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Abstract
In this paper an approach is proposed for optimization of speed profiles in railway inte-
grating energy saving. This approach deals with a multi-objective problem involving three
criteria: reduction of the travel duration, reduction of the delays and minimization of the
energy consumption. Based on a state of the art evolutionary algorithm, the proposed ap-
proach searches for diversified solutions in a continuous search space. These solutions are
evaluated and compared according to the Pareto approach in such a way that the proposed
solutions are different and incomparable, in order to help the decision makers. After having
reminded railway dynamics elements, the approach is detailed as well as the evolutionary
algorithm and its problem-related components. Two case studies (the Gonesse junction and
the line Saint-Étienne – Rive de Giers in France) and results are then provided and analyzed.
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1 Introduction

For recent years, the concern due to pollution and global warming led to develop more eco-
aware transportation systems. Energy spent in the railway management is used to move
the trains and if speed tuning is well suited, the energy consumption will be lower than in
other cases. Indeed, since the acceleration phases consume a huge quantity of energy, it is
necessary to tune the speeds according to the distances, the slopes and the timetable in order
to avoid unnecessary sequence of brake/acceleration phases. Moreover, given that the trains
have a big inertia, it is judicious to use this physical property by stopping the engine and
letting the train advance just thanks to the initial force [15, 12].

The railway management involves multiple objectives which are often antagonist such
as the travel duration and the energy consumption. Although the travel duration had often
preference of the decision makers, for recent years the criterion of energy consumption is
considered from an equivalent point of view. Indeed, global energy saving has become the
new challenge of the transportation systems including railway.

1



Works have been led for analytically computing speed tuning (ST) solutions according
to several levels of delay tolerance [2, 17, 1]. But to our knowledge, there are few multi-
objective approaches yet. These are based on Differential Evolution [19] for mass transit
system [4] or evolutionary algorithms hybridized or not [9]. Nevertheless, to our knowl-
edge few approaches propose to optimize the energy consumption which becomes the new
challenge of the decade.

Thus, in this paper we deal with a multi-objective optimization of ST with energy sav-
ing. These concurrently optimized criteria are: the minimization of the travel duration; the
minimization of the energy consumption and the punctuality (minimization of the delays,
which is quite different to reducing the travel duration). According to the timetable, we can
work out the delays occurring at stations and use them in a multi-criteria search. Whatever
the criteria under consideration, the main goal consists in designing ST solutions diversified
enough to help decision makers to choose the solution the most adapted to their needs. In or-
der to solve the problem, we propose an approach based on a Pareto evolutionary algorithm
which extends a previous work [5].

After defining the problem we propose to solve in Section 2, we present our model
of speed tuning in Section 3. The evolutionary computation principles are presented in
Section 4 by explaining also the Indicator-Based Evolutionary Algorithm we use to compute
ST solutions. Experimental results based on real data are then provided and discussed in
Section 5. These examples are proposed to assess the algorithm with two objectives on the
Gonesse junction (France) and with three objectives on the line Saint-Étienne – Rive de
Giers (France). Finally Section 6 concludes the paper.

2 Problem overview

The main goal consists in designing the most suited speed profile over space. The space cor-
responds to a sequence of intervals I (block sections) in which the speeds can be changed.
Figure 1 represents the decomposition of a one-section journey in four steps. A maximum
speed vmax limits the train speed. According to this limit and the train parameters the speed
can be defined in each step. The first step (A) corresponds to the train acceleration when the
speed grows from 0 to vmax (if the train can reach vmax). Before dealing with the cruising
and coasting phases it is necessary to compute the braking phase (B) to be sure that the
needed braking distance will not exceed the remaining distance before the end. The cruis-
ing phase (Cr) corresponds to the speed maintaining, that is, a null acceleration when the
traction effort equals the resistance to the train advance. The coasting phase (Co), depicted
by the dashed lines on Figure 1, is engaged when the engine is stopped and the train moves
thanks to its inertia. During this phase, no energy is consumed and hence in order to reduce
the energy consumption it is interesting to vary the instant (or position) from which the en-
gine is stopped and the coasting phase is started (see points 1, 2, 3 in Fig. 1). The sooner
the coasting phase starts the greater the economy but the later the train will arrive. Thus the
goal of the problem solving is to determine a good tradeoff between energy consumption,
running time and delay occured.

3 Speed tuning model

Naturally, the four-steps model explained above cannot be applied everywhere and the shape
of speed profile depends on the entrance speed v0 (position 0) and the exit speed vX (po-
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Figure 1: Speed tuning over space in four steps: acceleration (A), cruising (Cr), coasting
(Co) and Braking (B)

sition X). Between these two positions 0 and X it is necessary to determine the speeds
according to a chosen policy. In this way, we introduce two intermediate speeds v1 and v2
which help us to build the speed profile.

A train path is composed of n sections. Therefore, for a section S, we have a set of five
speeds: vSmax, v

S
0 , v

S
1 , v

S
2 , v

S
X . When the train starts its journey, speed v10 is null for section

1 (v10 = 0), while in the arrival section speed vnX = 0. When the train leaves a section S
and enters in the following section (S + 1), the exit speed of section S equals the entrance
speed of section S + 1: vSX = vS+1

0 in such a way that: vSX ≤ min(vSmax, v
S+1
max). Speeds

v1, v2 to be determined are limited by the maximum speed of the section S: vS1 ≤ vSmax and
vS2 ≤ vSmax.

Taking these elements into account, we generalize for a sequence of sections that three
speeds have to be determined per section: v1, v2 and vX . These values will be searched by
the evolutionary algorithm we propose in Section 4. Speed profile is determined according
to a three steps model:

1. the entrance phase tunes speed for accelerating/decelerating from v0 to v1;

2. the exit phase is assessed before the intermediate phase for varying speed from v2 to
vX ;

3. the intermediate phase tunes the speed from v1 to v2 according to our policy depend-
ing on v1 > v2 or not.

The set of basic definitions useful for the remainder of the paper are summarized in Table 1.

3.1 Objectives

The problem can be represented as a set Φ of n ≤ 3 objective functions to be minimized.
The first function ϕ1 represents the minimization of the travel duration whereas the energy
consumption reduction is illustrated by function ϕ2. Note that this minimization is related
to the reduction of the mechanical energy. The amount of durations corresponds to the sum
of all durations needed to travel within the sections. The third objective ϕ3 function aims at
minimizing the delays.
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T a travel duration which corresponds to the sum of intermediate durations (unit [s])
D the amount of delays occurred at each station (unit [s])
Em the mechanical energy necessary to move the train (unit [J])
Pm(t) the mechanical power delivered at instant t (unit [W]);
FT (t) the traction effort at instant t (unit [N]);
FR(t) the resistance to the advance at instant t (unit [N]);
LR(t) the line resistance to the advance at instant t (unit [N]);
BR(t) the braking effort at instant t (unit [N]);
v(t) the train speed at instant t (unit [m/s]);
v0 the entrance speed of a train (unit [m/s]);
vX the exit speed of a train (unit [m/s]);
ab(t) the braking at instant t (unit [m/s2]);
a(t) the acceleration at instant t (unit [m/s2]);
m the train mass (unit [kg]);
ρ the mass correction factor usually set to 1.04.

Table 1: Definition of the main symbols used in the paper

Φ = (ϕ1, ..., ϕn), n ≤ 3 (1)
ϕ1 = minT (2)
ϕ2 = minEm (3)
ϕ3 = minD (4)

Em =

∫
Pm(t) dt (5)

Pm(t) = FT (t) v(t) (6)

In function of the needs, we can add or remove objectives. The basic objective con-
sists in minimizing the travel duration, hence the minimal formulation of the problem is
Φ = (ϕ1) and this formulation will allow to work out reference solutions for fairly eval-
uating mult-objective solutions. In addition to this basic objective, we can add one or two
objectives such that the problem can be formulated as follows: Φ = (ϕ1, ϕ2) for optimizing
two objectives or Φ = (ϕ1, ϕ2, ϕ3) for optimizing three objectives.

3.2 Elements of railway dynamics

The fundamental equation of dynamics states that the relation between the forces, mass and
acceleration:

FT (t)− FR(t) = ρ m a(t)

Note that ρ is a mass correction factor usually set to ρ = 1.04 [12, 1]. The train data also
depict the traction effort profile which indicates effort FT (t) according to a speed v(t). The
resistance to the train advance FR(t) corresponds to the sum of the resistances, i.e. the line
resistance LR and the braking efforts if the train brakes:

FR(t) = LR(t) +BR(t)
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Line resistance LR is defined according to the slope and its angle β:

LR(t) = ρ m g sinβ, where g = 9.81m/s2

The braking effort BR(t) at instant t is depicted by a braking profile related to the train
and depending on speed v(t). Thanks to this profile, we can determine the braking ab(t) as
follows:

ab(t) =
BR(t)

ρ m

Now, with these elements we can determine the acceleration, cruising, coasting and
braking phases. We note that only acceleration and cruising phases need energy.

Acceleration
This can be defined as follows:

a(t) > 0 ⇔ FT (t) > FR(t) (7)

a(t) =
FT (t)− FR(t)

ρm
(8)

FT (t) and FR(t) are calculated according to speed v(t) as explained before. The accelera-
tion phase from speed vA to vB (vA < vB) is iterated each second (instant i) and updates
the acceleration a(i), the speed v(i) and the position x(i) (Algorithm 1).

Algorithm 1: Calculation of an acceleration phase
v(i) = vA;
while v(i) < vB do

Update position x(i+ 1) = 0.5a(i) + v(i) + x(i);
Update acceleration a(i+ 1) according to v(i);
Update speed: v(i+ 1) = v(i) + a(i);
Update energy: Em = Em + Em(i) with Em(i) = FT (i)× v(i);
Update duration: T = T + 1 ;
i = i+ 1

end

Cruising
The cruising phase maintains the train speed v from position x0 along a distance d without
accelerating:

a(t) = 0 ⇔ FT (t) = FR(t)

Algorithm 2 explains the computation of the cruising.

Coasting
During a coasting phase the engine is stopped: FT (t) = 0. If the slope is null or positive
β ≥ 0.0, the speed decreases because a(t) < 0. Otherwise the slope is negative (β < 0.0)
and the speed will increase. In this latter case, it will be necessary to brake.

The calculation of this phase is very close to an acceleration except for the energy con-
sumption which stays null. The coasting between speed vA and vB (vA > vB) is iterated
each second (Algorithm 3) while the crossed distance does not overtake the available dis-
tance d for the coasting.
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Algorithm 2: Calculation of a cruising phase

while x(i) < x0 + d do
Update position: x(i+ 1) = x(i) + v ;
Calculate FR(v) according to v and the gradient β ;
Set FT (v) = FR(v) ;
Update energy: Em = Em + FT (i)× v ;
Update duration: T = T + 1 ;
i = i+ 1

end

Algorithm 3: Calculation of a coasting phase
v(i) = vA;
while (x(i) < x0 + d) and (v(i) > vB) do

Update position x(i+ 1) = 0.5a(i) + v(i) + x(i);
Update acceleration a(i+ 1) = −FR(i)

ρ×m ;
Update speed: v(i+ 1) = v(i) + a(i);
Update duration: T = T + 1 ;
i = i+ 1

end

Braking
The braking phase combines two resistance forces: the resistance to the train advance and
the service braking force. So the calculation is identical as in a coasting phase except for
determining the acceleration: a(i+ 1) = −FR(i)

ρ×m − ab(i) with ab(i) depending on v(i) and
FR(i)) subject to the gradient of the slope.

3.3 Entrance and exit phases

Before evaluating the intermediate phase it is necessary to determine on the one hand the
entrance phase and on the other hand the exit phase. For each one, duration, distance and
energy are calculated according to v0 compared with v1 and v2 compared with vX . Figure
2 depicts the possible cases described below.

Entrance
The entrance phase is determined according to v0 and v1. Two cases may arise (Fig. 2(a)):

1. if v0 < v1 then an acceleration occurs, increasing speed from v0 to v1;

2. if v0 > v1 then a braking is done, decreasing speed from v0 to v1 (illustrated by v′0
and v1).

In all these cases, a distance d0 is needed to vary the speed during T0. The consumed energy
E0 is null if it is a braking phase, otherwise E0 > 0.
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Figure 2: Scheme of (a) entrance and (b) exit phases

Exit
The exit phase is done in the same way by using v2 and vX and two cases may also arise
(Fig. 2(b)):

1. if v2 < vX then an acceleration occurs, increasing speed from v2 to vX ;

2. if v2 > vX then a braking is done, decreasing speed from v2 to vX (illustrated by v′2
and vX ).

A distance dX and a duration TX are needed for this phase. The consumed energy EX is
positive (EX > 0) if the phase is an acceleration.

3.4 Intermediate phase

Once the exit phase is computed, the feasibility of the solution must be checked. Indeed the
travelled section has an available distance dS and we must be sure that d0 + dX < dS in
so far as an available distance remains to allow varying the speed from v1 to v2 during the
intermediate phase.

Let dI = dS − d0 − dX be the available distance to vary the speed from v1 to v2. Three
cases may arise:

1. if v1 > v2 and the slope is null or positive, then we try to insert a coasting phase to
decrease the speed and to save energy. If it is possible, we insert a cruising phase
before the coasting for completing all the distance available (Fig. 3(a), the plain line).
The only consumed energy (EI > 0) is due to the cruising phase. When the distance
is not enough to do a complete coasting then a braking phase from v1 to v2 must be
calculated and we search for intersection of coasting and braking phases (Fig. 3(a),
the dashed line) and in this case EI = 0;

2. if v1 > v2 and the slope is negative (it is a descent), then train can accelerate without
effort. We compute the acceleration on the distance dI and the braking from vmax to
v2. Then the intersection point of acceleration and braking has to be found and the
intermediate phase is achieved (Fig. 3(b));
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3. if v1 < v2 then an acceleration from v1 to v2 will be necessary and we insert it
halfway through (travelled distance dA). Cruising phases are added before and after
the acceleration, the first at speed v1 and the second at speed v2 (Fig. 3(c)). The
cruising phases are done on the same distance ((dI − dA)/2). The consumed energy
corresponds to the amount of energy required for each phase.

Intermediate phase

v
max
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v
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2
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v
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v

x

1

2

max

Speed

(a) (b)

Intermediate phase

v
max

v

x

v

v
2

1

(c)

Figure 3: Three cases of intermediate phase: (a) v1 > v2 and β ≥ 0.0, (b) v1 > v2 and
β < 0.0, (c) v1 < v2

Naturally, it is necessary to check whether each phase can be inserted according to the
remaining distance or not. If the distances do not allow to insert the chosen phases, the
solution is marked as not feasible and penalized during the evaluation in the evolutionary
algorithm.

4 Evolutionary Multi-objective Optimization

An evolutionary algorithm (EA) is an iterative process of exploratory search. Our choice is
led by a preference to obtain a set of sufficiently diversified solutions in a single run. In-
deed, the evolutionary algorithms with Pareto approach are capable to produce well-spread
incomparable solutions along the Pareto front. That could be an advantage to help the deci-
sion makers in the case of real-life problems [20].

An EA is a nature-inspired metaheuristic gathering a set of solutions (individuals or
chromosomes): a population. The latter evolves while recombining pairwise individuals in
such a way that new original and improved solutions are produced. A mutation operator al-
lows to diversify the population while randomly modifying solutions. These new solutions
are added to a temporary population which will partially or totally constitute the population
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at the next iteration, depending on the algorithm policy of the population renewal. Algo-
rithm 4 presents the main steps of a general purpose EA.

Algorithm 4: Canonical evolutionary algorithm
Population initialization;
while Stopping criterion not reached do

Evaluate each solution in population Pi;
Select individuals in population Pi for crossover;
Cross individuals according to a crossover rate;
Mutate individuals according to a mutation rate;
Population Pi+1 generation (selection for replacement);

end

4.1 Multi-objective Optimization

A general Multi-objective Optimization Problem (MOP) can be defined by a set of n ob-
jective functions (f1, f2, . . . , fn), a set X of feasible solutions in the decision space, and
a set Z of feasible points in the objective space. Without loss of generality, we here as-
sume that each objective function is to be minimized. To each solution x ∈ X is as-
signed an objective vector z ∈ Z on the basis of the vector function f : X → Z with
z = f(x) = (f1(x), f2(x), . . . , fn(x)) as illustrated by Figure 4. An objective vector
z ∈ Z is said to dominate1 another objective vector z′ ∈ Z iff ∀i ∈ {1, 2, . . . , n}, zi ≤ z′i
and ∃j ∈ {1, 2, . . . , n} such as zj < z′j . An objective vector z ∈ Z is said to be non-
dominated iff there does not exist another objective vector z′ ∈ Z such that z′ dominates z.
A solution x ∈ X is said to be efficient if its mapping in the objective space results in a non-
dominated point. The set of all efficient solutions is the efficient set, denoted by XE . The
set of all non-dominated vectors is the Pareto front, denoted by ZN . A possible approach in
MOP solving is to find the minimal set of efficient solutions, i.e. one solution x ∈ XE for
each non-dominated vector z ∈ ZN such as f(x) = z. However, generating the entire effi-
cient set is usually infeasible due to the complexity of the underlying problem. Therefore,
the overall goal is often to identify a good approximation of it. EAs are commonly used
to this end as they are able to find multiple and well-spread non-dominated solutions in a
single simulation run [6].

4.2 Indicator Based Evolutionary Multi-objective Algorithm

Although there exists several state-of-the-art multi-objective EAs (NSGA-II [8], SPEA2
[21]), we use Indicator Based Evolutionary Algorithm [22]. Indeed IBEA is a method more
modern than the most widely used EA: NSGA-II. This is a good illustration of the new
trend dealing with indicator-based search, and started to become popular for recent years.
The main idea behind IBEA is to introduce a total order between solutions by means of a
binary quality indicator. Its fitness assignment scheme is based on a pairwise comparison
of solutions from the current population with regards to an arbitrary indicator I . To each in-
dividual x is assigned a fitness value F (x) measuring the ’loss in quality’ if x was removed

1We will also say that a decision vector x ∈ X dominates a decision vector x′ ∈ X if f(x) dominates f(x′).
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Figure 4: Representation of a solution (x1, x2) in the decision space and the corresponding
values in the objective space: (y1, y2, y3) = f(x1, x2).

from the current population P , i.e. F (x) =
∑
x′∈P\{x}(−e−I(x

′,x)/κ), where κ > 0 is
a user-defined scaling factor. Different indicators can be used for such a purpose, and we
here choose to use the binary additive ε-indicator (Iε+) as defined in [22]. Iε+(x, x′) gives
the minimum value by which a solution x ∈ X has to or can be translated in the objective
space to weakly dominate another solution x′ ∈ X . Selection for reproduction consists of
a binary tournament between randomly chosen individuals. Selection for replacement con-
sists of iteratively removing the worst solution from the current population until the required
population size is reached; fitness information of the remaining individuals is updated each
time there is a deletion.

4.3 Solution encoding and initialization

A solution is defined by a vector of real values. Each value corresponds to one speed. Given
that three speeds are necessary to represent a section, we can state the vector length l equals
three times the number of sections (n): l = 3n.

Section 0 Section n
v01 v02 v0X ... vn1 vn2 vnX

Figure 5: Pattern of a solution: a vector of real values for the speeds

Even if the speeds are bounded by maximum entrance, exit and section speeds, three
ranges of speeds are defined: slow, middle and high speeds in such a way that one third of
the solutions are either slow, middle or high speed tuned. For example, let S1, S2 be two
sections with respective maximum speeds: 90 km/h and 120 km/h. Three ranges of values
are possible: ([0, 30], [0, 40]), ([30, 60], [40, 80]) and ([60, 90], [80, 120]). Such a mechanism
is useful to bring a good diversity in the initial population by designing more or less fast
solution and inversely more or less energy expensive. Then, the initialization is done by
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randomly assigning speeds.

4.4 Operators

Evaluation
As we mentioned before, our MOP is composed of two objective functions (Φ = (ϕ1, ϕ2)).
Objective function ϕ1 corresponds to the minimization of the amount of the durations Ti
needed for each section i: ϕ1 = minT with T =

∑n
i=1 Ti. Objective function ϕ2 is in

charge of the reduction of the energy consumption: ϕ2 = minE with E =
∑n
i=1Ei. This

global consumption equals the amount of energy required for each section i. Each section is
evaluated according to the model presented before in such a way that we know pair (Ti, Ei)
of each section i.

Recombination
The recombination step is done by means of two operators: crossover and mutation. Since
we deal with a continuous problem, we use operators specifically designed for this kind of
problem: the Simulated Binary crossover (SBX) [7] and similarly, the mutation is based on
a polynomial mutation adapted to search over continuous space.

5 Experimental results

The results presented in this section concern two locations in France. The first example is
based on the Gonesse junction (near Paris) and the second represents the line from Saint-
Étienne to Rive de Giers with one stop.

5.1 Implementation and Parameter Setting

In order to develop our approach, we use framework ParadisEO in which a lot of meta-
heuristics are implemented [16]. This tool is a white box in which the different steps of the
algorithms have to be defined. In the case of IBEA the user has to implement crossover,
mutation and evalutation steps and also the problem-related components.

The population of 50 individuals evolves over 1, 000 generations. Crossover (xr) and
mutation (mr) rates are respectively set to xr = 0.9 and mr = 0.5.

5.2 Case study 1: Gonesse junction

Description
Here is proposed a real-life case study: the Gonesse junction is crossed by a train (m =
180, 000kg). Eight sections are used for our example whose results are depicted in Figure
6. The plain line indicates the maximum speeds of the sections. The path has 14,285m of
length and eight sections are crossed. Each section is limited by a maximum speed. This
case study is interesting because there are two sections with switch points (sections 2 and 5).
These sections are very short (resp. 150m and 90m). Furthermore the switch points sections
have slow speed limit (60 km/h) whereas the other sections have much higher speed limits
(until 200 km/h). So, these sections bring about braking phases to be managed at best. In
this example, we assume there is no slope (the gradients are null).
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Performance assessment
Here we propose to discuss three solutions obtained by our approach. Let S∗ be a solution
to the mono-objective problem consisting in just minimizing the travel duration. Let S1

and S2 be two solutions to the bi-objective problem and compared with S∗. The results are
provided in Table 2 and the deviation compared with S∗ is also reported.

Sol. E [kJ] Deviation [%] T [s] Deviation [%]
S∗ 507,618 484.13
S1 378,683 -24.5% 508.79 +4.9%
S2 246,245 -51.5% 555.63 +14.7%

Table 2: Energy consumption and duration of solutions S∗, S1, S2

Figure 6 illustrates the speed profile of each solution. It is interesting to note that so-
lutions S1, S2 have big coasting phases, that is why these are less energy expensive than
S∗. Besides, we can see that S∗ has very long acceleration phases which are very energy
expensive. The differences of consumption can also be observed in Figures 7(a,b,c) which
depict the produced effort and highlight that Solution S∗ consumes more energy than the
others. If we focus on the energy saving compared with the delay, we can note that with
around 5% of time in more, we can save around 25% of energy. Moreover, if we extend the
delay to around 15% of time in more, we can save till around more than half of energy. That
proves the interest to take some seconds in more to travel for saving a lot of energy.

Furthermore, the algorithm as well as the underlying method have proved their capabil-
ity to provide a set of diversified and incomparable solutions.

5.3 Case study 2: line Saint-Étienne - Rive de Giers

Description
In this example, a train travels from Saint-Étienne (SE) to Rive de Giers (RG) by stopping at
Saint Chamond (SC) during 1 minute. The train used for the example is an AGC2 which is
a light passenger train used for the little regional travels. Data about resistance can be found
in [18] and about effort to rim in [14]. A timetable is predefined and depicted on Figure
8. The train starts from SE at 0 and must arrive at SC before h1A = 420. After stopping
during 60 seconds, the train leaves the station at h1D = 480 for arriving at RG before or at
h1A = 960. The total crossed distance is 20,200m.

Moreover, in order to be more accurate in the description of the problem the slopes are
taken into account. The gradients over position are depicted on Figure 9(a) and are defined
in n meters for 1,000. Indeed, since tanx is very close to sinx for little values of x, it is
usual to compute the line resistance by taking n/1000 instead of sinβ [3]. Therefore, the
line resistance can be approximated as follows: LR(t) = ρ m g n/1000.

Contrary to the previous example in which we assume there is no slope, a coasting could
not be a slowdown given that the gradients can be negative (fig. 9(a)). Indeed, it would be
interesting to manage at best the descents by properly adjusting the speeds in order to avoid
to accelerate unnecessarily when the train can increase just thanks to the slope.

2Autorail Grande Capacité built by Bombardier.
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By defining timetable constraints, the delays have to be reduced and this reduction can
be seen as a third objective which can be integrated in the MOP. Hence the resolution
adopted here can involve till three criteria: MOP= (ϕ1, ϕ2, ϕ3).

Performance assessment
Due to the different number of objectives, three cases of optimization are considered. In the
first case, just the travel duration is minimized (Φ = (ϕ1)) for obtaining a reference solution
as with the previous example. This solution, denoted A*, is the basis of comparison with the
other solutions obtained in the other cases with two or three objectives, respectively denoted
Ai2 and Ai3.

Table 3 presents the detailed results of the solutions proposed in each case. As we could
assume, Solution A* proposes the best performance to minimize the travel duration, but also
to minimize the delay. However, the energy consumption is the highest observed among the
results as we can expect.

When adding at least one objective, the performance about the travel duration is slightly
weaker than for A*. Indeed, with just a few seconds in more (less than 2%), the saved
energy can reach till 50% of Solution A* consumption. Such a saving can be explained
by the track slope which favours high cruising speeds without strong effort. That is why
reducing the duration of some seconds needs a far bigger effort.

In the third case, when optimizing all the objectives, minimizing duration and delay may
appear redundant. However, in this example, the delay occurs at station SC and not after.
Indeed, the allowed duration for going from station SE to station RG seems to be a little bit
too short, whereas the delay may be recovered between SC and RG. The allowed duration
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Figure 7: Train effort according to its position for each solution: S∗, S1, S2

between these two latter stations is fully sufficient and such that the train can arrive in
advance at the last station. Thus, it is possible to reduce the travel duration while increasing
the delay. That is why it is relevant to distinguish travel duration and delay into two separate
objectives to be optimized concurrently.

Therefore, the results provided by the last optimization (MOP= (ϕ1, ϕ2, ϕ3)) tend to
highlight the pressure on the solutions to optimize all the objectives. Indeed, all the solu-
tions have durations less than 1% of time in more and the increase of occurred delays does
not exceed 10%. This deviation of the delays is more satisfying than in the case of opti-
mization with two objectives. That shows the relevance to add a third objective to limit the
delays. Moreover, by analyzing the results we can observe that the delays occur at station
SC (less than one minute) whereas the total travel durations indicate that the train can arrive
in advance to its final destination. Even if the timetable constraints are almost respected, the
arrival time at SC seems to be a little bit tight while it is slackened at station RG. We can
assume the timetable was built for a previous rail engine with different technical data such
that the timetable is not completely adapted to the new equipment.

Figures 10 and 11 illustrate the distribution of the solutions obtained in three cases (one,
two or three objectives). Although the diversity is weak and the fronts are not spread, it
is interesting to note that the combination of three objectives allows to find good tradeoff
solutions. This fact is very relevant from an operational point of view whenever the decision
makers search for a good compromise in order to satisfy both their own needs and the

14



SE SC RG

Ah  =420 Dh  =480Dh  =0 Ah  =960

Stop during 1 minute

0 0 1 1
11300m 9200m

Figure 8: Description of the line Saint Étienne (SE) – Rive de Giers (RG) with one stop at
Saint Chamond (SC) during one minute.

Sol. E [kJ] Deviation [%] T [s] Deviation [%] D [s] Deviation [%]
One objective, ϕ1

A* 216031 763 23
Two objectives, MOP= (ϕ1, ϕ2)

A1
2 125604 -41.8 766 +0.3 25 +8.7

A2
2 121051 -43.9 767 +0.5 25 +8.7

A3
2 117970 -45.3 768 +0.65 25 +8.7

A4
2 104456 -51.6 777 +1.8 32 +39.1

A5
2 101486 -53.0 792 +3.8 47 +104.3

Three objectives, MOP= (ϕ1, ϕ2, ϕ3)
A1

3 182732 -15.4 764 +0.13 23 +0.0
A2

3 131592 -39.0 765 +0.26 24 +4.3
A3

3 130094 -39.7 766 +0.3 24 +4.3
A4

3 123959 -42.6 767 +0.5 24 +4.3
A5

3 119518 -44.6 769 +0.78 24 +4.3
A6

3 117975 -45.3 768 +0.65 25 +8.7

Table 3: Energy consumption, travel duration and delay of solutions obtained while opti-
mizing one, two and three objectives during the travel on the line Saint Étienne – Rive de
Giers

customers.

6 Conclusion and perspectives

In this paper we have dealt with a problem of speed tuning in railway management. The
solving goal is to optimize both concurrent objectives: on the one hand by minimizing the
travel duration and the delays, and on the other hand by reducing the energy consumption.
To this end we have presented an evolutionary multi-objective approach for tuning speeds
in order to minimize the durations while saving energy. This algorithm is based on IBEA
and uses specific operators well-known in the literature for searching solutions in contin-
uous space. The speed tuning is achieved by our method of speed profile building which
introduces two intermediate speeds between the entrance and exit speeds of a section. This
method paired with IBEA for searching in a continuous space brings its efficiency to the
light. Furthermore, we have shown the interest of adding a third criterion about the reduc-
tion of the delays which is quite different to the reduction of the travel durations, even if
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Figure 9: Description of the slopes of the line Saint Étienne – Rive de Giers (a) and speed
profiles obtained by optimization with one (A*), two (A2

4) and three (A3
5) objectives.
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there is a little redundancy.
However, the lack of diversity in the proposed solutions leads up to consider meta-

heuristics more adapted to the search of solutions in continuous space such as CMA-ES
(Evolution Strategies with Covariance Matrix Adaptation [10]) and its multiobjective ex-
tension [11]. Moreover, in order to integrate this approach in train dispatching model it will
be necessary to mix different kinds of variables. That is why our future works will focus on
the development of mixed-variables model capable to both deal with continuous variables
for defining speed profiles and discrete variables for scheduling the trains according to the
timetable. Besides, in order to improve the robustness of the method and its efficiency, the
future developments will take uncertainty [13] into account.
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