12S
2,D1]D2(F ) and hence

there exists a reachable marking m1 in P such that D(m1) ≡ D(m). Denote by
Di the sets of places of P located on peers Pi, and consider m2 = m1|D1 . By
construction, m2 is a reachable marking in PF

1
env

S1,D1(F ), so because S3
D3

ξ13
./ D1

S1, there exists a marking m′2 reachable from m2 such that m′2(D) = 1 for some
D ∈ Drf (F ). Let σ2 be the occurrence sequence such that m2 [σ2〉m′2.

We show that there exists an occurrence sequence σ1 and a marking m′1 of
P such that m1 [σ1〉m′1, with m′(D) = 1 for some D ∈ Drf (F ). By definition
of the split, any transition of σ2 labeled with something different from Jr, with
J ∈ F1

ext ∩ dom(ξ12), can still occur in P . If there is a transition t in σ2 labeled
with such an event Jr, then a transition t′ labeled with Jrg , with g = ξ(J) ∈ F2

env

and g ‖= J , can be enabled in P only after S2 has finished the computation of
service g. By the compatibility hypothesis between S1 and S2, this is guaranteed
to occur at some time since the computation of g requires a finite number of
steps and we assume the LPN behaves fairly. Thus, σ1 is obtained from σ2 by
adding nt transitions (tt1, tt2, . . . , ttnt) just before the transitions t labeled with
Jr, corresponding to the steps before J is ready to return, and by replacing
t by t′. Moreover, the markings mi

2 and mi
1 obtained after every transition

ti of σ2 are such that D(mi
1)P1 ≡ D(mi

2), because these transitions have the
same effects on the documents contained on the peers from P1, while the extra
transitions only affect the peers from P2. So, there exists some D ∈ Drf (F ) such
that m′(D) = 1.

Finally, because P ≡ P
F1
envtξF

2
env

S1‖ξ12S
2,D1]D2(F ) and m1 [σ1〉m′1 in P , there exist

a marking m′ and an occurrence sequence σ which verify that m [σ〉 m′ in
P
F1
envtξF

2
env

S1‖ξ12S
2,D1]D2(F ), with D(m′) ≡ D(m′1), so that marking m′ allows I to

return, which concludes the proof.

Theorem 5.4. Given a set of instances Di over pairwise-compatible schemas
Si, i ∈ K, for any finite and disjoint sets K1,K2 ⊆ K and any pairing maps
defined over disjoint domains it holds that

(‖i∈K1S
i) (]i∈K1D

i) ./ (]j∈K2D
j) (‖j∈K2S

j) .

Proof. For clarity sake, we omit to mention the pairing maps in the statement
and in the proof, they can be deduced from the schemas taken into account.

Let K1 = {i1, i2, . . . , ik} and K2 = {j1, j2, . . . , jl} be a partition of K. By
Lemma 5.3, Si1 Di1 ./Dj1]Dj2 (Sj1 ‖Sj2), but also Sj3

Dj3 ./Dj1]Dj2 (Sj1 ‖Sj2)
since all schemas are pairwise compatible. Thus we can apply again Lemma 5.3
on Si1 , (Sj1‖Sj2), and Sj3 , to show that Si1 Di1 ./Dj1]Dj2]Dj3 ((Sj1‖Sj2)‖Sj3).
By iterating this process on the right side we get Si1 Di1 ./ (]j∈K2D

j) (‖j∈K2S
j),

and then iterating on the left gives the expected result.

Remark 5.2. Note that the converse implication of Theorem 5.4 is not al-
ways true, i.e., (‖i∈K1S

i) (]i∈K1D
i) ./ (]j∈K2D

j) (‖j∈K2S
j) does not imply that
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Si Di ./Dj S
j for all i ∈ K1 and j ∈ K2. Indeed, the return of an interface

I of Si implemented by a function of Sj may be enabled by the composition
between Sj and some other schemas Sk, k ∈ K \ {i, j}. The composition with
the schemas Sk restricts the possible behaviors of Sj , and this may remove some
behaviors which prevented Sj from returning a result to Si.

This last theorem provides an algorithm (Algorithm 1) to check compatibility
between two schemas S1 and S2. It first “splits” both schemas by isolating in
P1

1 ⊆ P1 and in P2
1 ⊆ P2 the peers pij which are involved in the communication

between S1 and S2: for i ∈ {1, 2}, let Pi1 = (pij)j∈Ki be the set of peers of Si
which either own the interfaces in F iext ∩ dom(ξ) (interfaces implemented in a
peer of S3−i), or own the functions in F ienv∩ξ(dom(ξ)) (functions implementing
interfaces located in a peer of S3−i).

Define the schemas Sij as the restrictions of Si to peer pij , for i ∈ {1, 2}
and j ∈ Ki. Then, compatibility is checked between all these Sij by using the
algorithm described in Theorem 4.2 (called here Compatibility_check), and
finally by recursively checking compatibility between each Sij and the remain-
ing schema Si0 (the restriction of Si to Pi0 = Pi \ Pi1). The algorithm returns
true when all the checks are positive, thus proving global compatibility (Theo-
rem 5.4). It returns false otherwise, which does not necessarily mean that the
schemas are not compatible (Remark 5.2).

In this algorithm, the function Project is used to project a schema, a pairing
map, or an instance, to a set of peers, by keeping only the services and the
documents they own. Each map ξij,j′ is defined over the interfaces of Si which
either belong to peers of Sij and are implemented in Sij′ , or the converse.

The complexity of this algorithm is hard to compute, since the number of
calls to Compatibility_check depend on the schemas themselves. However
in general, although many calls to Compatibility_check are made by this
algorithm, it is much faster than a single check on the full schemas. Indeed, the
size of the constructed LPNs and the complexity of Compatibility_check is
highly exponential in the number of functions in F ienv and of their parameters,
which our improved algorithm reduces as much as possible, since it only involves
two peers at a time.

Note that the results shown in this section also hold for weak compatibility.

6 Conclusion and perspectives
We have proposed a Petri net semantics for a fragment of DAXML. We used
this representation to define two new notions of compatibility between DAXML
schemas, in order to guarantee correct orchestration of services, and we proved
their decidability. Furthermore, we proposed a more efficient semi-algorithm to
decide compatibility.

This work can be extended in several directions. First of all, our compati-
bility notions can be refined to cases where some environment calls needed to
ensure progress of a service are guaranteed to occur by a contract. This no-
tion of compatibility would be a good compromise between strong and weak
compatibility.

Another possible development is to allow some recursion. Although recursion
leads to undecidability [3] in general, it is likely that if the allowed recursion
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Algorithm 1: Compatibility_semi_check

Input: two schemas S1, S2, instances D1 ∈ DS1 , D2 ∈ DS2 , a pairing
map ξ.
Denote Si = (Pi,F iint,F iext,F ienv, ν, γ), for i ∈ {1, 2}.

// Initialization
for i← 1 to 2 do

/* Select the peers of Si which own interfaces implemented
in a peer of S3−i */

Pi1 ← F iext ∩ dom(ξ)
/* Add the ones which own functions implementing

interfaces in a peer of S3−i */
Pi1 ← Pi1 ∪

(
F ienv ∩ ξ(dom(ξ))

)
/* Store the remaining peers in Pi0 */
Pi0 ← Pi \ Pi1

end
// Project schemas according to each peer pij ∈ Pi1, and to Pi0
for i← 1 to 2 do

foreach pij ∈ Pi1 do
Sij ← Project(Si, {pij})
Di
j ← Project(Di, {pij})

end
Si0 ← Project(Si,Pi0)
Di

0 ← Project(Di,Pi0)
end
// Check compatibility between single-peer schemas Sij
foreach pij , p

i′

j′ ∈ P1
1 ∪ P2

1 do
if i = i′ then

ξ′ ← ξij,j′

else
ξ′ ← Project (ξ, {pij , pi

′

j′})
end
if not Compatibility_check (Sij, Di

j, Si
′

j′ , Di′

j′ , ξ′) then
return false

end
end
// Recursively check compatibility with remaining schema Si0
for i← 1 to 2 do

foreach Sij do
ξ′ ← ξij,0
if not Compatibility_semi_check (Sij, Di

j, Si0, Di
0, ξ′) then

return false
end

end
end
return true
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does not create an unbounded number of non-evaluated service references, then
decidability of compatibility still holds.

Finally, although we prove (semi-)decidability, our algorithms rely on several
reachability checks on complex Petri nets. In order to obtain practical results, it
is necessary to improve complexity by reducing drastically the size of the LPNs.
An interesting question is to study how to obtain the minimal number of places
and transitions to represent the DAXML behaviors, which would at the same
time be the best representation of the inner concurrency of the model. Another
challenge is to avoid enumerating variable values, which would require to adapt
the DAXML model to use value “types”. The key is to find a good trade-
off between the compact representation of workflows (as it is done with XML
nets for example, using high-level Petri nets), and the existence of verification
techniques similar to the ones we used here in the low-level Petri nets context.
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A Expansions
Additional definitions for trees are needed. We denote by F [n/x] the forest F in
which node n is relabeled with x. Within a given forest, we denote by T (n) the
unique tree containing n. We also write F �n F ′ to denote the forest obtained
by attaching a forest F ′ (or a tree) as a sibling of node n in forest F , and F �T ′
to denote the forest obtained by removing a subtree T ′ from a forest F , etc.

We define an expansion of a pattern as a possible “simple” tree matching
the tree pattern and the conditions. For this purpose, we use valuations, i.e.,
functions v : X → V which associate variables with data values. Intuitively,
these associations are given by the different matchings with the body of the
query. Then, an expansion consists of the nodes of the tree pattern plus extra
nodes to extend the descendant edges, and a replacement of the variables by a
forest of data values, according to some valuations (see Fig. 1). We first define
formally the case where the constructor node of a tree pattern is located at the
root for a single valuation.

Definition A.1. Let v : X → V be a valuation, let G = (M,H, c, µM , µH)
be a tree pattern of root c, and denote by {e1, . . . , ek} = µ−1

H (descendant) the
k descendant edges of G. A rooted-expansion of G with respect to v is a tree
T = (N,E, µ) such that T is empty (i.e., N = ∅), or

• N = M ]
k⊎
i=1

Mi, where for all 1 ≤ i ≤ k, Mi is a finite but possibly

empty set of li new nodes Mi = {n1
i , . . . , n

li
i }, with li ≥ 0;

• E = µ−1
H (child) ]

k⊎
i=1

Hi, where for all 1 ≤ i ≤ k, Hi contains the new

edges linking the nodes fromMi: denote by (m1
i ,m

2
i ) = ei the descendant

edge to replace, then Hi = {(nji , n
j+1
i ) | 1 ≤ j < li}∪{(m1

i , n
1
i ), (n

li
i ,m

2
i )}

(or Hi = {ei} if Mi = ∅);

• µ(x) =



µM (n) if n ∈M and µM (n) ∈ T ∪ V ∪ F ,
v(µM (n)) if n ∈M and µM (n) ∈ X ,

a if n ∈M is an internal node, µM (n) = ?, and a ∈ T ,
σ if n ∈M is a leaf, µM (n) = ?, and σ ∈ T ∪ V ∪ F ,
a if n ∈Mi, 1 ≤ i ≤ k, and a ∈ T .

Because of last three cases for µ (stars and descendant edges), there can
be several (sometimes even infinitely-many) rooted-expansions of a single tree
pattern with respect to a given valuation v. Denote by [G]v the set of possible
rooted-expansions of a tree pattern G with respect to v. We now define an ex-
pansion in the general case, with respect to a set of valuations. The construction
is illustrated in Fig. 1.

Definition A.2. Let V be a set of valuations, let G = (M,H, c, µM , µH) be
a tree pattern, and Gc be the subtree pattern rooted at c. An expansion of G
with respect to V is a tree T = (G′ �c Fc)�Gc, where

• G′ is a tree obtained from the tree pattern G by adding new nodes for
the descendant edges in G � Gc, and by giving labels to nodes labeled
with ? in G�Gc, as detailed in the previous definition;
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• Fc =
⋃
v∈V {T vc }, with T vc ∈ [Gc]v for all v ∈ V (Fc is an empty forest if

V = ∅).

We extend the notation [G]V to denote the set of possible expansions of a
general tree pattern with respect to a set of valuations V .

Definition A.3 (expansion). Given a pattern G = ({G1, . . . , Gk} , cond), an
expansion of G is a forest F = {T1, . . . , T

′
k}, k′ ≤ k, such that for some set V

of valuations consistent with cond, for all 1 ≤ i ≤ k, there exists Tj ∈ [Gi]V
for some 1 ≤ j ≤ k′. The set of all expansions (varying V and the elements of
[Gi]V ) of a given pattern G is written [G].

B Semantics of DAXML
In this section, D = (F, eval, `) and D′ = (F ′, eval′, `′) are two instances
over the same schema S = (P,Fint,Fext, ν, γ). Moreover, the symbol f =(
Gc, Qc, {(Gr

i , Q
r
i )}i∈{1,...,Kf}

)
∈ Fint denotes a function, while the symbol

I =
(
Pc, {Pr

i }i∈{1,...,KI}
)
∈ Fext is used for an interface. Also, the operations

on trees defined in the first paragraph of Appendix A are used.

Function calls and returns.
D

fc−−−→ D′ (function call)
If there is a node n in the forest F labeled with !f , such that `(T (n)) =
ν(f) and the calling guard of f holds, i.e., F |= Gc, then the internal
function f can be called and D is modified into D′ by adding a new
workspace. Formally,

• F ′ = F [n/?f ] ∪Wn, where the tree Wn is the workspace of n, i.e.,
a root node labeled with af whose children are the different trees of
the call query Qc(F, n);

• eval′(m) = eval(m) for all active nodes m in F , and eval′(n) = Wn;
• `′(T ) = `(T ) for all trees T in the forest F , and `′(Wn) = `(T (n)) =
ν(f).

!f

p

f c

?f

af
p

Figure 7: Illustration of a call to an internal function f . The dotted triangle
represents the part of the forest witnessing that the call guard holds in D. The
thick triangles inside the document are the occurrences of the body of the call
query, their respective heads (the “parameters” of the call) form a new tree, the
workspace of f .
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D
fr−−−→ D′ (function return)
When there is a node n in F labeled with ?f , if for some i ∈ {1, . . . ,Kf}
it holds that eval(n) |= Gr

i , and in addition if eval(n) contains no node
labeled with ?α for α ∈ Fint ∪ Fext, then f may return. In this case, D′
is obtained from D by attaching as a sibling of n the return query of f ,
and by removing the workspace of n:

• F ′ = (F [n/f ]�n Qri ) \ {eval(n)};
• eval′ : (dom(eval) \ {n}) → F ′ is such that eval′(m) = eval(m) for

all active nodes m 6= n;
• `′ : F ′ → P is defined by `′(T ) = `(T ) for all trees T ∈ F ′.

?f

af
p

fr

f

p

Figure 8: Illustration of a return from an internal function f . The dotted
triangle witnesses that the return guard holds in the function workspace. The
thick triangles inside the workspace are the occurrences of the body of the
return query, their respective heads (the “results” of the call) are appended to
the original document as siblings of f , and the workspace is deleted.

Implemented interface calls and returns.

D
Icf−−−→ D′ (Interface call)
Given a node n of F , let Tn denote the smallest subtree containing n, its
siblings, and all their descendants (if n is a root node, then Tn = T (n),
otherwise Tn is the tree rooted at the parent of n). If n is labeled with !I,
where I ∈ dom(γ) is an implemented interface such that `(T (n)) = ν(I),
and if Tn |= Pc, then the interface I may be called. Assume γ(I) = f . The
new schema D′ consists of the addition of a tree containing the parameters
for a future call to f , on the peer on which f is localized:

• F ′ = F [n/?I] ∪ Wn, where the tree Wn is the workspace of n; it
consists of a root node labeled with aI , whose children are a single
node labeled with !f (for the function call), and the set of copies of
all the smallest trees T cI,i, 1 ≤ i ≤ k, such that T cI,i |= Pc, which
represent the different parameters of the call;

• eval′(m) = eval(m) for all active nodes m 6= n in F , and eval′(n) =
Wn;

• `′(T ) = `(T ) for all trees T in the forest F , and `′(Wn) = ν(f) 6= ν(I).

D
Irf−−−→ D′ (Interface return)
Assume there exists a node n in F labeled with ?I for some implemented
interface I ∈ dom(γ), and denote f = γ(I). If eval(n) contains a node
labeled with f (the computation of f is finished), no nodes labeled with
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!I

p q

Icf

?I

p
aI

!f

q

Figure 9: Illustration of a call to an interface I, implemented by a function f on
another peer. The thick triangles inside the document on p are the parameters
T cI,i, they consist of the minimal trees (among the siblings of ?I) matching the
call pattern of I. They are copied as such on peer q in the workspace of I, along
with a node allowing to call f .

?α for α ∈ Fint∪Fext (no other computation is active), then the interface
can return. The instance D appends the result to its forest after minor
corrections:

• F ′ = (F [n/I]�n F ′n) \ {eval(n)}, where Fn is the forest obtained by
removing Wn defined above from eval(n) (so that only the results
returned by f remain in Fn, the parameters T cI,i are discarded), and
F ′n is a relabeling of the nodes m of Fn labeled with !α:
– if α ∈ Fint and α = γ(J) for some J ∈ Fext such that ν(J) =
ν(I) (i.e., α implements an interface J localized on the peer which
made the call to I), then m is relabeled with !J ;

– if α ∈ Fext and there exists g ∈ Fint, ν(g) = ν(I), such that g =
γ(α) (i.e., α is an interface implemented by a function g localized
on the peer which made the call to I), then m is relabeled with
!g;

• eval′ : (dom(eval) \ {n}) → F ′ is such that eval′(T ) = eval(T ) for
all active nodes m 6= n;

• `′ : F ′ → P is defined by `′(T ) = `(T ) for all trees T ∈ F ′.
Note that the relabeling of nodes is used here for convenience, since a
renaming can be simulated by extra tags and functions in the existing
formalism. For example, instead of returning a call to interface I to peer
p and relabeling it to f , one could return a special tag εI , so that a function
fI with guard εI can be called by p, and this function would eventually
return a query head containing !f , with f ‖= I.

Non-implemented interface calls and returns.

D
Ic−−−→ D′ (Interface call)
Recall that for any node n, Tn denotes the smallest subtree containing
n, its siblings, and all their descendants. If n is labeled with !I, where
I ∈ Fext\dom(γ) is a non-implemented interface such that `(T (n)) = ν(I),
and if Tn |= Pc, then the interface I may be called. In such a case, D′ is
simply defined by D′ = (F [n/?I], eval, `).

D
Ir−−−→ D′ (Reception of interface return)
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?I

p
aI

f

q

Irf

I

p q

Figure 10: Illustration of a return from an interface I implemented by a function
f . The thick triangles in the workspace of I are the results, they consist of the
children of aI which are not the parameters from the call. When f is completed,
they are copied (up to a relabeling of the services) as siblings of the node I which
initiated the call, while the workspace is deleted.

!I

p

Ic

?I

p

Figure 11: Illustration of a call to a non-implemented interface I. The label of
the node is simply changed to indicate a running computation elsewhere.

A non-implemented interface call may return at any time, the peer which
made the call “receives” the different possible values of the return pat-
tern from an external (unknown) peer. Formally, if there is a node n
in F labeled with ?I, where I ∈ Fext \ dom(γ), then D leads to D′ =
(F [n/I]�n F r, eval, `), where F r is an expansion of one of the return
patterns of I (see Definition A.3), i.e., there is i ∈ {1, . . . ,KI} such that
F r ∈ [Pr

i ].

?I

p

Ir

I

p

Figure 12: Illustration of a return from a non-implemented interface I. The
thick triangle is an expansion of one of the return patterns of I, it represents
the expected result.
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To summarize, for a given a schema S, the set of events E consists of E =
{f c, fr | f ∈ Fint}∪{Icf , Irf | I ∈ dom(γ), γ(I) = f}∪{Ic, Ir | I ∈ Fext\dom(γ)}
and is finite.

C Environment calls and returns.

D
Ec
f−−−→ D′ (Reception of environment call)
At any time, a peer may receive an external call from the environment,
this call being associated with an internal function f . As for implemented
interface calls, the new schema D′ consists of the addition of a tree con-
taining the parameters for the future call to f :

• F ′ = F ∪W , where the tree W is the workspace of the environment
call; it consists of a root node labeled with aEf , whose children are a
single node labeled with !f (for the function call), and an arbitrary
element of

[
Bc
]
, which represents the different parameters of the call

as f admits them (Bc denotes the body of the call query Qc of f);
• eval′ = eval (there are no new active nodes);
• `′(T ) = `(T ) for all trees T in the forest F , and `′(W ) = ν(f).

D
Erf−−−→ D′ (Return to environment)
Assume that D contains a tree W whose root node is labeled with aEf ,
which is the image of no node by eval. If W contains a node labeled
with f and no nodes labeled with ?α for α ∈ Fint ∪ Fext (no other
computation is active), then the environment call may return. The in-
stance D just removes the workspace W , as the computation is complete:
D′ =

(
F \W, eval, `|F\W

)
.

Remark C.1. In the above, we implicitly extended the definition of instances.
Indeed, in an instance, the workspace of an environment call associated with a
service f is not related to any active node by the function eval. In fact, the newly
created workspace W would be linked to a node from another instance, defined
over another schema S′, which made a call to a non-implemented interface
I ∈ F ′ext, and such that f ‖= I. Composing both schemas would allow to add
the appropriate link in eval, while merging Ic and Ecf into Icf , and Ir and Erf
into Irf .
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