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Abstract In this paper we focus on a class of polling systems encountered while

modeling the ferry based wireless local area network (FWLAN). A moving ferry, while

walking in a predetermined cyclic path, communicates with the static nodes (or users)

of the network via a wireless link. The ferry is assumed to stop and communicate with

a node that has a packet to send or to receive, when it is closest to that node. The

location distribution of the node to which or from which a packet arrives is assumed

to have a support of positive Lebesgue measure. These features imply that polling

models with finite number of queues cannot be used to model the system. We study

in this paper the continuous polling systems with service disciplines that model the

use of the FWLAN (and that are more complex than the classical exhaustive or gated

services). Our approach is based on discretization of the continuous polling model. We

propose a special way of discretizing the continuous system such that: 1) the known

Pseudo conservation laws can be applied to obtain the stationary expected workload

of the discrete systems; 2) the limit, of these ’discretized’ expected workloads, equals

the stationary expected workload of the continuous system. Our results rely heavily on

fixed point analysis of infinite dimensional operators.

1 Introduction

Polling systems are a class of queueing systems wherein a single server attends to

a number of queues. Systems with a finite number of queues (called discrete polling

systems) have been analyzed to a good extent and there is good understanding of their
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stability conditions and on the Pseudo conservation laws for a variety of discrete polling

systems in [17,5,3,4,22,6] etc.

Continuous polling systems are the ones in which the location of arrivals as well as

of the service can occur anywhere in a continuum of locations. Continuous polling were

first introduced by Fuhrmann and Cooper [11], further studied, explored by Coffman

and Gilbert [7,8] and Kroese and Schmidt [16,13–15] in a series of works. Stability of

such polling systems is discussed in [21,12,20,18].

It is relatively more complicated to study continuous systems and these are usually

analyzed under simplified conditions, which we refer as ’symmetric conditions’: every

arrival picks up an uniformly-distributed landing site on the circle, settles down there

and awaits service while the server is moving at a constant speed and in a fixed direction

around the circle. Further the service time requirements of the users do not depend

upon the position of the user.

The work on snowplowing systems in [9,10] generalizes many of the above as-

sumptions and studies a more general continuous system. For example, the incoming

work-flow to the system is taken to be a general Levy random measure and the walking

times are assumed to be random.

In previous literature so far, the continuous polling systems have been mostly ana-

lyzed with standard gated/exhaustive service. In such systems, the server, while moving

in a cyclic path, attends the users waiting anywhere on its path the first time it en-

counters them. But there are other important service disciplines (e.g., globally gated,

elevator service etc) which are studied in a discrete polling system. In a globally gated

service discipline ([5]), the server attends the users the first time it encounters them

after they are tagged and all the users are tagged whenever the ferry reaches a global

point. Elevator service ([19]) is similar to globally gated service except that the server

reverses its direction at the end of every cycle. There can be applications, wherein the

users need to be supported via a mixture of the above service disciplines in a continuous

polling system. For example, in a Ferry assisted Wireless LAN all uplink transmissions

(data uploaded to BS via the Ferry from static sources) use an exhaustive discipline

while all downlink transmissions (data downloaded to a sink from the Ferry which had

earlier received the same data from BS) have to be modeled using a globally gated or

an elevator regime.

The central idea of this paper is to use the known Pseudo conservation laws (known

for a discrete system) for obtaining the stationary expected virtual workload of a contin-

uous system (which supports mixture of services) via discretization. We discretize the

continuous polling system in a special way such that the known Pseudo conservation

laws can be applied for the resulting discrete systems and the limit, of these ’discrete’

stationary workloads, equal that of the continuous system. We achieved this by uti-

lizing the fixed point equations that can result because of stationarity. We basically

utilize the periodic behavior in the system, identify certain quantities whose moments

must be equal at the beginning and at the end of a cycle because of stationarity (sta-

tionarity implies palm stationarity) and hence obtain fixed point equations for the

stationary moments. We identify those quantities, which can further be utilized for

expressing the stationary expected workload in the system. We obtained the required

limit majorly via continuous parameter (the number of discretization levels is the pa-

rameter here) dependence of the fixed points. Further, we obtain an expression for

the expected stationary virtual workload abandoning the standard symmetric assump-

tions. Discretization approach is used for mixed service systems, while, the stationary

workload for Globally gated and elevator service disciplines is obtained directly.
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In this paper, incoming jobs arrive to the system following a Poisson process. Our

approach can be used for studying other types of continuous polling whenever one can

solve the related discrete problem and use similar limiting arguments. In [28] we used

the same approach to study a continuous system with rerouting.

The second part of the paper applies the Polling system results to study a Ferry as-

sisted Wireless Local Area Network (FWLAN). Message Ferry is a mobile relay station

that serves as ”postman” to deliver (collect) messages to (from) the static or dynamic

wireless nodes in a sparse network, where direct connectivity is not possible. Mobile

BS have been proposed in the context of Mobile Ad Hoc Networks [27], Vehicular

Ad-Hoc Networks (Vanets) [25] and in Wireless (static) Sensor Networks [26]. In the

UmassDiesel project, computers have been installed in 30 out of 40 buses and these

then serve as Message Ferry to deliver messages to throw boxes ([23]). In a related

paper [27], the message ferry serves some fixed finite number of nodes and the routes

are designed based on the mobility models of those finite number of nodes. In contrast,

in our work the ferry serves all the nodes that arrive anywhere in the given area as

and when they arrive and the optimal routes are designed based on the arrival process,

service requirements, network architecture, radio conditions, etc.

The ferry moves periodically in the cyclic route and either halts at predetermined

finite number of stops or halts on its way only when it encounters a user with a request.

We refer the former as BUS mode while the later one as TAXI mode. BUS mode has

been studied using discrete polling systems in [30], while this paper focuses on TAXI

mode, using the continuous polling results. In the TAXI mode, every point on the ferry

path is a potential stop and each stop is assigned an area that contains all points closer

to that stop than to other stops. Upon reaching a stop, the ferry collects (uplink) and

dumps (downlink) data from or to the area assigned to it.

An important performance measure for FWLAN design is the expected waiting

time, i.e., the average time an arrival has to wait before it’s service starts. The waiting

time depends on: 1) the over-all service times (the time required to complete an uplink

or downlink request using wireless medium); 2) the walking time, i.e., the time taken by

the ferry to traverse the cyclic path once. The over-all service times reduce if one uses

longer ferry routes as, then, the users can be served by the ferry standing relatively

at a shorter distance. However the walking time increases with longer routes. The

objective of this paper is to study these trade-offs using stationary expected workload

performance. By this, we minimize the expected waiting times at all users in the Pareto

sense.

One of the important contributions of this paper is to show how theory of polling

systems can be mapped to obtain interesting performance measures for some interesting

configurations of FWLAN. These performance measures are used for designing optimal

ferry routes (in a given class of routes) or for designing optimal number of stops (for

a given type of ferry route ([30])) and or for designing the location of base station(s).

However one can think of many more applications of this mapping. For example, in [24]

the authors consider a wireless scenario with many ferries and user groups. Their aim

was to group ferries and users into coalitions in a optimal way. Each coalition in their

paper was a simple example of ferry based wireless LAN. Our results can probably be

used to form these optimal coalitions for more complicated architectures.

The continuous polling models are studied in section 2 while ferry based wireless

LAN examples are analyzed in sections 3 and 4. Some proofs are available in Appen-

dices.
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2 Continuous Polling Systems

In a continuous polling system, the server moves continuously and stops at point q

only when it finds a user with a request. The server is moving continuously on a

circle C of radius γ with speed α. The arrival process is modeled by a Poisson process

with intensity λ and every arrival is associated with two marks, the position Q ∈ C
distributed as PQ and the service times B. The service times in general can depend

upon the position Q of the arrival. Let b(q) b(2)(q) represent the conditional first two

moments of the service time B conditioned on the event that the position of arrival is

at point q. However the service times of different users are independent of each other.

The server either provides pure or mixed type of service to the users. In a pure

globally gated service system, the server closes a fictitious gate each time it arrives at a

fixed point in the circle (we refer it as 0) and tags all the users that arrived before the

closure of the gate. The time period between two consequent arrivals of the server at 0

is referred as cycle. In every cycle, the server moves along the circular path and serves

only the tagged users as and when it encounters one. Note here that some times an user

may be served only the second time the server encounters it after it’s arrival. On the

contrary in a pure gated/exhaustive service polling system, the users are served more

immediately after their birth: they are served the first time, the server encounters

them. In a discrete polling system, there is a difference between gated service (the

server closes a local gate at every queue and leaves the queue only after serving the

users that appeared before the gate closure) and exhaustive service (the server also

attends the users that arrived during the service of already existing users and it leaves

the queue only when the queue is empty). But the two converge to the same service in

a continuous polling system with PQ continuous: at any queue (which is a point in the

continuous case), the probability of a new user appearing at the same point is zero.

In a mixed service polling system, the server attends some of the users with globally

gated service and the rest with exhaustive/gated service. Let pgg , pg = 1− pgg respec-

tively represent the probability that an arrival is a globally gated user and a gated user.

Let bg(q), b
(2)
g (q) represent the conditional first and second moments of the service time

given that the arrival is at point q and further given that the arrival is a gated user. Let

bgg(q), b
(2)
gg (q) represent same quantities for a globally gated user. Let b̄ := E[b(Q)],

b̄gg := E[bgg(Q)] and b̄g := E[bg(Q)] (expectations are with respect to1 PQ) represent

the unconditional moments. Note that b̄ = b̄gpg + b̄ggpgg . Similarly define the second

moments, b̄
(2)
g := E[b

(2)
g (Q)], b̄

(2)
gg := E[b

(2)
gg (Q)] and b̄(2) := E[b(2)(Q)].

Notations : The variables like b, bg, bgg , fQ, τ , v represent the functions on interval

[0, |C|] while terms like b(q) or τ (q) represent the function values at a point q ∈ [0, |C|].

The bar of the same variable, like b̄g represent the average w.r.t. to the position dis-

tribution PQ, i.e., b̄g = E[bg(Q)]. Similarly variables like τ (2), τ̃ (2) etc. are functions

on [0, |C|] × [0, |C|] while τ (2)(q, q′) represents the function value at (q, q′). Let q ∧ |C|

represent the minimum value, min{q, |C|}. The expectation with respect to the station-

ary measure of the process under consideration is given by E while E0 represents the

expectation with respect to Palm stationary measure.

Virtual workload of a polling system is defined as the total workload corresponding

to all the waiting users, i.e., the sum of the service times of all the waiting users. It

is an important performance measure and will be used in later sections for analyzing

1 Right now the position of arrival is distributed the same way for gated as well as globally
gated users. But the results can easily be generalized to separate PQ,g and PQ,gg.
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interesting application in delay tolerant networks. Not much theory is available for

calculating the expected virtual workload of polling systems with arrivals in a contin-

uum. In this section we derive new (stationary expected workload) results related to

continuous polling systems. Throughout we consider stationary and ergodic systems.

An exhaustive/gated continuous polling system is analyzed in [16] under symmetric

conditions and we summarize the same in subsection 2.1. The main contribution of

this paper towards polling systems are available in subsections 2.2, 2.3 and 2.4 in the

form of stationary expected virtual workload derivations for polling system respectively

with a globally gated service, elevator and mixed service. These results also cover the

gated/exhaustive service system under asymmetric conditions.

2.1 Exhaustive/Gated Service

An exhaustive service continuous polling system under symmetric conditions is ana-

lyzed in [16]. They have many more results but we only present the ones relevant to

this paper, i.e., the expression for expected virtual workload under stationarity. The

users arrive uniformly on the circumference with |C| = 1 as a Poisson process with

intensity λ, i.e., PQ is uniform. Further the service time moments bg(q), b
(2)
g (q) are

assumed to be same at all points q and are equal to b̄g and b̄
(2)
g respectively. Then the

stationary expected number of customers on the circle is given by [16, Theorem 5.1]

E[N ]g = λb̄g +
λ
(
α−1 + λb̄

(2)
g

)

2
(
1 − λb̄g

) .

In this case they also considered the user under service. Excluding the user under

service, i.e., the stationary expected number of waiting customers equal:

E[N ]wg =
λ
(
α−1 + λb̄

(2)
g

)

2
(
1 − λb̄g

) . (1)

From (1), by Wald’s lemma the virtual workload, the workload due to the waiting

customers, equals:

V sym
g := b̄gE[N ]wg =

λb̄g

(
α−1 + λb̄

(2)
g

)

2
(
1 − λb̄g

) . (2)

2.2 Globally Gated Service

In this subsection we derive the corresponding results for a globally gated service.

Further we don’t assume symmetric conditions and work under more general conditions

as explained before. We map the circumference to a line of length |C| := 2πγ with the

starting point (the point at which the global gate is closed) mapped to 0.
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2.2.1 Computation of the moments of the Cycle time in stationary regime:

Let Cn represent the time taken to complete the nth cycle. Let N (C) represent the

number of Poisson arrivals in time C. With Bn
i representing the service time of the ith

user arrived during the n− 1thcycle, the adjacent cycles times can be related using

Cn =

N (Cn−1)∑

i

Bn
i + |C|α−1.

By first conditioning on N (Cn−1) and then on Cn−1, it is easy to see that,

E




N (Cn−1)∑

i

Bn
i



 = λE[Cn−1]

∫ |C|

0

bgg(q)PQ(dq).

Thus under (Palm) stationarity2,

c∗ := E0[Cn] =
|C|α−1

1 − λb̄gg
. (3)

From the above it is clear that the system is stable only if the factor ρ := λb̄gg is

strictly less than 1. This is the usual condition for stability and throughout this paper

we assume stability. In a similar way as,




N (Cn−1)∑

i

Bn
i




2

=

N (Cn−1)∑

i

(
Bn

i

)2
+
∑

i6=j

Bn
i B

n
j

and because E[N (Cn)2 −N (Cn)] = λ2E0[C2
n] (with c

(2)
∗ := E0[C2

n]),

c
(2)
∗ = λc∗b̄

(2)
gg + λ2c

(2)
∗ b̄2gg + |C|2α−2 + 2|C|α−1λc∗ b̄gg .

Thus,

c
(2)
∗ =

|C|c−1
1

1 − λb̄gg

|C|α−1 + λb̄
(2)
gg + |C|α−1λb̄gg

1 − λ2b̄2gg
.

2 Let φn represent the time at which the server visits the global gate, 0, in the nth cycle.
Then Cn = φn − φn−1. For any stationary point process, for example in our case {φn}, there
will be two associated probabilities: Stationary and Palm Stationary ([1]). In general, {φn} are
defined such that φ0 ≤ 0 < φ1. Palm probabilities are the stationary probabilities obtained
after conditioning on the event that {φ0 = 0} (see [1]). Throughout the paper, the expectation
under Palm stationary measure is represented by E0 and the corresponding moments are
usually denoted with a ∗ as sub-script. In [1], the stationary moment of the residual cycle C1

(which we refer as CR) as well as the past cycle C0 (which we refer as CP ) is obtained in terms
of Palm probabilities as

E[CR] = E[CP ] =
E0[C2

1 ]

2E0[C1]
.

This result is also explicitly derived specifically for cycle times in a special polling system in
Section 3.1 of [2]. This result is used throughout.
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2.2.2 Stationary Expected Virtual Workload

An user arriving at q and at an arbitrary time epoch (which is modeled as occurred

at time 0) has to wait, for his service to start, on average for a time equal to the sum

of three components : 1) the average residual cycle time of the ongoing cycle CR; 2)

the time taken by the server to reach the point q from 0, qα−1; 3) the average time

taken by the server to attend the users belong to the segment [0, q] that arrived in the

entire ongoing cycle CR +CP (CP represents the past cycle time of the ongoing cycle),∑N (CP +CR)
i Bi1{qi∈[0,q]}. Thus the stationary expected waiting time of a user given

that the user arrives at point q equals (see footnote 2),

E[W ](q) = E[CR] + qα−1 + λPQ(Q ∈ [0, q])E[CR + CP ]E[B|Q ∈ [0, q]]

=
c
(2)
∗

2c∗
+ qα−1 + λ

c
(2)
∗

c∗
b̂gg(q) where (4)

b̂gg(q) :=

∫ q

0

bgg(y)PQ(dy).

By Little’s law ([31]) the stationary expected number of waiting users that belong to

infinitesimal segment [q − dq, q + dq] equals,

E[N ](dq) = λE[W ](q)PQ(dq)

and thus by Wald’s Lemma, the stationary expected virtual workload (by virtue of

independence) due to users that belong to infinitesimal segment [q− dq, q+ dq] equals

Vgg(dq) = bgg(q)λE[W ](q)PQ(dq).

Hence the stationary expected virtual workload in the entire system equals

Vgg = λ

∫ |C|

0

E[W ](q)bgg(q)PQ(dq)

= λ

(
c
(2)
∗

c∗

(
b̄gg

2
+ λE [̂bgg(Q)bgg(Q)]

)
+ α−1E[Qbgg(Q)]

)
.

By interchanging the order of the two integrals in E [̂bgg(Q)bgg(Q)],

∫ |C|

0

∫ q′

0

bgg(q)PQ(dq)bgg(q′)PQ(dq′) =

∫ |C|

0

∫ |C|

q

bgg(q′)PQ(dq′)bgg(q)PQ(dq)

=

∫ |C|

0

(
b̄gg −

∫ q

0

bgg(q′)PQ(dq′)

)
bgg(q)PQ(dq)

= b̄2gg −

∫ |C|

0

∫ q

0

bgg(q′)PQ(dq′)bgg(q)PQ(dq).

and so, E[bgg(Q)̂bgg(Q)] = b̄2gg/2. From (3), (4) the virtual workload simplifies to:

Vgg = λ

(
|C|α−1(1 + λb̄gg) + λb̄

(2)
gg

1 − λb̄gg

b̄gg

2
+ α−1E[Qbgg(Q)]

)
. (5)
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Symmetric Case: We specialize to the symmetric case where b(q) ≡ b, b(2)(q) ≡ b(2)

and PQ(dq) is uniform with |C| = 1. In this case E[Qb̄gg(Q)] = b/2 and

V sym
gg = λb̄gg

(
λb̄

(2)
gg

2(1 − λb̄gg)
+

α−1

1 − λb̄gg

)
.

2.3 Elevator Service

This polling system is similar to that in subsection 2.2 except that the server moves in

the opposite direction every time it reaches the point at which the global gate closes.

That is, the server moves in counter clockwise direction in alternate, say odd numbered

cycles and in the reverse direction in the even numbered cycles. In [19], authors describe

the scheme for discrete polling system. The analysis of the continuous counterpart will

be similar to that in 2.2 and we mention only the points of difference.

Stationary moments of the Cycle time : The adjacent cycles times can once again

be related using

Cn =

N (Cn−1)∑

i

Bn
i + |C|α−1 and Cn−1 =

N (Cn−2)∑

i

Bn−1
i + |C|α−1.

Under stationarity Cn will be distributed same as Cn−2 and Cn−1 as Cn−3. Because

of the IID nature of the services times {Bn
i } across any cycle, for the above relations

to hold Cn should be distributed same as Cn−1. Thus again under stationarity,

c∗ =
|C|α−1

1 − λb̄gg

c
(2)
∗ =

|C|c−1
1

1 − λb̄gg

|C|α−1 + λb̄
(2)
gg + |C|α−1λb̄gg

1 − λ2b̄2gg
.

Expected waiting time for a random user : Here again the time the user arriving

at q has to wait for his service will be equal to the sum of three components as in

subsection 2.2 but the server will be moving either in clockwise direction or in anti-

clockwise direction with half probability. Thus the expected waiting time at any point

q equals :

E[W ](q) = E[CR] +
1

2
(qα−1 + λPQ(Q ∈ [0, q])E[CR + CP ]E[B|Q ∈ [0, q]] )

+
1

2
((|C| − q)α−1 + λPQ(Q ∈ [q, |C|])E[CR + CP ]E[B|Q ∈ [q, |C|]] )

=
c
(2)
∗

2c∗
+

|C|α−1

2
+ λ

c
(2)
∗

2c∗
b̄gg =

λb̄
(2)
gg

2(1 − λb̄gg)
+ |C|α−1

which is independent of the position q. As anticipated, the expected waiting times are

independent of the position at which the user waits. The stationary expected workload

can be derived as before and equals

Velevator = λb̄gg

(
λb̄

(2)
gg

2(1 − λb̄gg)
+ |C|α−1

)
. (6)
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2.4 Mixed Service

This is a system in which the server attends some of the users with globally gated

service and the rest with exhaustive service. For users with globally gated service the

server closes the gate when it touches upon 0 and serves in the current cycle only

those which arrived before the gate closure as in subsection 2.2. The rest of the users

will be served, immediately, as in subsection 2.1. We obtain the stationary expected

virtual workload of the mixed system as a limit of the same for a ’certain’ set of the

discrete polling systems, under an extra assumption: the service times are bounded

with probability one by a constant that is less than infinity.

Theorem 1 Assume PQ(dq) = fQ(q)dq, i.e., fQ is the density of PQ. Assume further

that bg, bgg and fQ are continuous. Also, there exists a B̂ < ∞ such that, the service

times (irrespective of the position of the arrival) are bounded by B̂ with probability one,

i.e., P (B < B̂) = 1. Then there exists a threshold B̂ (discussed in the proof) and for all

service times with upper bound B̂ ≤ B̂, the expected stationary virtual workload for the

mixed service continuous polling system, Vmix, is given by the limit of the corresponding

one, V σ
mix, for a ”certain” discrete polling system with 2σ number of queues3:

Vmix = lim
σ→∞

V σ
mix = λb̄

λb̄(2)

2(1 − λb̄)
+ pggλα

−1E[Qbgg(Q)] +
λb̄|C|α−1

2

+
λ2|C|α−1

2(1 − λb̄)

(
b̄2 + (pgg b̄gg)2 + pggpg b̄gg

¯̂
bg

)
, (7)

where |C| = 2πγ, b̂g(q) := E[bg(Q)1{Q≤q}] and
¯̂
bg := E [̂bg(Q)]. ⋄

Before we proceed with proving the above theorem we compare the formula (7)

with the special cases considered so far. We note that, the general formula (7) matches

with (2) of subsection 2.1, when specialized to the symmetric conditions and to the

pure gated service (i.e., with pg = 1 = 1 − pgg). It also matches with with globally

gated workload (5) derived in subsection 2.2, when specialized to this pure service (i.e.,

pg = 0 = 1 − pgg).

The proof of Theorem 1 is obtained using the following 3 major steps:

1)Discretization: Continuous polling system is converted to an appropriate discrete

polling system in subsection 2.4.1, for which the Pseudo conservation laws and hence

the expected virtual workload is known (see [5,3] etc.).

Let δσ(q) for every point q on C represent the point, in the discrete system with σ

discretization levels, standing at which the server attends the possible users of point q.

Let δ∞ represent the same for continuous system. Note that δ∞(q) = q for all q, i.e.,

that δ∞ is the identity map.

2)Fixed point equations: We express the stationary moments of the time to reach

δσ(q), for every q on the circumference C, starting from 0 (global gate point) as a fixed

point (in the space of left continuous and right limit functions) of an affine linear oper-

ator in subsection 2.4.2. We obtain a common operator (F defined in subsection 2.4.2),

which is further parametrized by a map, δ : [0, |C|] → [0, |C|]. The fixed point of the

common operator at δ = δσ gives the required stationary first moments for the discrete

3 The formula (7) was conjectured in [29] itself. However its proof is derived in this paper.
Further, we note that there is a small error in the formula published in [29] (in the last term
¯̂
bg is wrongly misplaced with b̄g) and is corrected here.
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system while that at δ = δ∞ (the identity map) corresponds to the continuous system.

We show the continuity of these fixed points with respect to δ via contraction mapping

theorem and hence show that the stationary moments of the discrete system converge

to that of the continuous system. We obtain the convergence of second moments using

similar but more complicated logic.

3)Alternate expression for Virtual Workload: We express the expected virtual work-

load in terms of the stationary moments of the step (2). Note, that this common

expression (given by (19) in subsection 2.4.3) cannot be computed easily and is used

only for the proof. Using this common expression, we show the convergence of the

stationary expected virtual workload of the discrete system to that of the continuous

system in subsection 2.4.3.

2.4.1 Discretization

For each integer σ, consider a discrete polling system with 2σ queues, half of which

experience globally gated service while the rest half experience gated service. The

circumference |C| is divided to σ equal segments {Ii}
σ
i=1 with I1 = [0, C/σ). All the

users arriving in area Ii are treated as though arriving in queue numbered 2i− 1 (for

gated users) or 2i (for globally gated users). Note that the globally gated users are the

tagged ones, i.e., the ones that arrived before the server reached 0 in the current cycle.

For every i, the server stops upon reaching the starting point, iσ := (i− 1)|C|/σ, of Ii
and serves the users of Ii (that arrived/tagged before the server reached the stop iσ)

before moving further. Hence, δσ(q), the point standing at which the server attends

the users at q, equals

δσ(q) =

{∑σ
i=1 i

σ1{q∈Ii} with Ii := [iσ , (i+ 1)σ) , iσ :=
(i−1)|C|

σ if σ <∞

q if σ = ∞.
(8)

Within a queue, the server attends the users in a special order which we call as

arrival position order. In this special order, the users within a queue are served in the

order of their distance from the stop iσ of the server, i.e., the user at minimum distance

is served first. So, the users are almost served in the same order as done in a continuous

system. The main difference b/w the continuous system and the discretized system is

that some of the users are postponed to the next cycle in the discretized system. This

is mainly because of the combined effect of discretization and the gated service. But

we will see that the effect of the users, whose service is postponed, reduces to zero as

σ tends to ∞.

Define the following terms related to each stop and or each queue with obvious

meanings as below:

b2i−1 := E[B|Q ∈ Ii, gated] =
E[bg(Q)1{Q∈Ii}

]

PQ(Ii)
b
(2)
2i−1 :=

E[b(2)g (Q)1{Q∈Ii}
]

PQ(Ii)

b2i :=
E[bgg(Q)1{Q∈Ii}

]

PQ(Ii)
b
(2)
2i :=

E[b(2)gg (Q)1{Q∈Ii}
]

PQ(Ii)

li := PQ(Ii) λ2i−1 := λlipg λ2i := λlipgg

ρi := λibi and ρ :=
∑2σ

i ρi.

In the above, {λ2i−1}
σ
i=1, {b2i−1}, {b

(2)
2i−1} respectively represent the arrival rates, the

first and the second moments of the service times at the gated queues while {λ2i}
σ
i=1,

{b2i}, {b
(2)
2i } represent the same for globally gated queues. Factor ρ represents the total
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work load in the system, note that ρ is same for all σ and equals λb̄. The discrete system

is stable only when ρ < 1. The continuous system is assumed to be stable and hence

the stationary moments of Theorem 2 (given in later subsections) exist and hence by

the same theorem ρ < 1. Thus the discrete systems are stable for all σ.

Expected Virtual Workload for discretized polling system:

This type of a mixed service stable discrete polling system is considered in [5,3,4].

By Pseudo Conservation Laws of [4,3] the expected stationary virtual workload of the

σ-polling model with mixed (globally gated and gated) services is:

V σ
mix = ρ

∑σ
j=1 λjb

(2)
j

2(1 − ρ)
+
ρs(2)

2s(1)
+

s(1)

2(1 − ρ)

[
ρ2 +

σ∑

i=1

ρ2i

]

+
s(1)

1 − ρ

∑

i∈gg

ρi

∑

j≤i

ρj +
∑

i∈gg

ρi

∑

j<i

sj .

In the above, s(1), s(2) represent the first and the second moment of the total walking

time, {si} represent the first moments of the walking times between consecutive queues

and the remaining terms have similar definitions as before. The results of [5,3,4] are

valid for any work conserving order at each queue and hence the results are also valid

for our arrival position order.

In our case we have a 2σ stable polling system with even numbered queues ex-

periencing the globally gated service and the odd numbered queues experiencing the

gated service. Further we have fixed walking times between queues, that between the

queues of the same stop is zero, s2i−1 = 0 and s2i = |C|α−1/σ. Thus the expression

for expected stationary virtual workload for our discrete polling system is:

V σ
mix = ρ

∑2σ

j=1
λjb

(2)

j

2(1−ρ) +
ρ|C|α−1

2 +
|C|α−1

2(1−ρ)

[
ρ2 +

∑2σ
i=1 ρ

2
i

]

+
|C|α−1

1−ρ

∑σ
i ρ2i

∑
j≤2i ρj +

∑σ
i ρ2i

(i−1)|C|α−1

σ . (9)

We will prove that the limit of the ’discrete’ expected stationary virtual workload,

V σ
mix, indeed equals that of the continuous system. This basically forms the proof of

the Theorem 1 and this proof is given in the next two subsections. We conclude this

subsection by computing the limit of (9) (proof in Appendix A):

Lemma 1 The limit of V σ
mix (9) equals Vmix given by (7) of Theorem 1. ⋄

2.4.2 Fixed point equations

Let Tσ
n (q) represent the time to reach the point, δσ(q) of (8), starting from the global

point 0, during the nth cycle. Let V σ
n ([a, c]) represent the workload present at the be-

ginning of the nth cycle in the segment [a, c] ⊂ [0, |C|]. Let Tg([a, c], T ) (or Tgg([a, c], T )

in case of globally gated system) represent the total workload of the gated (or glob-

ally gated) Poisson arrivals that arrived in segment [a, c] ⊂ [0, |C|], such that a user at

point q ∈ [a, c] can arrive during a period of time T (q). They are related in a continuous

polling system by (i.e., with σ = ∞):

Tσ
n (q) = qα−1 + V σ

n ([0, q)) + Tg([0, q), Tσ
n ) (10)

V σ
n ([a, c]) = Tgg([a, c], Tσ

n−1(|C|)) + Tg([a, c], Tσ
n−1(|C|) − Tσ

n−1). (11)
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In the above, the first term of (10) represents the time taken to walk the distance

q. The second term, V σ
n ([0, q]), represents the time taken to complete service of the

globally gated and gated users (placed geographically before q) that arrived before the

server reached 0. The third term represents the time taken to complete service of the

gated users (placed before q) that arrived during the current cycle, before the server

reached their respective δσ points.

In a discrete polling system, Tσ
n (q) is the time till the server attends all the users

belonging to the line segments placed before the point q, {Ij}j<qσ/|C|, and hence is

same for all the points of the same line segment and is given by:

Tσ
n (q) = Tσ

n (δσ(q)) = δσ(q)α−1 + V σ
n ([0, δσ(q)]) + Tg([0, δσ(q)], Tσ

n ). (12)

Note that the same equation at δ = δ∞ matches with the continuous time equation

(10). The equation (11) remains the same for the discrete system also.

First Moments: By the lemma below, we obtain integral representation of the first

moments of the workloads like, Tg([0, q], Tσ
n ) using which we obtain the integral pre-

sentation of the first moments of Tσ
n (proof in Appendix B).

Lemma 2 Let T : [a, c] 7→ R+ be either monotone (increasing or decreasing) or con-

stant nonnegative random function on interval [a, c]. Assume that for any q ∈ [a, c],

the service times of the new arrivals and the arrival process at around point q is inde-

pendent of the system evolution before4 time T (q). Let T ([a, c], T ) represent the total

workload of the Poisson arrivals that arrived in segment [a, c] ⊂ [0, |C|], such that a user

at point q ∈ [a, c] can arrive during a period of time T (q). Then with τ (q) := E[T (q)]

for any q,

E[T ([a, c], T )] = λ

∫ c

a

b(q)fQ(q)τ (q)dq. ⋄

Let N := {1, 2, · · · ,∞}. Let τσ
n (q) := E[Tσ

n (q)] represent the first moment of Tσ
n (q)

when the number of stops equal σ and let τ∞n (q) represent the same for continuous

system. Substituting (11) in (12) and then applying Lemma 2, we get for any n ∈ N:

τσ
n (q) := δ(q)α−1 +

∫ δ(q)

0

vσ
n(y)dy + λpg

∫ δ(q)

0

bg(y)fQ(y)τσ
n (y)dy where (13)

vσ
n(q) := λpggbgg(q)τσ

n−1(|C|)fQ(q) + λpgbg(q)
(
τσ
n−1(|C|) − τσ

n−1(q)
)
fQ(q).

Let D represent the space of left continuous functions with right limits on [0, |C|]

equipped with supremum norm:

for any τ ∈ D, ||τ ||∞ := sup
q∈[0,|C|]

|τ (q)|.

Consider a parametrized function F : D ×D 7→ D defined point-wise as below:

F(τ ; δ)(q) := δ(q)α−1 + λτ (|C|)

∫ δ(q)∧|C|

0

b(y)fQ(y)dy for all q ∈ C. (14)

4 Note that this assumption is satisfied by our polling systems (discrete as well as continuous
ones) because the system evolution is effected by an arrival only after it is served and here
T σ

n (q) (for which this lemma would be applied) represents the time instance at which it starts
serving the users of the segment in which q resides.
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Let τσ
∗ (q), for σ ∈ N, represent the (Palm) stationary moment corresponding to τσ

n (q).

By stationarity5 from equation (13) the stationary first moments, τσ
∗ , of the discrete

system is a fixed point of the parametrized function F , at δσ with σ < ∞, while that

of the continuous system is fixed point of the same function at δ∞. Note here that

b(q) = pgbg(q) + pggbgg(q).

We obtain the continuity of the stationary moments τσ
∗ , in uniform/sup norm, in

the following (proof in Appendix B):

Theorem 2 Assume bg, bgg, fQ are continuous in q. For any δ ∈ D the map F has

an unique fixed point, τ δ
∗ , if and only if ρ < 1. Further these fixed points are continuous

in supremum norm w.r.t. to parameter δ. From this continuity we get that, τσ
∗ = τ δσ

∗ ,

the stationary moments corresponding to discrete system with σ stops, converge to that

of the continuous system as σ increases to infinity:

sup
q∈C

|τσ
∗ (q) − τ∞∗ (q)| → 0.

Indeed: τ δ
∗ (|C|) =

δ(|C|)α−1

1 − ρ̂(δ(|C|) ∧ |C|)
and

τ δ
∗ (q) = δ(q)α−1 + τ δ

∗ (|C|)ρ̂(δ(q) ∧ |C|) for all q

where ρ̂(q) := λ

∫ q

0

b(y)fQ(y)dy. ⋄

Second Moments:

Let Cσ
n(q) represent the time taken between the nth and n− 1th visit of the point

q (δσ(q) in case of discrete systems), i.e., the cycle time w.r.t. to the point q. Note that

Cσ
n (q) = Tσ

n (q) + (Tσ
n−1(|C|) − Tσ

n−1(q)). (15)

These cycle times are the most important quantities required for further analysis and

in this subsection we study its moments. We obtain the convergence of stationary

second moments corresponding to Cσ
n (q) as σ → ∞. Let c2σ

∗ (q) represent the (Palm)

stationary moments corresponding to E[Cσ
n (q)2]. We obtain their convergence and the

exact result is given in the following theorem (proof in Appendix B):

Theorem 3 Assume bg, bgg, fQ are continuous. Then there exists a threshold B̂ on

the workload threshold B̂, i.e., for service time requirements satisfying B ≤ B̂ with

probability one, as σ → ∞ the stationary second moments converge uniformly:

sup
q∈[0,|C|]

∣∣∣c(2σ)
∗ (q) − c

(2∞)
∗ (q)

∣∣∣→ 0. ⋄

2.4.3 Proof of Theorem 1

By Theorems 2 and 3, the first stationary moments of Tσ
n and the second order sta-

tionary moments of Cσ
n , of the discretized polling system, converge towards the cor-

responding ones of the continuous polling system. The convergence is in supremum

norm, i.e., uniformly of the positions q on the circle. We obtain the expression for the

expected virtual workload using these moments for both the discrete and continuous

5 In Palm stationary regime, τσ
n are same for all n, the common values are represented by

τσ
∗

and hence we get a fixed point operator, F , to represent equation (13).
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polling systems and then using the convergence results of the Theorems 2 and 3 we

complete the proof of Theorem 1.

The first two (Palm) stationary moments E0[Cσ
n (q)] and E0 (Cσ

n(q))2 of Cσ
n defined

in (15) are:

cσ∗ (q) = E0[Cσ
n (q)] = τσ

∗ (|C|),

c
(2σ)
∗ (q) = E0

(
Cσ

n (q)
)2
.

Convergence of τσ
∗ (|C|) is obtained in Theorem 2 while that of c

(2σ)
∗ is obtained in

Theorem 3. Thus the stationary first moment of the residual of the cycle Cσ
n (q) as seen

by a random user in terms of the two Palm moments is given by (see footnote 2),

E[Cσ
R(q)] =

E0 (Cσ
n (q))2

2 (E0[Cσ
n (q)])

2
=

c
(2σ)
∗ (q)

2 (τσ
∗ (|C|))2

. (16)

Workload due to Globally Gated users: A randomly arriving globally gated user,

arriving at point q, will have to wait on average for a sum of the following three:

1) the residual of the current cycle (w.r.t. to the globally gated point 0), E[Cσ
R(|C|)];

2) τσ
∗ (q), average time taken by the server to travel from 0 to δσ(q);

3) in a discretized system the user has to wait an extra amount of time to complete

service of6: a) the other globally gated users in [δσ(q), q) (that would be served before

him while the server is standing at δσ(q)) and b) the service of all the gated users

belonging to the same segment [δσ(q), δσ(q) + |C|/σ], which by Lemma 2 equals:

E

[
Tg

([
δσ(q), δσ(q) +

|C|

σ

]
, Cσ

n

)]
+ E

[
Tgg

([
δσ(q), q

]
, Tσ

n−1(|C|)
)]

= τσ
∗ (|C|)

(
ρg

(
δσ(q), δσ(q) +

|C|

σ

)
+ ρgg

(
δσ(q), q

))
with

ρm(a, c) := λpm

∫ c

a

bm(y)fQ(y)dy for m = g or gg.

Thus the expected waiting time of such a user for any σ ∈ N is

E[Wσ
gg ](q) = E[Cσ

R(|C|)] + τσ
∗ (q) (17)

+1{σ<∞}τ
σ
∗ (|C|)

(
ρg

(
δσ(q), δσ(q) +

|C|

σ

)
+ ρgg

(
δσ(q), q

))
.

Hence, by Little’s law ([31]) the density of the stationary number of waiting globally

gated users is λpggfQ(q)E[Wσ
gg](q) and by Wald’s lemma the density of the expected

stationary workload corresponding to globally gated users is

λpggfQ(q)E[Wσ
gg ](q)bgg(q).

Workload due to Gated users: A randomly arriving gated user, arriving at q, has

to wait on average for:

1) residual of his own cycle , E[Cσ
R(q)];

6 see arrival position order discussed in subsection 2.4.1 and further note that the gated
users are served before the globally gated ones.
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2) in case of the discretized system till the users placed geographically above him are

served which equals (by calculating as done for a globally gated user) τσ
∗ (|C|)ρg (δσ(q), q).

Therefore the expected waiting time of a gated user is:

E[Wσ
g ](q) = E[Cσ

R(q)] + 1{σ<∞}τ
σ
∗ (|C|)ρg

(
δσ(q), q

)
. (18)

Thus by Little’s law ([31]) and Wald’s lemma the expected stationary workload due to

gated users is: ∫ |C|

0

λpgfQ(q)E[Wσ
g ](q)bg(q)dq.

Total expected stationary virtual workload: Therefore, the total expected sta-

tionary virtual workload is given by:

V σ = λ

∫ |C|

0

(
(
τσ
∗ (q) +E[Cσ

R(|C|)]
)
bgg(q)pgg +E[Cσ

R(q)]bg(q)pg) fQ(q)dq

+1{σ<∞}λτ
σ
∗ (|C|)

∫ |C|

0

νqfQ(q)dq with (19)

νq := ρg

(
δσ(q), q

)
pgbg(q) +

(
ρg

(
δσ(q), δσ(q) +

|C|

σ

)
+ ρgg

(
δσ(q), q

))
pggbgg(q).

In the above V∞ represents the expected virtual workload of the random user for the

continuous system while V σ with σ <∞ represents the same for a discrete system. By

the Theorems 2 and 3 the terms inside the first integral of (19) (see also the equations

(16), (17) and (18)), defining the expected virtual workload, converge towards that of

the continuous polling system point-wise and uniformly in q. Terms inside the second

integral, νq , converge to zero point-wise and uniformly in q as σ → ∞:

sup
q∈C

νq ≤ λ
(
p2g||bg ||

2
∞ + pggpg||bg ||∞||bgg ||∞ + p2gg ||bgg ||

2
∞

)
||fQ||∞

|C|

σ
.

Thus by bounded convergence theorem, the expected stationary virtual workload of

the discretized polling system converges towards that of the continuous polling system

as σ → ∞.

Thus the limit of the discrete stationary expected virtual workload, V σ
mix of (9),

given by (7) represents the the expected stationary virtual workload corresponding to

the continuous system. This completes the proof of Theorem 1. ⋄

In the coming sections, we analyze an FWLAN using the results of this section.

3 Ferry Based Wireless Local Area Network (FWLAN)

Static users are scattered in a geographical area ∆. The network is sparse, there is

no direct global connectivity and a message ferry facilitates the basic communication.

FWLAN can operate in various architectures (in [30] various architectures are dis-

cussed) and we consider here a basic architecture, referred as Sensor Area Network

(SAN) in [30]. This configuration7 supports only data transfer between the users of

7 In a more complicated architecture (referred as Autonomous Network, AUN, in [30]),
wherein the ferry also supports the local communication, i.e., the data transfers between users
of ∆, is analyzed using continuous polling systems with rerouting in our paper [28].
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the area and the outer world via a static gateway, base station (BS). The data transfer

from the users of the area to the outer world is called uplink, while that from the

outside world to the users of ∆ is called downlink. Every cycle begins at the BS where:

1) it dumps to BS the uplink data, collected from the users of LAN in the previous

cycle ; 2) collects the downlink data from BS, to transfer in the ongoing cycle to the

destined users (when it reaches a point on its path near the intended user).

The ferry ”serves” the users: by ”serves” a message we mean that the ferry transmits

it if the connection is downlink (i.e. the message is destined to a user), or receives it if

it is an uplink message.

Ferry’s Route : The ferry moves in a closed cyclic path C repeatedly with constant

speed α. It stops as and when it encounters an user with a request. Every time it stops

and restarts it spends an extra time ta for acceleration. The shuttle continues with its

journey after serving the encountered user. Each point in the cyclic path is a potential

stop and every stop q in the path is assigned with a set of points I(q) ⊂ ∆. These sets

are assigned based on nearest point basis.

Arrival process: Uplink/Downlink traffic arrives according to an independent

marked point processes {Tn,Mn}, where Tn is the arrival time of the nth point and

Mn = [Xn, ηn] are the corresponding i.i.d. marks:

– Tn is a Poisson point process with parameter λ,

– Xn is the location of an arrival. It’s distribution is given by PX .

– ηn is the size of the message. Its distribution can depend upon X the position

of arrival and also on whether it is a uplink or a downlink arrival . It is finite

with probability one and its first and second moments (conditioned on the ar-

rival being at point x and further for uplink and downlink arrivals) are given by

ηu
b (x), ηd

b (x), η
(2u)
b (x), η

(2d)
b (x).

These arrivals8 can be uplink, downlink with probabilities pd, pu = 1−pd respectively.

That is, an uplink request arrives at rate λu := puλ while the downlink at rate λd :=

pdλ.

We use the following notations. The points in the two dimensional area ∆ are

represented by x (if it is a sample point) or X (if it is a random position). The points

on the cyclic path C are represented by q or Q. We shall use the superscript u or d to

denote uplink or downlink.

Radio channel and service time: The Ferry uses a wireless link to serve the

users. It can receive/transmit the messages from/to the users at a distance of d from

it at a rate κ(d) for some decreasing function κ(.). Thus the total time required for

transmitting a message of size η, when the user is located at x ∈ ∆ and is associated

with q(x) ∈ C is equal to its size divided by the service rate:

B(x) =
η

κ(||q(x) − x||)
.

The point x ∈ ∆ is mostly associated with the closest point on the circular path C,

i.e., q(x) := arg minq∈C ||q − x||, with ||.|| representing the Euclidean distance.

8 The analysis of subsection 2.4 requires that at any time there can be at maximum one user
waiting at a point. The examples considered in this section satisfy this assumption because of
two reasons: i) PX is continuous, ii) The paths considered are sufficiently smooth and hence
iii) we will have (will be seen in the coming paragraphs) a PQ that would be continuous.
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The ferry standing at q ∈ C has to serve all the users arriving in I(q). Thus the

first two moments of the overall time required for uplink service at a point q ∈ C, bu(q)

and b
(2)
u (q) are given by ( for all q ∈ C):

bu(q) := E [B(X)|X ∈ I(q), uplink ] ,

b
(2)
u (q) := E

[
B(X)2|X ∈ I(q),uplink

]
.

The corresponding for downlink, bd(q) and b
(2)
d (q), can be defined in a similar way.

Pareto Optimality: All the users are served as the ferry moves on C. Any arrival

at a point x ∈ I(q) ⊂ ∆ has to wait for time W (q) and the stationary expected values

of these waiting times E[W ](q) in general can depend upon the point q ∈ C standing at

which the ferry serves them. We are interested in designing an optimal route (among a

given class of trajectories) which minimizes integral of the weighted expected waiting

times at all the points in the cyclic path C, as this would give a Pareto optimal solution

(see definition of Pareto optimality and other details in Appendix C). Towards this we

consider the problem of minimizing

∫ |C|

0

E[W ](q)ζ(q)dq

where ζ(q) is a positive weight.

We need to choose appropriate weights {ζ(q)}. If ζ(q) is chosen to be the arrival

density to the points that are handled by q, i.e. λPI(q), then the integral corresponds to

the total expected number of waiting users (by Little’s Theorem). If we further multiply

the integrand at each point q by the expected service time at that point then we obtain

the total expected virtual workload in the system. In this paper the objective function to

be minimized will always be the expected virtual workload (which is obtained in section

2 as Theorem 1) and a ferry path which minimized the expected virtual workload is a

Pareto optimal path for the multi-objective problem where the expected waiting times at

different locations are to be minimized.

Optimizers: We discuss design of optimal ferry paths C and optimal partitioning

of the area into line segments {Iq ; q ∈ C}. The aim of this subsection is to obtain these

objects in an optimal way that minimizes the virtual workload. Solving this problem

in complete generality will be a very difficult task. Hence we instead obtain optimal

ferry path among a special class of ferry paths.

Prior to discussing the optimality issues one first needs to map the FWLAN to

a continuous polling system, so that Theorem 1 can be used. This task is taken up

immediately.

3.1 Mapping to a Mixed service Continuous polling system

We begin with identifying the components of the continuous polling system.

Server and path of the polling system : The ferry represents the server of the polling

system. The ferry stops at a point q in its path only when there is a user with a (down-

link/uplink) request anywhere on the segment I(q). Thus the entire segment I(q) is

modeled as a point on the server’s path, in an equivalent continuous polling system.

Service times: The time ta for acceleration is required only when the ferry stops

and hence is added to the equivalent service time. An arrival (η,X) is associated with
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Fig. 1 One Ferry in an annular ring Fig. 2 Two Ferries in an annular ring

the point q(X) := q of the ferry route if X lies in the corresponding segment, i.e., if

X ∈ I(q). Thus service time of an arrival (η,X) is given by :

B(X, η) =
η

κ(|X − q(X)|)
+ ta.

The expected service times (and the corresponding second moment), for example, for

uplink arrivals corresponding to a point q ∈ C is

bu(q) = E[B(X, η)|q(X) = q] = EX

[
η

κ(|q −X|)

∣∣∣∣X ∈ I(q), uplink

]
+ ta.

b
(2)
u (q) = E[B(X, η)2|q(X) = q]

= EX

[
η2

κ(|q −X|)2

∣∣∣∣X ∈ I(q), uplink

]
− t2a + 2tabu(q).

Service types: Ferry collects all the downlink messages from the BS and distributes

the same in the current cycle. Thus the downlink arrivals experience globally gated

service, with BS being the global gate point, 0. On the other hand, the ferry collects

uplink data from the users as and when it encounters one on its path. Thus the uplink

arrivals experience exhaustive/gated service and therefore pgg = pd, pg = pu.

Position of arrival in the ’polling system’ : The position of arrival in FWLAN is

given by PX which is a distribution over ∆. Every arrival in the segment I(q) marks

the arrival at point q of C in the equivalent polling system. The probability distribution,

PQ(A) := PX (∪q∈AI(q)) for any Borel set A ⊂ C,

represents this arrival distribution. For example, if ∆ := {x ∈ R2 : h2
1 ≤ |x| ≤ h2

2},
C = {q : ||q|| = l} for some h1 ≤ l ≤ h2 as in Figure 1, PX ∼ U(∆) (Uniform

distribution) and I(q) = {x : 6 x = 6 q} (with 6 x representing the angle made by the

line joining 0, x with the x axis), then PQ will be uniform distribution on C.

Thus the FWLAN can be modeled by a mixed service continuous polling system,

Theorem 1 can be applied and the stationary expected virtual workload of the ferry

with combined uplink and downlink arrivals can be calculated using (7) for any given

cyclic path C and the corresponding line segments {Iq}q∈C . The Theorem can be ap-

plied only for those cases which satisfy the hypothesis of the Theorem, like for example
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the service times should be bounded with probability one by B̂ of Theorem 1. The

service times will be bounded as required if: 1) the function κ is continuous in d (which

usually is the case) and hence its image of a bounded set will be bounded; 2) we will

need P (η < η̂) = 1 with an η̂ that satisfies, η̂/minκ(d) + ta ≤ B̂ of Theorem 1.

In the following subsections, we design optimal FWLAN for a simple example. The

ferry moves inside an annular ring ∆ := {x ∈ R2 : h2
1 ≤ |x| ≤ h2

2} of Figures 1 and 2.

Ferry moves in a predefined closed cyclic path C and each point q in the cyclic path is

assigned with a line segment I(q) ⊂ ∆, which is either obtained using the nearest point

basis (in subsection 3.2) or is computed in some optimal sense (in subsection 3.3). In

subsection 3.3, we consider N circular paths with N ferries each moving in its own

circular path. All the paths are optimized jointly so as to further obtain the segments

{I(q)} optimally.

3.2 SAN-TAXI example 1: Ferry moving in one circular path

The ferry moves on one concentric circle of radius l in the annular ring (Figure 1), i.e.,

Cl = {q ∈ R2 : ||q|| = l}. In this case, the best possible thing is to associate every

arrival (η,X) with the nearest point of the ferry route, i.e., with the point Q(X) :=

arg minq∈Cl
|q − X| of ferry route. Hence the line segments will be angular segments,

I(q) = {x ∈ ∆ : 6 (x) = 6 (q)} for all q ∈ Cl, (see figure 1). We would now like to find

the optimal radius of this circle. The variable to be optimized, the radius, takes any

value in [h1, h2] and we are interested in

l∗ = arg min
l∈[h1,h2]

V 1
SAN−TAXI(l;h1, h2)

where V 1
SAN−TAXI(l;h1, h2) represents the stationary expected workload in FWLAN

when ferry moves in Cl, which can be computed using (7). To simplify the computations,

in this section, we restrict ourselves to symmetric conditions, i.e.,

– uniform arrivals in annular area, PX ∼ U(∆),

– the rate function resulting from the losses in wireless medium considers only the

direct path for attenuation (assuming a height difference of 1 unit between the

transmitting and the receiving antennae and with path loss factor β):

κ(d) = (1 + d2)−β/2,

– the distribution of η is independent of the location of arrival and the type of arrival

(uplink or downlink) with E[η|X] ≡ ηb and E[η2|X] ≡ η
(2)
b and such that P (η <

η̂) = 1 with an η̂/κ(dmax) + ta < B̂, where dmax := (h2 − h1)/2,

– The uplink and downlink arrivals occur with equal probabilities pggs = pgs = 1/2.

We note that the hypothesis of the Theorem 1 are satisfied under the symmetric condi-

tions. Since the line segments {I(q)} in this case are angular segments, for calculating

the moments of the equivalent expected service times of a polling system {b(q; l)}q∈Cl

one will require the radius R = ||X|| of the arrival. Under the assumptions of this

section, radius R is distributed as R ∼ 2rdr/(h2
2 −h

2
1) and further it is easy to see that
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the the moments of the overall service time will be independent of the position q ∈ Cl

but depend upon the ferry path radius l. The service moments are:

bl = b(q; l) = ηb

∫ h2

h1

(
1 + (r − l)2

)β/2 2rdr

h2
2 − h2

1

+ ta,

b
(2)
l = b(2)(q; l) = η

(2)
b

∫ h2

h1

(
1 + (r − l)2

)β 2rdr

h2
2 − h2

1

− t2a + 2tabl for all q ∈ Cl.

For example for β = 2 the above can be computed as,

bl = ηb

(
1

2
(h2

1 + h2
2 + 2) + l2 −

4l(h2
1 + h1h2 + h2

2)

3(h1 + h2)

)
+ ta

b
(2)
l =

η
(2)
b

15(h2
2 − h2

1)
(− 5h6

1 + 24h5
1l − 15h4

1(3l2 + 1) + 40h3
1(l3 + l) − 15h2

1(l2 + 1)2

+h2
2(5h4

2 − 24h3
2l + 15h2

2(3l2 + 1) − 40h2(l3 + l) + 15(l2 + 1)2))− t2a + 2tabl.

Under the simplified assumptions of this section the stationary expected workload for

this example can be calculated using (7)9 :

V 1
SAN−TAXI(l;h1, h2) =

λblλb
(2)
l

2(1 − λbl)
+
λbl|Cl|α

−1(12 − λbl)

16(1 − λbl)
. (20)

One has to perform numerical computations using the above formula to obtain the

optimal radius and this is done below. However one can get the following asymptotic

characteristics of l∗ from the formula itself: 1) as the propagation coefficient β tends

to zero, both the service moments bl and b
(2)
l become independent of l, stationary

expected workload essentially depends upon l only via |Cl| and hence l∗ tends to h1,

i.e., the optimal path for the ferry is the inner circle; 2) as the speed of the ferry,

α, increases to infinity, the second term in the formula becomes negligible and hence

optimal radius will be determined only by the service time moments and so the optimal

radius will be above the middle of the ring, i.e., larger than (h1 + h2)/2.

Mixed (Uplink+Downlink) service example : In figure 3 we consider a FWLAN

which supports both uplink and downlink services. The parameters of the FWLAN

are mentioned in the figure itself and we plot the optimal radius as a function of the

outer radius h2 of the annular ring. We notice again that the optimal radius tends

towards the inner circle either as the speed of the ferry decreases or as h2 reduces. We

also plot the optimizer of the expected service time,

l∗b := arg min
l∈[h1,h2]

bl,

in the same figure and we note that the optimal radius is close to this optimizer

whenever either the annular ring is large or whenever the speed of the ferry is large.

This can also be understood by studying the expression for virtual workload (20).

Hence in these scenarios one can obtain the optimal radius as (for β = 2)

l∗ ≈
2(h2

1 + h2
2 + h1h2)

3(h1 + h2)
.

9 The equation below is different from the one in [29], because of the correction in (7).
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Fig. 3 Optimal orbit radius for a ferry moving continuously in a annular ring (Uplink and
Downlink)

3.3 SAN-TAXI example 2: N servers moving simultaneously in the

annular area

When the annular ring spans over a large area, a ferry moving in one circular path may

not be optimal. Hence we would like to consider a ferry moving in N circular paths

before completing the area. To make things simpler we assume that there will be N

ferries moving simultaneously (but independent of each other) with the same speed

α respectively on circular paths of radii l1, l2, · · · , lN (see figure 2). Without loss of

generality we also assume that the BS is placed on the entire segment {x : 6 x = 0},

i.e., any ferry communicates with the BS instantaneously the moment it touches the

angle 0. Throughout this paper we are neglecting the time taken for communication

(e.g., the communication happens at high speed using a wired link) between the BS

and the ferry(ies). Let Cn := {q : ||q|| = ln} and let B(x, p) := {y : ||y − x|| < p}

represent the open ball, while B̄(x, p) represent its closure. The first ferry caters to

the users in the annular ring B̄(0, p1) − B(0, h1) while the last one covers the annular

ring B̄(0, h2) − B(0, pN−1). Any intermediate nth ferry covers the area B̄(0, pn) −
B(0, pn−1). Let p0 := h1 and pN := h2. In this subsection we choose optimally p :=

[p1, p2, · · · , pN−1]
T and l := [l1, l2, · · · , lN ]T , which in turn optimally defines the line

segments {In(q); q ∈ Cn, for all n} as

In(q) =
{
x ∈ B̄(0, pn) − B(0, pn−1) : 6 q = 6 x

}
.
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We map each ferry by a separate continuous polling system. With these, the moments

of the overall service times for the nth ferry is

bn,p,l = ηb

∫ pn

pn−1

(
1 + (r − l)2

)β/2 2rdr

p2n − p2n−1

+ ta and

b
(2)
n,p,l = η

(2)
b

∫ pn

pn−1

(
1 + (r − l)2

)β 2rdr

p2n − p2n−1

− t2a + 2tabn,p,l.

Using these moments one can estimate {V 1
SAN−TAXI(ln; pn−1, pn)}, the N virtual

workloads as a function of the vectors p, l. We now propose to choose the optimal

ferry paths (and line segments {I(q)}) by :

(p∗, l∗) = arg min
p,l

N∑

n=1

p2n − p2n−1

h2
2 − h2

1

V 1
SAN−TAXI(ln; pn−1, pn).

In the following we consider an example with 2 ferries moving in the annular area

and supporting mixed service. The results are in Table 1. We obtain the optimal l∗, p∗

for different values of the outer radius h2 and the common speed of the ferries α while

the rest of the parameters are kept constant. We see again that the optimal radii of the

ferry routes move towards the inner circle as the speed of the vehicle reduces and this

effect is pronounced as the the radius of the outer circle, h2, decreases. This effect is

also seen in the case of single server and can be partially explained using the expression

VSAN−TAXI (20) for the virtual workload:

– VSAN−TAXI depends upon the radius l via the moments of the effective service

times b(1), b(2) and the circumference |C|. Virtual workload VSAN−TAXI (20) is

directly proportional to all three factors.

– The influence of l on the two moments depends upon the path loss factor β. If β is

close to zero the moments are almost independent of l while the optimal l (optimal

for the service moments) will be above the center of the annular ring for practical

path loss factors. For practical values of path loss factors, the two moments reduce

as l increases from the inner radius.

– However the circumference |C| has a contrast effect, it increases linearly with l.

– For large values of speed α, the influence of |C| on VSAN−TAXI reduces and hence

the optimal radii will be above the center of the annular ring.

– For smaller values of speed α, we see the reverse effect.

– The area of the annular ring also influences, with larger areas the moments (es-

pecially the second) will be large and hence the influence of the moments on

VSAN−TAXI will be larger than that of the circumference |C|. And so, we see

from the bottom rows of the table that, the optimal radii are away from the inner

circle even for lower speeds.

4 FWLAN with two base stations

We now consider a LAN equipped with two base stations and a moving ferry. These

base stations have also to be placed in optimal locations along with the design of

optimal ferry routes. In this section, we consider downlink service alone. Before we

proceed with FWLAN examples with two base stations, we note here that many of the
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α = 100 α = 10 α = 1
h2 (l∗1 , p∗, l∗2) (l∗1 , p∗, l∗2) (l∗1 , p∗, l∗2)
10 6.3, 7.7, 8.8 6.1, 7.7, 8.6 6, 7.8, 8.6
15 7.9, 10.4, 12.7 7.8, 10.6, 12.7 7.8, 10.8, 12.8
20 9.5, 13.1, 16.7 9.6, 13.5, 16.8 9.6, 13.8, 16.9
25 11.1, 15.8, 20.6 11.3, 16.3, 20.8 11.4, 16.7, 20.9
30 12.8, 18.5, 24.6 13, 19, 24.7 13.2, 19.5, 24.9
35 14.4, 21.1, 28.5 14.6, 21.5, 28.6 14.9, 22.1, 28.8

Table 1 Example : 2 Ferries moving in annular area with β = 2 h1 = 5, ta = 10, ηb = 2,

η
(2)
b

= 4.4, λ = 1e−2

two base station examples can result in a special case of service called elevator polling

(see [19] which describes the scheme for discrete polling system). This polling system

will have ’fair’ behavior : the expected waiting times at all the points in the server route

will be equal irrespective of whether the arrivals are symmetric or non symmetric. This

’fair’ behavior is a welcome feature and it might be advantageous to consider the paths

and the BS locations that can result in this behavior. In the subsection 2.3 we derived

the expression for the stationary expected waiting time in a continuous polling system

with elevator gating. These results are applied to some interesting FWLAN examples

with two base stations in the following.

4.1 Ferry moving in a straight line in Rectangular area

We consider a rectangular area ∆ = [−l, l] × [−d, d]. A ferry moves in the horizontal

straight line as shown in Figure 4. There are two base stations, each one of them is

located at the end of the ferry path. The ferry, say, starts its cycle by collecting all

the downlink data from the BS on the left, tags the users for whom the downlink data

has to be distributed, moves towards right with speed α, distributes the data to all

the tagged users. Once reaching the BS on the right it collects all the data from the

BS and then moves left. This procedure repeats. We analyze this FWLAN using the

elevator polling system of subsection 2.3.

Let the base stations be placed respectively at (p1, 0), (p2, 0). Let p := (p1, p2).

In this case the ferry path is given by Cp = {(q, 0) : p1 ≤ q ≤ p2}. The partitions are

calculated based on the nearest distance criterion.

I(q) = I(q, 0) =






{q} ×[−d, d] p1 < q < p2
[−l, p1] ×[−d, d] q = p1

[p2, l] ×[−d, d] q = p2

Note in this case that, both the ends of the ferry path cover not just a line segment

but a rectangular segment. We make simplifying assumptions as in section 3. Under

these assumptions

b(q;p) =






ηb

∫ d

−d
(1 + y2)β/2 dy

2d + ta p1 < q < p2

ηb

∫ p1

−l

∫ d

−d
(1 + y2 + (p1 − x)2)β/2 dxdy

4ld + ta q = p1

ηb

∫ l

p2

∫ d

−d
(1 + y2 + (p2 − x)2)β/2 dxdy

4ld + ta q = p2,

b(2)(q;p) − 2b(q;p)ta + t2a =






η
(2)
b

∫ d

−d
(1 + y2)β dy

2d p1 < q < p2

η
(2)
b

∫ p1

−l

∫ d

−d
(1 + y2 + (p1 − x)2)β dxdy

4ld q = p1

η
(2)
b

∫ l

p2

∫ d

−d
(1 + y2 + (p2 − x)2)β dxdy

4ld q = p2.
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Note here that even under symmetric assumptions the overall service moments are not

equal at all points, thus resulting in an asymmetrical polling system. With the above

the overall service moments are given by,

bp = 2d(l − p2)b(p1;p) + 2d(p1 + l)b(p2;p) + 2d(p2 − p1)b(p1+;p)

b
(2)
p = 2d(l − p2)b

(2)(p1) + 2d(p1 + l)b(2)(p2) + 2d(p2 − p1)b
(2)(p1+;p).

In the above by b(p1+;p) we meant the expected value at any point with its x compo-

nent greater than p1. As the expected weighting times in this case are equal at all the

points, it will be Pareto optimal to optimize the expected weighting times themselves.

Further in this symmetric case it is easy to see that p∗1 = −p∗2. Thus,

p∗2 = arg min
0<p2≤d

λb
(2)
−p2,p2

2(1 − λb−p2,p2)
+ 2p2α

−1.

Note here that optimal choice of p∗2 optimally places the two base stations as well as

optimally designs the ferry path. In this example, it is easy to see that : (1) As the

speed of the ferry α increases, the p∗2 moves towards l, i.e., if the ferry can move at

large speeds, it is optimal to place the base stations at both the edges of the area and

allow the ferry to traverse the entire width of ∆. This conclusion is also true whenever

the path loss factor β is large. (2) If the ferry moves at moderate speeds and or the

path loss factor is small p∗2 reduces. Thus for small path loss factors, the ferry can move

in shorter line segments and cover the entire area optimally.

We simplified the problem substantially by considering that the ferry moves in a

horizontal line placed at the center of the area. This simplification is good as long as

the arrivals are uniform and the file sizes are distributed the same way at all points.

For asymmetrical arrivals this choice of ferry route may not be good. In this case it

might be better to consider any general straight line passing through points (p1, p2)

and (p3, p4) as ferry path. The base stations are placed once again at both ends of

the ferry path. One can estimate the expected waiting time in terms of the parameter

p := (p1, p2, p3, p4) in a similar way and choose p∗ optimally. This p∗ places the base

stations optimally and designs the ferry routes optimally in more generality. If the

breadth of ∆, 2d, is large it might be better to consider zig zag ferry paths (Figure 5)

with two base stations placed at (p1, p2) and (p3, p4).

Fig. 4 One Ferry in Rectangular area
with two base stations

Fig. 5 More general paths for the
ferry with two base stations
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5 Conclusions

We study continuous polling systems that cater to non-standard variants of gating

disciplines like, globally gated service, gated service, mixed service (a mixture of glob-

ally gated and gated service disciplines) and elevator service disciplines. We obtain

an expression for the expected stationary workload. We obtain this result under more

general conditions than the usual symmetric conditions. We come up with a way of dis-

cretization such that the available Pseudo conservation laws of discrete polling systems

can be utilized for obtaining the results for the continuous counterparts. We expressed

the expected workload as a parametrized function of moment fixed points. The later

are some stationary moments obtained as fixed points of a function defined on spaces

of left continuous functions with right limits equipped with supremum norm and which

are further parametrized by the number of discretization levels. We show the required

convergence via the continuous dependence of the fixed points on the parameter. This

way we obtained a common expression, which represents the expected virtual workload

for continuous as well as the discretized polling systems, at different values of the pa-

rameter. We then showed the continuity of the expected virtual workload with respect

to the parameter and hence obtained the expected virtual workload for the continuous

system as the limit of the expected virtual workloads of the discrete systems, when the

levels of discretization tend to infinity. We applied these results to a wireless LAN in

which a ferry assists data transfer between the users of the network and a base station

which acts as a gateway to the external world. We provided the analytical expressions

for the expected virtual workload in a system of FWLAN, taking into account the ra-

dio channel considerations, which allowed us to optimize the trajectories of the Ferry.

We covered both uplink, downlink as well as their combination. Minimizing the virtual

workload results in a Pareto minimization of the expected waiting times in the system.

We have further presented some extensions to the case of several base stations and to

routing of several ferries. We observe that by using two base stations, one can achieve

fairness : the expected waiting times are independent of the positions of arrivals.

In [28], using similar approach we analyzed an FWLAN, in which the ferry also

supports local communication. This FWLAN is analyzed using a continuous polling

system with rerouting, whose performance is once again obtained using the discretiza-

tion approach. One can further explore this discretization approach.

Appendix A: Limit of the Virtual Workload, V
σ

mix
(9)

Proof of Lemma 1: Some terms of (9) are independent of σ:

ρ =

2σ∑

i=1

λibi = λ

∫ |C|

0

b(q)PQ(dq) = λb̄,
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2σ∑

i=1

λib
(2)
i = λb̄(2) and

σ∑

i=1

ρ2i = λpggE[B|globally gated] = λpgg b̄gg . (21)

Recall iσ = (i− 1)|C|/σ, note δσ(q) = iσ when q ∈ Ii and with these,

σ∑

i

ρ2i
(i− 1)|C|α−1

σ
= λpggα

−1
σ∑

i

E
[
bgg(Q)1{Q∈Ii}

]
iσ

= λpggα
−1

σ∑

i

bgg(iσ)fQ(iσ)
|C|

σ
iσ (22)

+λpggα
−1

∫ |C|

0

(
bgg(q)fQ(q) − bgg(δσ(q))fQ(δσ(q))

)
δσ(q)dq (23)

σ→∞
→ λpggα

−1

∫ σ

0

qbgg(q)fQ(q)dq = λpggα
−1E[Qbgg(Q)]. (24)

The term (22) is a Riemann sum and hence converges to the integral (24) while the

second term (23) converges to zero by continuity of the functions bgg , fQ via Bounded

Convergence Theorem (BCT). Similarly, excluding the terms which converge to zero

by BCT as in (23),

2σ∑

i=1

ρ2i ≈
λ|C|

σ

σ∑

i=1

(
pgb

2
g(iσ) + pggb

2
gg(iσ)

)
f2
Q(iσ)

|C|

σ

→ 0

∫ σ

0

(
pggb

2
gg(q) + pgb

2
g(q)

)
f2
Q(q)dq = 0. (25)

Following similar logic, with b̂g(q) := E[bg(Q)1{Q≤q}]) and from (21):

σ∑

i

ρ2i

∑

j≤2i

ρj =

σ∑

i=1

ρ2i

∑

j≤i

ρ2j +

σ∑

i=1

ρ2i

∑

j≤i

ρ2j−1

=
1

2

(
σ∑

i=1

ρ2i

)2

+
1

2

σ∑

i

ρ22i + λ2pggpg

σ∑

i=1

b2ili
∑

j≤i

b2j−1lj

→
λ2

2

(
(pgg b̄gg)2 + pggpgE

[
bgg(Q)̂bg(Q)

])
(26)

By independence E[bgg(Q)̂bg(Q)] = b̄gg
¯̂
bg and hence from limits (21)-(26), the limit of

V σ
mix (9) matches with the formula (7) of the Theorem 1. ⋄

Appendix B

Proof of Lemma 2: Let T (q) ≡ T , with E[T ] = τ . In this case, T ([a, c], T ) is sum of

the service times of all the arrivals in the interval [0, T ] that occurred in the segment
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[a, c] ⊂ [0, |C|]. Let N represent the number of those Poisson arrivals that belong to

segment [a, c] and that arrived during the [0, T ] interval. In this case,

E[N ] = E[E[N|T ]] = λPQ([a, c])E[T ] = λτ

∫ c

a

fQ(q)dq.

Let {Bi}i≤N represent the service times of these N arrivals. Any arrival can fall in

point q according to distribution PQ(dq) = fQ(q)dq and the conditional expected

service time of the arrival conditioned on the point of arrival is b(q) and so,

E[Bi|Arrival in[a, c]] =
1

PQ([a, c])

∫ c

a

b(q)fQ(q)dq

Thus by Wald’s lemma10,

E[T ([a, c], T )] = E

[
N∑

i=1

Bi

]
=E[N ]E[Bi] = λτ

∫ c

a

b(q)fQ(q)dq. (27)

Now we consider the other case, i.e., let every sample path of the the random

function T be a monotone increasing function of q ∈ [a, c]. The proof for T , monotone

decreasing, follows in similar lines. For every M , define step function,

δM (q) = a+
i

M
if q ∈ a+

[
i

M
,
i+ 1

M

)
.

Note that by monotonicity of T ,

TM (q) := T
(
δM (q)

)
≤ T (q) and

T̄M (q) := T
(
δM (q) +

1

M

)
≥ T (q).

In the following the arrivals and their service times are independent11 of T , T̄M and

TM . More arrivals can occur during more time and hence workload during larger time

will be larger. Hence and further using (27)

E [T ([a, c], T )] ≤ E
[
T ([a, c], T̄M )

]

= λ

M−1∑

i=0

τ
(
a+

i

M

)∫ a+(i+1)/M

a+i/M

fQ(q)b(q)dq

10 For applying Wald’s lemma we need certain independence assumptions. These assumptions
are satisfied in this proof (whenever Wald’s lemma is applied) because of the following: the
service times (and the number) of incoming arrivals are independent of the system evolution till
the time stamp at which they are served. For example, the number of arrivals (or those tagged
in case of globally gated service) at around a point say q (i.e., the users awaiting service in
segment [q, q + dq]) does not influence the system evolution till the server reaches point δσ(q),
standing at which it would serve the awaiting users, i.e., till time T σ

n (q). To put it the other
way, for example, T σ

n (q) is a stopping time for that sampled arrival process (sampled from the
original gated Poisson arrival process), in which the users land in segment [q, q +dq] and which
originated during the time interval Cσ

n (q).
11 The independence assumption holds for lower bound T M and the actual time T readily

because of the reasons given in footnote 10. An upper bound is obtained by calculating the
independent arrivals that would have arrived in a bigger interval i.e., T̄ M .



28

≤ λ

M−1∑

i=0

fQ

(
a+

i

M

)
b
(
a+

i

M

)
τ
(
a+

i

M

)
1

M

+λ

∫ c

a

τ
(
δM (q)

)(
fQ(q)b(q) − b

(
δM (q)

)
fQ

(
δM (q)

))
dq

→ λ

∫ c

a

fQ(q)τ (q)b(q)dq as M → ∞.

The last limit is obtained because the partial sums define Riemann sums and they con-

verge to the integral and because the second integral goes to zero by uniform continuity

of b, fQ functions (continuous function on compact intervals are uniformly continuous).

Similarly using the lower bound on the time T , TM , we get,

E [T ([a, c], T )] ≥ lim
M→∞

E
[
T ([a, c], TM )

]
= λ

∫ c

a

fQ(q)τ (q)b(q)dq. (28)

Hence,

E [T ([a, c], T )] = λ

∫ c

a

fQ(q)τ (q)b(q)dq. ⋄

Proof of Theorem 2: The operator F given by (14) is reproduced here.

F(τ ; δ)(q) := δ(q)α−1 + λτ (|C|)

∫ δ(q)∧|C|

0

b(y)fQ(y)dy

We are interested in it’s fixed point. The function is clearly jointly continuous in τ, δ.

Further,

F(τ1; δ)(q) − F(τ2; δ)(q) = λ (τ1(|C|) − τ2(|C|))

∫ δ(q)∧|C|

0

b(y)fQ(y)dy.

Thus for all δ

||F(τ1; δ) − F(τ2; δ)||∞ ≤ ρ||τ1 − τ2||∞.

Thus whenever ρ < 1, we have a fixed point of the operator F for all δ and hence

the existence of unique stationary first moments. Under this condition, we further see

by parametrized contraction mapping theorem ([32]) that the unique fixed point τ δ
∗ is

continuous in δ.

In fact from equation (14), when evaluated at q = |C|, we find that:

τ δ
∗ (|C|) =

δ(q)α−1

1 − λ
∫ δ(|C|)∧|C|

0
b(y)fQ(y)dy

.

Note that

sup
δ∈D

λ

∫ δ(|C|)∧|C|

0

b(y)fQ(y)dy = λ

∫ |C|

0

b(y)fQ(y)dy = ρ

and thus the stationary moments exist if and only if ρ < 1. Under this condition, one

can solve the fixed point equation and complete the proof of Theorem 2. ⋄
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Proof of Theorem 3: The cycle time Cσ
n defined in (15) can be rewritten in the

following fashion and via this expression we obtain the convergence of the required

second moments (note Cσ
n (0) = Cσ

n−1(|C|) almost surely by continuity arguments):

Cσ
n (q) = |C|α−1 + Uσ

n (q) + Tg([0, δσ(q)), Cσ
n ) + Tgg([0, δσ(q)), Cσ

n(0)) (29)

Uσ
n (q) = Tgg([δσ(q), |C|), Cσ

n−1(0)) + Tg([δσ(q), |C|), Cσ
n−1)). (30)

Required Spaces: We first identify appropriate complete metric spaces in which

the above quantities reside and whose norm gives the required convergence. We start

with some definitions/notations.

Let (Ω,F , P ) be any probability space.

Let ||.||2 be the L2 norm, i.e., ||ψ||2 := E[ψ2] for any random variable ψ.

Let D represent the space of left continuous functions on [0, |C|] with right limits and

equipped with supremum norm, ||f ||∞ := supq∈[0,|C|] |f(q)|.

Let

Ψ := {measurable functions ψ : [0, |C|] ×Ω → R such that

the map q 7→ ||ψ(q, .)||2 ∈ D} where

||ψ(q, .)||2 :=

∫
ψ(q, w)2dP (ω) = E[ψ(q, .)2].

Define the following norm on this space:

||ψ||∞,2 := sup
q∈[0,|C|]

||ψ(q, .)||2 for any ψ ∈ Ψ .

By Lemma 3 (Ψ, ||.||∞,2) is a Banach space.

Contraction Mappings and fixed points: It is easy to see that (Cσ
n , U

σ
n ) defined

in (29)-(30) reside12 in Ψ for all σ. It is also easy to see that these under stationarity

form the fixed point of the following function, defined point-wise (i.e., for every q) by:

Θσ
C(ψc, ψu;σ)(q) = |C|α−1 +

√
B̂ψu(q) + Tg([0, δσ(q)], ψc) + Tgg([0, δσ(q)], ψc(|C|))(31)

Θσ
U (ψc, ψu;σ)(q) =

1√
B̂
Tgg([δσ(q), |C|], ψc(|C|)) +

1√
B̂
Tg([δσ(q), |C|], ψc). (32)

In the above, Tm([a, c], ψ) (with m = g or gg) represents the sum of the modified

service times, B̃, of the users that arrived in the interval [a, c]: 1) arrivals at around q

(independent arrivals as explained in footnote 10) occur for time period |ψ(q, .)| as in

subsection 2.4.2 and 2) if ψ(q, .) is negative then the quantities added, B̃, are negative

of the service times, else B̃ are the service times themselves.

Let Θ := (ΘC , ΘU ). The function Θ : Ψ2 → Ψ2 is affine linear (linear but for

|C|α−1 term). Let ΘLin represent the linear part. With this,

||Θ(ψc, ψu;σ) −Θ(ψ′
c, ψ

′
u;σ)||∞,2 = ||ΘLin(ψc − ψ′

c, ψu − ψ′
u)||∞,2

≤
√
B̂||ψu − ψ′

u||∞,2 + ||Tg([0, δσ(q)], ψc − ψ′
c)||∞,2

+||Tgg([0, δσ(q)], ψc(|C|) − ψ′
c(|C|))||∞,2

+
1√
B̂

(
||Tg([δσ(q), |C|], ψc − ψ′

c)||∞,2 + ||Tgg([δσ(q), |C|], ψc(|C|) − ψ′
c(|C|))||∞,2

)
.

12 Cσ
n is a sum of two monotone functions (recall from equation (15), Cn(q) = Tn(q) +

[Tn−1|C| − Tn−1(q)]) while Uσ
n is a monotone function of q for all realizations, hence their

moments will also have similar properties and hence both the moments are in D.
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In the above, terms like ||Tg([0, δσ(q)], ψc)||∞,2 imply the ||.||∞,2 norm of a ψ ∈ Ψ ,

where ψ(q, .) represents the random workload, Tg([0, δσ(q)], ψc). Note that for any type

of arrivals (i.e., with m = g or m = gg) and for any interval I and time function T ,

|Tm(I, T )| ≤
∑

i

Bi

where Bi are the service times of the arrivals in the chosen time period |T | and so it

is clear that these type of terms to converges (in monotone fashion) to zero as B̂ → 0.

In fact even the terms like 1/
√
B̂|Tm(., .)| drop to zero as B̂ → 0. Thus there exists a

B̂ <∞ such that

||ΘLin||∞,2 < 1 for all B̂ < B̂.

Hence Θ is a contraction for all σ and the contraction coefficient can also be chosen

independent of σ, i.e., there exists B̂ and L < 1 such that (for all B̂ < B̂),

||Θ(ψc, ψu;σ) −Θ(ψ′
c, ψ

′
u;σ)||∞,2 ≤ L||(ψc, ψu) − (ψ′

c, ψ
′
u)||∞,2 for all σ.

Thus, from contraction mapping theorem, we have a unique fixed point (Cσ
∗ , U

σ
∗ ) for

every σ and these by construction of the map Θ, given by equations (29)-(30), are the

stationary quantities corresponding to (Cn, Un) with discretization levels σ.

Continuity of Θ with respect to σ: From (31)-(32), difference Θ(Cσ′

∗ , Uσ′

∗ ;σ)−

Θ(Cσ′

∗ , Uσ′

∗ ;∞) is made up of terms like ̟, the workload process defined for any m = g

or gg and any ψ ∈ Ψ by,

̟σ
m(q, .;ψ) := Tm((δσ(q), q], ψ).

Clearly ̟σ
m(., .;Cσ′

∗ ) ∈ Ψ for every σ ≤ ∞ and for every σ′ and using13 (33)

||̟σ
m(q, .;Cσ′

∗ )||2 ≤ 2B̂||Nσ(q, .)||2,

where Nσ(q, .) represents the number of customers that arrived in segment [δσ(q), q]

for a time duration of Cσ′

∗ (|C|). Clearly14 using the properties of Poisson process,

||Nσ(q, .)||22 = E
[
Nσ(q, .)2

]

=

(
λPQ([δσ(q), q])||Cσ′

∗ (|C|) +
(
λPQ((δσ(q), q])||Cσ′

∗ (|C|)
)2
)

≤

(
λ
||fQ||∞

σ
Cσ′

∗ (|C|) +

(
λ
||fQ||∞

σ
Cσ′

∗ (|C|)

)2
)

for any q.

Hence for any given σ′ and m,

lim
σ→∞

||̟σ
m(., .;Cσ′

∗ )||∞,2 = 0 and similarly lim
σ→∞

||̟σ
m(., .;Cσ′

∗ (|C|))||∞,2 = 0.

13 From equation (15), Cσ
∗
(q) equals sum of stationary quantities corresponding to Tn(q) and

Tn−1(|C| − Tn−1(q) and hence will be less than or equal to 2Cσ
∗
(|C|) in distribution and this

is true for all q, i.e.,

Cσ
∗
(q)

distribution

≤ 2Cσ
∗
(|C|) for all q. (33)

Also, recall service times B ≤ B̂ with probability one.
14 because of independent arrivals as reasoned in footnotes 10 and 11.
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From (31)-(32), difference

ΘC(Cσ′

∗ , Uσ′

∗ ;σ) −ΘC(Cσ′

∗ , Uσ′

∗ ;∞) = −̟σ
g (., .;Cσ′

∗ ) −̟σ
gg(., .;Cσ′

∗ (|C|))

ΘU (Cσ′

∗ , Uσ′

∗ ; σ) −ΘU (Cσ′

∗ , Uσ′

∗ ;∞) =
1√
B̂
̟σ

g (., .;Cσ′

∗ ) +
1√
B̂
̟σ

gg(., .;Cσ′

∗ (|C|))

and thus for any σ′ ≤ ∞,

||Θ(Cσ′

∗ , Uσ′

∗ ; σ) −Θ(Cσ′

∗ , Uσ′

∗ ;∞)||∞,2 → 0 as σ → ∞. (34)

Continuity of fixed points with respect to σ: By the definition of fixed points,

||(Cσ
∗ , U

σ
∗ ) − (C∞

∗ , U∞
∗ )||∞,2 = ||Θ(Cσ

∗ , U
σ
∗ ; σ) −Θ(C∞

∗ , U∞
∗ ;∞)||∞,2

≤ ||Θ(C∞
∗ , U∞

∗ ;σ) −Θ(C∞
∗ , U∞

∗ ;∞)||∞,2 + ||Θ(Cσ
∗ , U

σ
∗ ;σ) −Θ(C∞

∗ , U∞
∗ ;σ)||∞,2

≤ ||Θ(C∞
∗ , U∞

∗ ;σ) −Θ(C∞
∗ , U∞

∗ ;∞)||∞,2 + L||(Cσ
∗ , U

σ
∗ ) − (C∞

∗ , U∞
∗ )||∞,2.

And hence

||(Cσ
∗ , U

σ
∗ ) − (C∞

∗ , U∞
∗ )||∞,2 ≤

1

1 − L
||Θ(C∞

∗ , U∞
∗ ;σ) −Θ(C∞

∗ , U∞
∗ ;∞)||∞,2.

Thus, using (34), as σ → ∞

||(Cσ
∗ , U

σ
∗ ) − (C∞

∗ , U∞
∗ )||∞,2 → 0.

It is easy to check that ||Cσ
∗ (q, .)||2 = c2σ

∗ . Thus, by the definition of ||.||∞,2 the

theorem on second moments follows. ⋄

Lemma 3 (Ψ, ||.||∞,2) is a complete space.

Proof: Say ψn is a Cauchy sequence. Then for any q, ψn(q, .) is Cauchy in L2 space

and hence there exist an L2-limit say call it ψ(q, .). Now for any q,

||ψn(q, .) − ψ(q, .)||2 = lim
m→∞

||ψn(q, .) − ψm(q, .)||2.

For any ǫ > 0 there exists N such that

sup
q

||ψm(q, .) − ψn(q, .)||2 ≤ ǫ for all n,m > N.

Combining the above two equations, whenever n > N

sup
q

||ψn(q, .) − ψ(q, .)||2 ≤ ǫ

and hence ||ψn − ψ||∞,2 → 0 as n→ ∞.

By completeness of D the map (of limits of L2 norms) q → ||ψ(q, .)||2 resides in D.

⋄
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Appendix C : Pareto Optimality

Let W be the set of vectors of expected waiting times achieved by a class of design

policies. A vector w1 ∈W obtained by some policy dominates another vector w2 if all

entries of w1 are smaller than or equal to those of w2 with at least one entry being

strictly smaller. This definition is given when w1 has finite number of entries. We now

extend the definition in an obvious way to our case, i.e., when w1 is a function on

[0, |C|] that is integrable with respect to Lebesgue measure, L. A function w1 is said

to dominate another function w2 if w1 ≤ w2 almost surely (w.r.t. Lebesgue measure)

and if there exists a set B such that w1 < w2 on B and L(B) > 0. A minimum vector

in W in the Pareto sense is one that is not dominated by any other vector in W .

Lemma 4 Let ζ be an integrable function on [0, |C|] with ζ > c almost surely, with

c ≥ 0. Let,

w∗ = arg min
w∈W

∫ |C|

0

w(q)ζ(q)dq,

be a minimizer of the integral. Then w∗ is a Pareto optimal solution.

Proof : If it is not and there exists a vector w1 which dominates w∗. Say w1 < w∗ on

B with L(B) > 0 while w1 = w∗ on the complement, Bc. Then

∫ |C|

0

(w1(q)−w
∗(q))ζ(q)dq =

∫

B

(w1(q)−w
∗(q))ζ(q)dq ≤ −c

∫

B

(w∗(q)−w1(q))dq < 0.

and so the optimality of w∗ is contradicted when c > 0. When c = 0, by definition of

infimum one can find a subset of B on which ζ > c̃ > 0 and the proof follows. ⋄
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