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A major problem in road engineering is to understand the mechanisms of friction
between rubber and the road. Several authors have claimed that road profiles are
fractal, and that this fractality is related to the friction properties of the road. We
study road profiles obtained using tactile and laser captors. These profiles belong
to different category characterized by different friction coefficients. We find that
all our profiles indeed display strong fractal behaviour in terms of both correlation
exponents and regularization dimension over a large range of scales. However,
neither of these fractal parameters seem to be related to friction. We then use a
local fractal parameter, namely the pointwise Holder exponent. We show that this
exponent does discriminate profiles which have different friction properties.

1 Introduction and background

An important problem in road engineering is to understand the mechanisms of
friction between rubber and the road. This is a difficult problem, since friction
depends on many parameters: The type of rubber, the type of road, the speed, . ...

Several authors have shown that most road profiles are fractal>*? on given
ranges of scales. Such a property has obvious consequences on friction, some of
which have been investigated for instance in’*. The main idea is that, in the
presence of fractal roads, all scales of irregularity contribute to friction®.

In this work, we verify that road profiles finely sampled using tactile and laser
captors are indeed fractals. More precisely, we show that they have well-defined
correlation exponent and regularization dimension over a wide range of scales. How-
ever, although we deal with various classes of profiles which have different friction
coefficients, we find that such global fractal parameters are not able to discriminate
between the profiles. This means that friction may have relatively low correlation
with fractional dimensions or correlation exponents. We then compute a local pa-
rameter called the pointwise Holder exponent. Our experiments show that this
exponent allows to separate road profiles which have different friction coefficients.

2 The road profiles

Our profiles are provided by the LCPC (Laboratoire Central des Ponts et
Chaussées). These profiles correspond to coatings with various gravel, and are
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characterized by different friction coefficients. A major aim of our study is to be
able to relate these friction coefficients to fractal features of the profiles.

The samples consists of rectangular plaques with size 100 x 150 mm?2. Their
surface is made of gravels cast into a a synthetic resin mould. The gravels come
from thirteen different gravel pits, with a size varying between 6 and 10 mm.

The manufacturing of the plaques consists in arranging the gravel in a flat-
bottomed rectangular mould, then filling the mould with fine sand and after that
adding a quick setting resin. After removing from the mould, the plaques go through
laboratory polishing cycles, that we describe briefly. A mixture of water and fine
abrasives are thrown up to the surfaces with a 10 MPa pressure. This processing
induces certain changes in the microtexture of the gravel: The gravel originating
from little polishable rocks keeps its initial microtexture; the one coming from highly
polishable rocks loses its initial microtexture and becomes very smooth. Laboratory
polishing thus makes it possible to emphasize the difference in microtexture between
the different samples.

1D profiles have been sampled on the plaques through three different procedures:
one using a tactile captor, and two using a laser captor. We briefly discuss these.
Tactile measures

The details of the tactile sensor are as follows. The radius of the contact tip
is 2 microns. The sensor’s depth of field is 6mm. To avoid a potential locking of
the contacting tip during its shifting on the tested surfaces, the gap in between
the stones is filled with resin. Fifteen profiles are measured on each plaque within
a zone of size approximately 75x 125 mm. The length of the profiles varies from
12 to 25mm according to the nature of the surfaces to be measured, reaching a
total length of about 300mm altogether. The sampling step is 4 microns, and the
samples contains approximately 3100 to 6000 points.

Laser captor

The laser acquisition system developed at LCPC, based on an Imagine Optics
captor, allows to modes: One uses a locking of the height, as the other does not.
These two modes will be referred to in the following as locked and non-locked (see
details in ). Again, fifteen profiles are measured on each plaque within a zone of
size approximately 75x 125 mm. The sampling step is 10 microns. The length of
each profile is 125 mm, resulting in a sample size of 12501 points.

In this paper, we shall focus on results pertaining to the analysis of a restricted
number of profiles (results on other profiles are comparable):

e 3 tactiles profiles, with code names BOU (friction coefficient 0.48), LRA (fric-
tion coefficient 0.63) and GRA (friction coefficient 0.775).

e 2 locked laser profiles, BOU again and another profile denoted CLE (friction
coefficient 0.55).

e 3 non-locked laser profiles, BOU, CLE and QB (friction coefficient 0.65).

As is apparent, the profiles in each acquisition procedure have clearly different
friction properties. The friction for tactiles samples ranges from 0.48 to 0.775, while
for laser, it ranges between 0.48 and 0.65. Besides checking the fractal behaviour of
the profiles, our main aim is to investigate whether fractal parameters are able to
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discriminate between profiles with different friction coefficients. As an illustration,
we show on figure 1 typical tactile profiles in the classes BOU, LRA and GRA.
Figure 2 displays typical BOU and C'LFE profiles in the locked laser mode

Figure 1. Typical BOU, LRA and GRA tactile profiles.
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Figure 2. Typical BOU and CLE laser profiles.

3 Fractal analysis

We present briefly in this section the tools that we shall use to perform a fractal
analysis of the profiles.

3.1 Continuous wavelet transform (CWT)

Recall that a wavelet is simply a function ¢ € L*(R) such that [; ¢ (t)dt = 0.
Usually, one requires in addition that i) be well localized in time and frequency,
and has enough vanishing moments (i.e. [, z¢p(x)dz =0 for i =1...n).

Définition 3.1.1. The continuous wavelet transform® of a function f € L*(R) is:

t—>5

a

CWT(ah) = - / T e =byar

As is well known, many fractal properties are related with the evolution of the
wavelet coefficients CWT(a, b) across scale, i.e. with respect to a.
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8.2  Correlation exponent

A classical fractal parameter we shall deal with is the correlation exponent. This
exponent measures the speed of decay of the autocorrelation of a signal®. More
precisely, assuming that X (¢) is stationary, denote C'(I) = E(X (¢)X (t +1)).

The signal X has a well defined correlation exponent if C(I) ~ [~# with 3 > 0
holds across a range of values of [. A particular case is of special interest: The
signal X is said to be long range dependant (LRD) if C(I) ~ =% when [ tends to
infinity, with 5 > 1. The definition of LRD corresponds to the situation where the
series )., C(1) diverges.

3.3 Regularization dimension (DimR)

Fractional dimensions are one of the best known parts of fractal analysis. In this
work, we shall deal with the so-called regularization dimension”. A heuristic expla-
nation of DimR is the following. Start with a compactly supported signal X. For a
given positive s, consider the convolution of X with a Gaussian kernel of variance
s. Let us denote by X, this regularized signal. Assume that X is so irregular that
it has infinite length. Since X, is C'°*° for any positive s, it has finite length L.
Furthermore, X tends to X when s tends to zero. The regularization dimension
measures the speed of convergence of L, to infinity when s tends to 0 (see figure 3
for an illustration on a road profile).
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Figure 3. Computation of a regularization dimension on a profile through successive convolutions.

Let us now give a formal definition. Let I" be the graph of a bounded and
compactly supported function f : K € R — R. Let x(¢) be a kernel in the
Schwartz class, and set, for a > 0, x,(t) = %X(%) Let f, = f * xa. This function
is infinitely smooth, and the length of its graph I';, on K is given by

Lo = /K U+ (fa(e)2at
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Définition 3.8.1. The regularization dimension of (the graph of) f is: DimR(T") =

1+ limsup,_,q E)i(&‘;))

The regularization dimension coincides in many cases with the better known
box dimension: This is in particular the case for all "classical" fractal signals such
as Weierstrass functions, fractional Brownian motions, .... One may prove that
the relation DimR < DimB, where DimB is the box dimension, holds for any
continuous function. This indicates that DimR is "finer" than the box dimension.
The main advantage of the regularization dimension is that it leads to much more
accurate estimations on sampled data than the box dimension. This is mainly
because the number of smoothed versions is not restricted. Another reason is that
DimR is less sensitive to noise than DimB. The interested reader may consult” for
more details.

From a practical point of view, a signal will be considered fractal if a plot of
log(L,) versus log(a) is linear in a certain range of values of a.

8.4 Pointwise Hélder exponent

In contrast with the correlation exponent and DimR, which are global quantities,
the pointwise Holder exponent o measures a local behaviour®. Its definition reads:
Définition 3.4.1. Let zp € R, and s be a real number with s > —1. A function
[+ R — R belongs to C3 if and only if there exist a constant C' and a polynomial
P of degree at most [s| such that

|f(x) = P(z — xo)| < Clo — zol*. (1)

The pointwise Holder exponent of f at zo, denoted by ay(zg) or simply «, is
defined to be sup{s: f € C3 }.

When 0 < a < 1, it is given by the simple formula:

log | f(zo + h) — f(z0)|
log ||

Since « is defined at each point, one may associate to f its Hdélder function:
Définition 3.4.2. Let f be a bounded function. The Hélder function of f is the
function which associates, to each x, ay(x).

While the Holder exponents and the Holder function cannot tell whether a signal
is "fractal", they provide a rich description of the local singularity structure of a
signal. A small af(z) means that f is irregular at x, and vice versa. For instance,
if fis C! at x, then ay(z) > 1;If ay(z) <0, then f is discontinuous at .

« = liminf
h—0

4 Results

We have computed the parameters described in the previous section on our road
profiles. All the programs we have used are available in the software toolbox called
FracLab. FracLab may be downloaded at www.irccyn.ec-nantes.fr/hebergement/
FracLab/ and http://fractales.inria.fr.

In the next subsection, we verify that the profiles display a fractal behaviour.
Then, we use this property to characterize the signals.
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4.1 Fractal behaviour

Energy and CWT

One possible way to check for a fractal behaviour is to investigate the evo-
lution of the energy in the signal with respect to scale. More precisely, let
E? = [[CWT/(a,b)]?db denote the energy at scale a. A relation of the type E2? ~ a”
for some v and «a in a given range indicates that the energy decays as a power law
in scale.

Figure 4 shows that such a relation is approximatively verified for most tactiles
profiles across a large range of scales. Results on the other types of profiles are
similar.

Figure 4. log-energy with respect to scale for the tactiles profiles BOU and LRA.

Correlation exponent

The results for the correlation exponent confirm the ones above. Figure 5 shows
that, for tactiles profiles, the logarithm of the lag ! correlation C(I) behaves linearly
as a function of log(l) on almost all the range of possible values of I. Again, the
same type of graphs are obtained with other profiles.

12 o 2 4 6 8 10 12

Figure 5. log-correlation as a function of the logarithm of the lag for the tactile profiles LRA (left)
and GRA (right).

From a numerical point of view, the values of the exponents measured on various
profiles range between 0.8 and 1.4. Thus, although a clear fractal behaviour is
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verified by all profiles, only some of them display LRD.
Regularization dimension

Figure 6 displays a typical behaviour of DimR on profiles. As one can see, the
graph log(L,) versus log(a) is not linear. There are however two linear regimes,
one corresponding to a low regularization (i.e. high frequencies), and the other one
valid for large smoothing, i.e. low frequencies. From the DimR point of view, it
thus seems that our road profiles have two well-defined dimensions, indicating that
the micro- and macro-textures behave in a different way.

Estimated Regularization Dimension = 14602 Estimated Regularization Dimension = 1.4526

Log(L)
Log(L)

¥ ¥
Log(scale) Log(scale)

Figure 6. Evolution of the logarithm of the length of smoothed version of the tactile profiles BOU
(left) and LRA (right) as a function of the logarithm of the smoothing parameter.

We note that the regularization dimensions range between 1.1 and 1.6 on our
profiles. This indicates that the profiles vary between almost smooth and somewhat
irregular.

4.2 Profile characterization

Although the profiles all clearly manifest a fractal behaviour, we have found that
neither the correlation exponent nor the regularization dimension were able to char-
acterize a given class of profiles. As a consequence, these parameters may not be
used to explain the differences in friction of the various profiles. This is seen in a
qualitative way on figure 7. The correlation exponents are represented for all tactiles
profile in the class BOU. Though all profiles show an excellent linear behaviour, the
slopes of the 15 different samples vary a lot. Thus there is no single exponent that
may be meaningfully attributed to a given class. Moreover, a quantitative analysis
shows that the ranges of exponents for the different classes overlap a lot. It is
thus not possible to separate the classes based on the information brought by the
correlation exponent. The same comments apply to the regularization dimension.
This leads us to the following conclusion: If the fractality of the profiles is of
any relevance for friction, this should be sought in local features rather than in
global ones. Such a claim is supported by the fact that friction is mainly a local
phenomenon. As a consequence, global measures of irregularity such as DimR
or correlation exponents may be largely unrelated to the friction coefficient. In
contrast, local regularity measures such as Hélder exponents should be strongly
correlated with friction. We now proceed to investigate such correlations.
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Figure 7. Correlation analysis of the 15 BOU tactiles profiles.

Holder function
As an illustration, the Holder functions for samples of the tactile profiles BOU
and LRA are displayed on figure 8. Hélder functions for other profiles look similar.

Figure 8. Holder functions for the tactile profiles BOU and LRA.

The Holder function yields too rich an information for our purposes. We start
by investigating the use of its median for profile characterization. Note that, while
the median will subsume information pertaining to the whole signal, it is still a local
parameter. It is thus radically different from a global parameter such as DimR. The
use of the median (or the mean) of the Holder function is consistent with the fact
that the friction results from an average of many local interactions.

Combination of DimR and the Hélder median

We first compute the Hélder functions of all the profiles and all the samples. We
then extract their median. Figure 9 shows an attempt to classify the different classes
based on this median plus the regularization dimension. While this procedure works
well for the two laser profiles in locked mode, it fails to separate the three classes
of laser profiles in unlocked mode .

We now discuss another technique that makes a fuller use of the information
brought by the Holder function.
Histograms of Hoélder functions
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Figure 9. Classification of the profiles classes using the Holder median (abscissa) and DimR (or-
dinates). The left plot displays locked mode laser profiles CLE (circles) and BOU (stars). The
right plot shows unlocked mode laser profiless CLE (circles), QB (diamonds) and BOU (stars).

Instead of restricting to the median, we now study the histograms of the Holder
functions. More precisely, for each profile P, we compute ten histograms Hp(«) of
the Holder functions evaluated for ten "test" samples randomly chosen among the
fifteen samples in profile P. We do this for the two locked mode laser profiles BOU
and CLE, and for the three unlocked mode laser profiles BOU, CLE and QB. See
figure 10.

The second step is to model these histograms as Gaussian processes. In other
words, for each given profile and for each value of a, we compute the mean
Mp(Hp(a)) and variance V,(Hp(a)) of Hp(«) evaluated over the ten test samples
in this profile. Let Gp(Hp()) = N (Mp(Hp(a)), V,(Hp(a))) denote the Gaussian
distribution obtained for the histogram of the profile P at value of the exponent
equal to a. To check whether a new, unknown, sample belongs to profile P, one
first computes the histogram h(a) of its Holder function. If the sample belong to
P, we expect that Gp(h(a)) is "large". A quantity that measures how the sample
is "close" to profile P is thus:

Tp(h) = /IR Gp(h(a))da

Any unknown sample is then attributed to the profile P which maximizes Tp(h).
We found that this method was able to classify with 100% success the five re-
maining samples in all classes. Our conclusions are thus as follows:
- Road profiles indeed display fractal behaviours in terms of both correlation expo-
nent and regularization dimension over a large range of scales.
- Global fractal measures as are the correlation exponent and regularization dimen-
sion do not allow to characterize profiles.
- The local regularity information brought by the Holder exponent allows to classify
the profiles through a simple statistical procedure.
Future work will focus on relating the structure of the Holder function with the
friction coefficient of the profiles.
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Figure 10. Left: Mean of the histograms of the Holder functions for locked mode laser profiles
BOU (blue), CLE (black). Right: Same, but for unlocked mode laser profiles BOU (blue), CLE
(black) and QB (dotted green).
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