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Abstract

This article concerns the study of the asymptotic properties of the maximum like-

lihood estimator (MLE) for the general hidden semi-Markov model (HSMM) with

backward recurrence time dependence. By transforming the general HSMM into

a general hidden Markov model, we prove that under some regularity conditions,

the MLE is strongly consistent and asymptotically normal. We also provide useful

expressions for the asymptotic covariance matrices, involving the MLE of the con-

ditional sojourn times and the embedded Markov chain of the hidden semi-Markov

chain.
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1 Introduction

Hidden Markov models (HMMs) were first introduced by Baum and Petrie

(1966), where it is proved the consistency and asymptotic normality of the

maximum likelihood estimator (MLE) for this model. In their study, Baum

and Petrie consider both the observable and the hidden process with a fi-

nite state space. The hidden process forms a Markov chain (MC), and the

observable process conditioned on the MC forms a sequence of conditionally

independent random variables. This class of HMMs is often referred to, as

probabilistic functions of Markov chains. The conditions for consistency are

weakened in Petrie (1969). Leroux (1992), Bickel, Ritov and Ryden (1998),

proved the consistency and the asymptotic normality of the MLE respectively,

when the observable process has a general state space.

The HMMs have a wide range of applications, including speech recognition

(see Rabiner (1989), and Rabiner and Juang (1993)), computational biology

(see Krogh et al. (1994)), signal processing (see Elliott and Moore (1995)). The

reader is also referred to Ephraim and Merhav (2002) for an overview of statis-

tical and information-theoretic aspects of hidden Markov processes (HMPs).

Ferguson (1980) introduced the hidden semi-Markov models (HSMMs), where

the hidden process actually forms a semi-Markov chain (SMC). This setting

allows arbitrary distributions for the sojourn times in the states of the SMC,

rather than geometric distributions in the case of the HMM. Recent papers

that concentrate on computational techniques for the HSMMs are that of

Guédon (2003) and Sansom and Thomson (2001).

To the best of our knowledge, Barbu and Limnios (2006) were the first to study

asymptotic properties of the MLE for a HSMM. In this paper we present a

different approach which can be summarized as follows:
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i) we generalize the results for the HSMM found therein to the general

HSMM, where the state space of the observable process is assumed to

be a subset of a Euclidean space. For this purpose, we follow the lines of

Leroux (1992) and Bickel et al. (1998),

ii) we allow the values of the observable process Yn, conditioned on the SMC,

to depend probabilistically not only on the state Zn but also on the time

duration that the system has stayed in this current state (backward re-

currence time dependence),

iii) we use minimal representations for the parametric spaces, which are in-

volved in our analysis, taking into consideration the dependence relations

among the parameters. We also use for each i and j the general constants

ñij to specify the support for the conditional sojourn times, rather than

extending the parametric space with identically zero parameters,

iv) we do a different decomposition of the elements of the semi-Markov kernel,

from the one found in Barbu and Limnios (2006).

Together iii) and iv), open the way for explicit expressions for the asymptotic

covariance matrices (as functions of the semi-Markov kernel), that appear in

the central limit theorems for the MLE of the basic characteristics of the

semi-Markov chain.

This paper is organized as follows: In Section 2, we introduce the mathemat-

ical notation and we state a first set of conditions. In Section 3, we give a

representation of the HSMMs as a subclass of HMMs. In Section 4, we prove

the strong consistency of the MLE of the HSMM, and also of the basic charac-

teristics of the SMC, that is, the conditional sojourn times and the embedded

Markov chain. In Section 5, we prove the asymptotic normality of the MLE

of the HSMM and of the previously mentioned characteristics.
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2 Preliminaries and assumptions

Let (Zn, Yn)n∈N be a hidden semi-Markov chain defined on a probability space

(Ω,A , Pθ), where θ ∈ Θ, and Θ is a euclidean subset which parametrizes

our model and will be specified later in the sequel. We assume that the

SMC (Zn)n∈N has finite state space E = {1, 2, . . . , s} and semi-Markov ker-

nel (qθ
ij(k))i,j∈E,k∈N. If we denote (Jn, Sn)n∈N∗ the associated Markov renewal

process to Z, then qθ
ij(k) = Pθ(Jn+1 = j, Sn+1 − Sn = k | Jn = i), n ≥ 1.

The process (Sn)n∈N∗ keeps track of the successive time points that changes of

states in (Zn)n∈N occur (jump times), and (Jn)n∈N∗ records the visited states at

these time points. Under this consideration, qθ
ii(k) = 0 for all i ∈ E, k ∈ N. We

will use the notation Zk2
k1

to denote the vector (Zk1 , Zk1+1, . . . , Zk2), k1 ≤ k2,

and id for a d-dimensional vector with every component equal to the element

i ∈ E. The distribution of ZS1
0 is selected to be Pθ(Z

k−1
0 = ik, Zk = j, S1 =

k) = pθ
ijH

θ

i (k − 1)/µθ
ii, where pθ

ij refers to the (i, j) element of the transition

matrix of the embedded Markov chain (Jn)n∈N∗ , H
θ

i (·) to the survival func-

tion in state i, and µθ
ii to the mean recurrence time in the i−renewal process

associated to the semi-Markov chain (Zn)n∈N. We will define later the above

quantities as functions of the semi-Markov kernel. The selection of the distri-

bution of ZS1
0 is naturally justified from the fact that it corresponds to the

distribution of the same vector in a semi-Markov system that has worked for

an infinite time period and is censored at an arbitrary time point, that can be

considered as the beginning of our observation. In order to be well defined, it

is enough µii < ∞, for all i ∈ E.

We state the following conditions concerning the subclass of SMCs to be con-

sidered:
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(A1) There exists a minimum ñ ∈ N such that qθ
ij(k) = 0, for all k > ñ, i, j ∈

E, and θ ∈ Θ.

(A2) The MC (Jn)n∈N is irreducible.

Under conditions (A1) and (A2), indeed, µθ
ii < ∞ for all i ∈ E. It can be shown

easily that the previously defined distribution of ZS1
0 implies that the SMC

(Zn)n∈N is stationary. Because of the stationarity, we can allow (Zn)n∈N to be

indexed by n ∈ Z. In this case, we denote S0 = − inf{k ∈ N : Z−k−1 6= Z−k}.

For the observable process, we assume that (Yn)n∈N takes values on the mea-

sured space (Y ,B(Y ), ν), where usually Y ⊂ R
q for some q ∈ N

∗, B(Y )

denotes the Borel subsets on Y , and ν is a σ-finite measure defined on

(Y ,B(Y )). Also, let the conditional probability densities gθ(y | i, k) de-

note the densities that correspond to the conditional distribution functions

Pθ(Yn ≤ y | Zn
n−k = ik+1, Zn−k−1 6= i), i ∈ E, n, k ∈ N.

Under condition (A1) there exist constants ñij, ñi < ∞, such as ñij = max{k ∈

N : qθ
ij(k) > 0} and ñi = maxj∈E ñij. The quantities ñij express the maximum

time period that the SMC can stay in state i before having a direct transi-

tion in state j. These time bounds, for practical purposes, are supposed to

be known from the characteristics of the system to which this model can be

applied or they can be imposed by the experimenter as an approximation to

a more complicated system. The existence of these time bounds is all we need

for the theoretical results that will follow. For some i, j ∈ E, ñij may be

equal to zero and this means that no direct transitions from i to j are allowed.

Under condition (A1), the possible values of k, referring to the conditional

densities gθ(y | i, k), are those for 0 ≤ k ≤ ñi − 1. In order to simplify the

notation we denote by Dij = {1, 2, . . . , ñij} for i, j ∈ E that ñij > 0, and by

Di = {1, 2, . . . , ñi}.
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Let T be a finite index set. Different parametric spaces will be used in the

sequel. For the moment we specify the natural parametric space for the HSMM,

that is,

Θ := {qij(k), θt : k ∈ Dij, qij(k) ≥ 0,
∑

j,k

qij(k) = 1, t ∈ T}, (1)

and in order to distinguish between the two different kinds of parameters we

denote

Θ1 := {qij(k) : k ∈ Dij, qij(k) ≥ 0,
∑

j,k

qij(k) = 1}, (2)

Θ2 := {θt : t ∈ T}. (3)

The space Θ1 parametrizes the elements of the semi-Markov kernel, and since

in the natural parametrization we have qθ
ij(k) = prijk(θ) = qij(k), we can

then suppress the superindex θ from qθ
ij(k). The space Θ2 refers to a set of

parameters that characterize the conditional densities gθ(y | i, k). It can be

the case that they distinguish densities from a specific parametric family, from

different parametric families or represent transition probabilities when Y is

a finite state space. In the most simple case of a single parametric family we

have gθ(y | i, k) := g(y | θ(i, k)), θ(i, k) ∈ A, where A ⊂ R
m for some m ∈ N.

In this case, the index set T that appears in Θ2 consists of all the possible

couples (i, k).

From now on, we suppose for simplicity that the cardinality of T , denoted by

d2, is equal to
∑

i ñi, that is, one one-dimensional parameter for each condi-

tional density (m = 1). Also, we denote d1 =
∑

i,j ñij, and d = d1 + d2. Then,

Θ1 ⊂ R
d1 , Θ2 ⊂ R

d2 , Θ = Θ1 ×Θ2 ⊂ R
d. Since for all i ∈ E,

∑
j,k qij(k) = 1,

there are s linear dependence relations among the elements of the semi-Markov

kernel. In order to have a minimal representation of Θ, we have to express

s elements of the kernel as functions of the others. For this purpose, let
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Ji = {j ∈ E : ñij = ñi}. We can choose one element ji ∈ Ji, for all i ∈ E, and

express the s elements as follows

qiji
(ñi) = 1 −

∑

j∈E−{i,ji}

∑

1≤k≤ñij

qij(k) −
∑

1≤k≤ñi−1

qiji
(k). (4)

Now, we are in the position to have a minimal representation by using as a

parametric space Θ∗ := Θ∗
1 × Θ2, where Θ∗

1 results from Θ1 after extracting

the parameters described as above. Then, Θ∗
1 ⊂ R

d3 and Θ∗ ⊂ R
d4 , where

d3 = d1 − s and d4 = d1 + d2 − s = d − s.

3 Representation of the HSMMs as a subclass of HMMs

We will show that the general HSMMs with backward recurrence time de-

pendence can be represented as a subclass of HMMs. For this purpose, it is

enough to represent the SMCs that satisfy condition (A1) as a special class of

MCs. Let U = (Un)n∈N be the sequence of backward recurrence times of the

SMC (Zn)n∈Z defined as follows:

Un = n − SN(n), (5)

where N(n) = max{k ∈ N : Sk ≤ n}.

Let also H i(·) be the survival function in state i defined by

H i(n) := P(Sl+1 − Sl > n | Jl = i) = 1 −
∑

j∈E

n∑

k=0

qij(k), n ∈ N, l ∈ N
∗. (6)

It can be shown that the stochastic process (Z,U) := (Zn, Un)n∈N is a Markov

chain (see Limnios and Oprişan (2001), Theorem 3.12). In a recent paper,

Chryssaphinou et al. (2008) study properties of the process (Z,U). This pro-

cess plays an important role on the understanding of the semi-Markov struc-

ture. On one hand, it can be used to study the probabilistic behavior and
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limit theorems for semi-Markov chains and on the other hand to make statis-

tical inference for semi-Markov chains. This role will be extended here in the

framework of the HSMMs.

Condition (A1) implies that for all i ∈ E, the maximum time period that

(Zn)n∈N can stay in this state is ñi. Therefore, the backward recurrence time

Un ∈ {0, 1, . . . ñi − 1} and direct transitions from i to j are restricted to

maximum backward recurrence time ñij − 1. Also, it can be easily verified

that conditions (A1) and (A2) and the selection of the distribution of ZS1
0 as

previously mentioned, renders the process (Z,U) a stationary MC with initial

distribution given by Pθ ((Z0, U0) = (i, k)) = H i(k)/µii, i ∈ E, 0 ≤ k ≤ ñi−1.

If we denote by P = (p(i,k1)(j,k2)) the d2×d2 transition probability matrix of the

MC (Z,U), then the following proposition specifies the transition probabilities

of the above MC as a function of the semi-Markov kernel (see also Barbu and

Limnios (to appear)). The proof is easy and it is omitted here.

Proposition 1 Under condition (A1), the transition probabilities of the Markov

chain (Z,U) can be written as:

p(i,k1)(j,k2) =





qij(k1 + 1)/H i(k1), if i 6= j and k2 = 0, 0 ≤ k1 ≤ ñij − 1,

H i(k1 + 1)/H i(k1), if i = j and k2 − k1 = 1, 0 ≤ k1 ≤ ñi − 2,

0, otherwise,

(7)

where H i(·) is given by relation (6).

We present here the matrix P in a block form P = (Pij)i,j∈E, where Pij is an
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ñi × ñj matrix, and for i = j,

Pii =




0 p(i,0)(i,1) 0 . . . 0

0 0 p(i,1)(i,2) . . . 0

...
...

...
. . .

...

0 0 0 . . . p(i,ñi−2)(i,ñi−1)

0 0 0 . . . 0




, (8)

and for i 6= j,

Pij =




p(i,0)(j,0) 0 . . . 0

p(i,1)(j,0) 0 . . . 0

...
...

. . .
...

p(i,ñij−1)(j,0) 0 . . . 0

0 0 . . . 0

...
...

. . .
...

0 0 . . . 0




. (9)

Remarks:

1) From relation (7), we conclude that with every semi-Markov kernel that

satisfies condition (A1) we can associate a Markov transition matrix with the

corresponding transition probabilities.

2) If we assume additionally (A2), then p(i,k)(i,k+1) > 0, i ∈ E, 0 ≤ k ≤ ñi − 2.

3) When transitions from i to j are not allowed (ñij = 0), then Pij is a null

matrix, while if ñij = ñi the first column of Pij has no fixed zero elements.
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In Proposition 1, we regarded the probabilities p(i,k1)(j,k2) as functions of the

semi-Markov kernel, which is identified in the natural parametrization with

Θ1. These probabilities will be denoted by pθ
(i,k1)(j,k2)

whenever we refer to this

parametrization. Additionally, we consider a setting where the parametriza-

tion, fits from the beginning, the class of Markov chains described in Propo-

sition 1. Let Θ̃1 = {p(i,k1)(j,k2)} ⊂ R
d4 , where all the identically zero elements

that appear in P have been excluded and the restrictions imposed on the pa-

rameters follow from the stochastic nature of the matrix P . Notice that Θ̃1

can be regarded as the natural parametric space of a subclass of d2−state

Markov chains with transition matrices that are given in block form by (8)

and (9). The number of parameters that appear in Θ̃1 equals d4. Since P is a

stochastic matrix, there are exactly d2 linear relations among the elements of

P. If we exclude one parameter for each row of P, then the remaining number

of parameters equals the dimension of Θ∗
1, that is, d3.

We denote by Θ̃∗
1 ⊂ R

d3 a minimal representation of Θ̃1. Similarly, we have

Θ̃ = Θ̃1×Θ2 ⊂ R
d2+d4 , and Θ̃∗ = Θ̃∗

1×Θ2 ⊂ R
d4 . Let P

θ̃
the generic element of

this subclass of d2 × d2 stochastic matrices. We will show the existence of the

inverse transformation that represents every MC with d2 states (d2 =
∑s

i=1 ñi)

and transition matrix P
θ̃
, as an s-state SMC with a kernel that satisfies con-

dition (A1).

Proposition 2 There exists a continuous function Ψ1 from Θ̃∗
1 into Θ∗

1 that

reparametrizes every d2−state Markov chain with transition probability matrix

given by P
θ̃
by an s-state semi-Markov chain with a kernel satisfying condition

(A1), where the states of the SMC correspond to the blocks that the decompo-

sition of P indicates from relations (8) and (9).

10



PROOF. From Theorem 6.7 in Barbu and Limnios (to appear), modified by

taking into consideration the constants ñij, we have for i, j such that ñij > 0

qij(k) =





p(i,0)(j,0) if k = 1,

p(i,k−1)(j,0)
∏k−2

r=0 p(i,r)(i,r+1) if 2 ≤ k ≤ ñij.

(10)

The proof is complete by letting all the other elements qij(k) = 0, for ñij = 0.

For our statistical purposes we will need a specific minimal representation

Θ̃∗
1, so as to consider this transformation as a continuous function from the

domain Θ̃∗
1 to Θ∗

1. For this purpose, we find convenient to express p(i,k1)(ji,0) as

a function of the other parameters in the same row of P, where ji is defined

before relation (4). Therefore, for all i ∈ E, 0 ≤ k1 ≤ ñi − 1,

p(i,k1)(ji,0) =





1 −
∑

j:ñij≥k1+1
j 6=ji

p(i,k1)(j,0) − p(i,k1)(i,k1+1) if 0 ≤ k1 ≤ ñi − 2,

1 −
∑

j∈Gi

p(i,k1)(j,0) if k1 = ñi − 1,

(11)

where Gi = {j : j 6= ji, ñij = ñi}.

We define Ψ1 : Θ̃∗
1 −→ Θ∗

1, the desired transformation

Ψ1(p(i,k1)(j,k2)) = (qij(k)), (12)

where the component functions of Ψ1, for i, j ∈ E such that ñij > 0, are given

as follows:

qij(1) =





p(i,0)(j,0) if j 6= ji,

1 −
∑

j∈Gi

p(i,0),(j,0) − p(i,0),(i,1) if j = ji,

(13)
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qij(k) =





p(i,k−1)(j,0)

k−2∏

r=0

p(i,r)(i,r+1) if j 6= ji, 2 ≤ k ≤ ñij,

(1 −
∑

j∈Gi

p(i,k1)(j,0) − p(i,k1)(i,k1+1))
k−2∏

r=0

p(i,r)(i,r+1) if j = ji, 2 ≤ k < ñi.

(14)

By (13) and (14), we conclude that Ψ1 is continuous. 2

Remark. 1) The s parameters of Θ1 that have been excluded in order to

obtain Θ∗
1 can be written as follows:

qiji
(ñi) = (1 −

∑

j∈G

p(i,ñi−1)(j,0))
ñi−1∏

r=0

p(i,r)(i,r+1). (15)

4 Consistency results

By following the representation of the previous section, the initial HSMM can

now be described by this special kind of HMM ((Z,U), Y ). The stationarity

of (Z,U) implies the stationarity of ((Z,U), Y ). We make the assumption

in the sequel that the natural parametric space Θ∗ is a compact subset of

R
d4 . Since Θ∗

1 is a compact subset of R
d3 , it is enough Θ2 to be compact. If

this is not the case, we can use a standard compactification technique (see

Leroux (1992), and Kiefer and Wolfowitz (1956)). In the most simple case of

a single parametric family we have gθ(y | i, k) := g(y | θ(i, k)), θ(i, k) ∈ A,

where A ⊂ R. Here, Θ2 = Ad2 . The likelihood function for an observation

{Yn
0 = yn

0} can be written as

pθ(y
n
0 ) =

∑

(i,k)n
0

πθ(i0, k0)
n−1∏

j=0

pθ
(ij ,kj)(ij+1,kj+1)

n∏

j=0

g(yj | θ(ij, kj)),

where πθ(i, k) is the stationary distribution of Pθ. We denote the real value of

the parameter by θ0 and θ̃0 when it refers to Θ∗ and to Θ̃∗ respectively. Since
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for the results of asymptotic normality of some characteristics of the system we

obtain the asymptotic covariance matrices and we calculate derivatives with

respect to θ, we keep the minimal representation. The estimation problem is to

draw inference about this value from a trajectory of (Yn)n∈N. The MLE denoted

by θ̂n maximizes pθ(y
n
0 ) over Θ∗. In the “best” case, it is a class, consisting of

the parameters θ, induced by permutations of a specific value that maximizes

the given likelihood. For this reason, we define an equivalence relation ∼ in

Θ∗, where θ1 ∼ θ2 if Pθ1 = Pθ2 . Then, the results for the estimators should be

understood in the context of Θ∗/ ∼, that is, in the quotient topology induced

by this equivalence (see, e.g., Leroux (1992)).

Now, we state some extra conditions in order to deduce that the MLE is

consistent. These conditions are found in Leroux (1992), and they are adapted

here to our model.

(B1) (Identifiability condition) The family of mixtures of at most d2 elements

of {g(y | θ), θ ∈ A} is identifiable.

(B2) The density function g(y | ·) is continuous in A, for any y ∈ R.

(B3) Eθ0 [|log g(Y1 | θ0(i, k))|] < ∞, for all i, k.

(B4) Eθ0 [sup|θ′−θ|<δ
(log g(Y1 | θ

′

))+] < ∞ for any θ ∈ A, for some δ > 0,

where x+ = max(x, 0).

In this setting, the identifiability of our model is guaranteed if (A1), (A2)

and (B1) hold, and additionally the θ(i, k) are distinct. For details see Leroux

(1992). We are now at the point where the results of consistency for MLE con-

cerning the general HSMMs can be deduced from the corresponding results of

the general HMMs. We denote by (q̂ij(k, n), θ̂t(n)) the MLE of θ0 = (q0
ij(k), θ0

t )

over Θ∗.
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Theorem 1 If conditions (A1)-(A2), (B1)-(B4) hold, then the MLE θ̂n is

strongly consistent estimator of θ0 in the quotient topology, and consequently

(q̂ij(k, n)) is strongly consistent estimator of (q0
ij(k)) in the same sense.

PROOF. From Proposition 1 the general HSMM (Z, Y ) parametrized by

Θ∗, can be viewed as a type of a general HMM ((Z,U), Y ) with the same

parametric space Θ∗. The result will follow from Theorem 3, Section 6, in

Leroux (1992), if the conditions 1-6 of that article hold. Indeed, it is easy to

verify that Cond.1 of Leroux is deduced from (A1) and (A2). Conditions 2

and 3 are identical to (B1) and (B2). Cond.4 is deduced from the fact that the

transition probabilities given in Proposition 1 are continuous functions of the

semi-Markov kernel and Conditions 5 and 6 are identical to (B3) and (B4). 2

Let the matrix (pij) denote the probability matrix of the embedded Markov

chain (Jn)n∈N, and (fij(k)) the conditional sojourn times, that is, for i, j ∈ E,

pij =





∑ñij

k=1 qij(k) if ñij > 0,

0 if ñij = 0,

(16)

fij(k) =





qij(k)

pij
if ñij > 0, 1 ≤ k ≤ ñij,

0 if ñij = 0.

(17)

Since these quantities are expressed as functions of the semi-Markov kernel,

we refer to them as pθ
ij and f θ

ij(k) to show that they are parametrized over Θ∗.

Nevertheless, we will omit the superindex θ for the estimators. Therefore, we

denote by (p̂ij(n)) and
(
f̂ij(k, n)

)
the corresponding MLE for the true values

(
p0

ij

)
and

(
f 0

ij(k)
)

respectively (regarded as vectors), where we exclude the

14



identically zero parameters. Also, let ci = card{j : ñij > 0}, for all i ∈ E, and

c̃ =
∑

i ci.

Then, the following asymptotic results hold:

Corollary 3 Under conditions (A1)-(A2), (B1)-(B4),

i) the MLE of the embedded Markov chain (p̂ij(n)) is strongly consistent esti-

mator of
(
p0

ij

)
,

ii) the MLE of the conditional sojourn time
(
f̂ij(k, n)

)
is strongly consistent

estimator of
(
f 0

ij(k)
)
.

PROOF. i) We define the function Φ : Θ∗ → R
c̃, where from relation (16),

Φ(θ) = Φ(qij(k), θt) = (
∑ñij

k=1 qij(k)) = (pθ
ij) (for i, j ∈ E such that ñij > 0).

We conclude that (p̂ij(n)) = Φ̂(θ)(n) = Φ(θ̂n) = (
∑ñij

k=1 q̂ij(k, n)),

where the second equality holds from the property of MLE. Consequently, we

get from the continuous mapping theorem, using Theorem 1 together with the

continuity of Φ that

(p̂ij(n))
a.s.−−−→

n→∞
(p0

ij).

ii) Let prijk(θ) = qij(k) denote the projection of θ ∈ Θ∗ into the corresponding

element of the semi-Markov kernel, and Φij the component function of Φ

which corresponds to pθ
ij. Let also T : Θ∗ → R

d1 , where T (θ) = (Tijk(θ)) =

(prijk(θ)/Φij(θ)) . Then, for i, j ∈ E such that ñij > 0, 1 ≤ k ≤ ñij, we have

(
f θ

ij(k)
)

=

(
qij(k)

pθ
ij

)
=

(
prijk(θ)

Φij(θ)

)
= T (θ),

and since T is continuous, the result follows along the line of reasoning of

theorem 1 i). 2
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5 Asymptotic normality results

Two very useful notions for statistical inference, closely connected with MLE,

are the rate of entropy of a stochastic process and the generalized Kullback-

Leibler divergence. Because of the stationarity of ((Z,U), Y ), we can allow

((Zn, Un), Yn)n∈N to be indexed by n ∈ Z. In this case, the rate of entropy of

the stochastic process ((Z,U), Y ) is defined as

−H(θ0) := −Eθ0 [log Pθ0(Y0 | Y−1, Y−2, . . .)].

and the generalized Kullback-Leibler divergence is defined as

Hθ0(θ) := Eθ0 [log Pθ(Y0 | Y−1, Y−2, . . .)], θ ∈ Θ∗.

More details about their use in the proofs of consistency can be found in

Leroux (1992). We denote by σ(θ0) the opposite of the Hessian matrix of

Hθ0(θ), calculated in θ0, i.e.,

σ(θ0) =
(
σu,v(θ0)

)

u,v

:= −
(

∂2
Hθ0(θ)

∂θu∂θv

∣∣∣∣∣
θ=θ0

)

u,v

A third set of conditions will be established, which is based on the article of

Bickel et al. (1998), to ensure asymptotic normality of the MLE. The condi-

tions, adapted to our model, can be stated as follows:

(C1) The MC (Zn, Un)n∈N is aperiodic.

(C2) The conditional densities g(y | θ(i, k)) have two continuous derivatives

with respect to θ ∈ Θ∗, in some neighborhood of θ0, for all the possible

values i, k, y.

(C3) There exists a δ > 0, for all i, k such as

i) Eθ0


 sup
|θ−θ0(i,k)|<δ

∣∣∣∣∣
d

dθ
log g(Y1 | θ)

∣∣∣∣∣

2

 < ∞,
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ii) Eθ0

[
sup

|θ−θ0(i,k)|<δ

∣∣∣∣∣
d2

dθ2
log g(Y1 | θ)

∣∣∣∣∣

]
< ∞,

iii)
∫

sup
|θ−θ0(i,k)|<δ

∣∣∣∣∣
dj

dθj
g(y | θ)

∣∣∣∣∣ ν(dy) < ∞, for 1 ≤ j ≤ 2.

(C4) For θ0 ∈ Θ∗, there exists a δ > 0 such as, if

rθ0(y) := sup
‖θ−θ0‖<δ

max
(i1,k1),(i2,k2)

g(y | θ(i1, k1))

g(y | θ(i2, k2))
,

then, Pθ0(rθ0(Y1) = ∞ | (Z1, U1) = (i, k)) < 1, for all i, k.

(C5) The true value θ0 is an interior point of Θ∗.

(C6) The matrix σ(θ0) is nonsingular.

Remark. The conditions (C1)-(C3), which involve the densities g(y | θ(i, k)),

can be substituted with similar conditions for the more general conditional

densities gθ(y | i, k), as they appear in Bickel et al. (1998).

Theorem 2 Under conditions (A1)-(A2), (B1)-(B4) and (C1)-(C6), the MLE

θ̂n of θ0 is asymptotically normal, that is,
√

n(θ̂n − θ0)
D−−−→

n→∞
N (0, σ(θ0)

−1).

PROOF. Since Proposition 1 holds, the result will follow from Theorem 1,

Section 3 of Bickel et al. (1998), if the conditions for asymptotic normality

that are stated there hold. Indeed, conditions (A1), (A2) and (C1) render the

process (Z,U) an ergodic Markov chain with finite state space and therefore

condition (A1) of Bickel et al. (1998) is satisfied. The conditions (B1)-(B4),

together with (A1) and (A2) imply (A6) of Bickel et al. (1998). The other

conditions are adapted naturally to our model. 2

At this point we will connect the two natural parametric spaces Θ∗ and Θ̃∗ for

the general HSMM and the type of the general HMM that we have already

considered respectively, by giving a connection between the two asymptotic
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covariance matrices of the MLE of the HMM and the MLE of the associated

HSMM given from Proposition 1.

As we can see from relation (12), Ψ1 is differentiable on Θ̃∗
1. By extending the

domain of Ψ1 in order to include the d2 parameters for the conditional densi-

ties, but keeping the same range, we define Ψ : Θ̃∗ −→ Θ∗, where Ψ = (Ψ1, prd2),

and prd2 is the projection function on Θ2. This function is differentiable at

θ̃ ∈ Θ̃∗, and we denote by Ψ
′

the total derivative of Ψ calculated at θ̃0. Let

also σ(θ̃0)
−1 be the asymptotic covariance matrix of the MLE

̂̃
θ n of θ̃0. When-

ever necessary we will use the following decomposition of the matrix σ(θ̃0)
−1,

d3 d2

︷︸︸︷ ︷︸︸︷

σ(θ̃0)
−1 =




σ(θ̃0)
−1
11

σ(θ̃0)
−1
21

σ(θ̃0)
−1
12

σ(θ̃0)
−1
22




}

}

d3

d2

.

(18)

The following theorem expresses the asymptotic covariance matrix of the MLE

that corresponds to the HSMM in terms of the natural parametric space Θ̃∗

associated to the HMM.

Theorem 3 Under conditions (A1)-(A2), (B1)-(B4) and (C1)-(C6), the MLE

θ̂n of θ0, that corresponds to the natural parametric space of the general HSMM

satisfies:
√

n(θ̂n − θ0)
D−−−→

n→∞
N (0, Ψ

′

σ(θ̃0)
−1(Ψ

′

)⊤), as n → ∞.

Consequently,
√

n(q̂ij(k, n) − q0
ij(k))

D−−−→
n→∞

N (0, Ψ
′

1σ(θ̃0)
−1
11 (Ψ

′

1)
⊤), where the

matrix Ψ
′

is given analytically from relations (31)-(35), and Ψ
′

1 is the subma-

trix of Ψ
′

, taking its first d3 rows and columns.
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PROOF. Let for any i ∈ E, ñiτi(1), ñiτi(2), . . . , ñiτi(ci), the ordered sequence

of ñij, for those j such as ñij > 0. In the case that some elements are equal,

the ordering is considered to be done according to the order of the indexes j as

natural numbers. Note that since ñiτi(ci) = ñi, then τi(ci) ∈ Ji, and therefore

we can choose ji = τi(ci). Let for all i ∈ E,

q(iτi(j)) =





(
qiτi(j)(1), qiτi(j)(2), . . . , qiτi(j)(ñiτi(j))

)
if 1 ≤ j ≤ ci − 1,

(
qiji

(1), qiji
(2), . . . , qiji

(ñiji
− 1)

)
if j = ci.

(19)

and also

q(i) =
(
q(iτi(1)), q(iτi(2)), . . . , q(iji)

)
. (20)

Then, if we denote by θ(2) the parameters that correspond to Θ2, an arrange-

ment of the parameters of Θ∗, can be presented as follows:

(qij(k), θt) =
(
q(1), q(2), . . . , q(s), θ(2)

)
. (21)

We will need a corresponding arrangement of the elements of Θ̃∗. For this

purpose, let for all i ∈ E, 1 ≤ j ≤ ci − 1,

p(ii) =
(
p(i,0)(i,1), p(i,1)(i,2), . . . , p(i,ñi−2),(i,ñi−1)

)
, (22)

p(iτi(j)) =
(
p(i,0)(τi(j),0), p(i,1)(τi(j),0) . . . , p(i,ñiτi(j)

−1)(τi(j),0)

)
. (23)

Then, denoting by

p(i) =
(
p(iτi(1)), p(iτi(2)), . . . , p(iτi(ci − 1)), p(ii)

)
, (24)

an expression for an arrangement of the parameters of Θ̃∗, is given by

(p(i,k1)(j,k2), θt) =
(
p(1), p(2), . . . , p(s), θ(2)

)
. (25)
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Using relations (13),(14),(21),(25), we have a block decomposition for Ψ′ as

indicated below.

Ψ′ =




M (1) 0 . . . 0 0

0 M (2) . . . 0 0

...
...

. . .
...

0 0 . . . M (s) 0

0 0 . . . 0 Id2




, (26)

where for all i ∈ E, M (i) =

(
∂q(i)

∂p(i)

)
. Using relations (13),(14),(20),(24), we

decompose M (i) into blocks as follows:

M (i) =




M
(i)
11 0 . . . 0 M

(i)
1ci

0 M
(i)
22 . . . 0 M

(i)
2ci

...
...

. . .
...

...

0 0 . . . M
(i)
ci−1,ci−1 M

(i)
ci−1,ci

M
(i)
ci1 M

(i)
ci2 . . . M

(i)
ci,ci−1 M (i)

cici




, (27)

where for 1 ≤ j ≤ ci − 1,

M
(i)
jj =

(
∂q(iτi(j))

∂p(iτi(j))

)
,M

(i)
jci

=

(
∂q(iτi(j))

∂p(ii)

)
,M

(i)
cij

=

(
∂q(iτi(ci))

∂p(iτi(j))

)
,

and

M (i)
cici

=

(
∂q(iτi(ci))

∂p(ii)

)
.

These four different types of matrices summarize all the information we want

in order to have an explicit matrix form for Ψ
′

, and we study each one of
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them.

For all i ∈ E, 1 ≤ k ≤ ñi − 1, let

ai(k) =
k−1∏

r=0

p(i,r)(i,r+1), (28)

ai(k; l) =
ai(k)

p(i,l−1)(i,l)

, 1 ≤ l ≤ k, (29)

b
(j)
iu (k; l) = p(i,u)(τi(j),0)ai(k; l), 1 ≤ l ≤ k, 1 ≤ u ≤ ñiτi(j) − 1. (30)

Recall that ji = τi(ci) and we will also use the abbreviation cij = ñiτi(j) −

2, c+
ij = cij + 1. Then,

M
(i)
jj = diag{1, ai(1), ai(2), . . . , ai(c

+
ij)}. (31)

M
(i)
cij

=




∆
(i)
cij

0⊤

0 0⊤




, (32)

where

∆
(i)
cij

= −diag{1, ai(1), ai(2), . . . , ai(cij)}, (33)

M
(i)
jci

=




0 0 . . . 0 0 . . . 0

b
(j)
i1 (1; 1) 0 . . . 0 0 . . . 0

b
(j)
i2 (2; 1) b

(j)
i2 (2; 2) . . . 0 0 . . . 0

...
...

. . .
...

...
. . .

...

b
(j)

i,c+
ij

(c+
ij; 1) b

(j)

i,c+
ij

(c+
ij; 2) . . . b

(j)

i,c+
ij

(c+
ij; c

+
ij) 0 . . . 0




, (34)
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M (i)
cici

=




−1 0 . . . 0 0

b
(ji)
i1 (1; 1) −ai(1) . . . 0 0

b
(ji)
i2 (2; 1) b

(ji)
i2 (2; 2) . . . 0 0

...
...

. . .
...

...

b
(ji)
i,ciji

(ciji
; 1) b

(ji)
i,ciji

(ciji
; 2) . . . b

(ji)
i,ciji

(ciji
; ciji

) −ai(ciji
)




(35)

Since

√
n(θ̂n − θ0) =

√
n(Ψ(

̂̃
θ n) − Ψ(θ̃ 0)), (36)

where Ψ is differentiable at θ̃ 0, then Theorem 3 follows from Theorem 2, by

an application of the delta method. 2

Remark. In order to find the asymptotic covariance matrix of
√

n(q̂ij(k, n)−

q0
ij(k)), regarded in Θ1 instead of Θ∗

1, we add the parameters qiji
(ñi), given

from (15), and using relation (4) we conclude that

√
n(q̂ij(k, n) − q0

ij(k)) → N (0, CΨ
′

1σ(θ̃0)
−1
11 (Ψ

′

1)
⊤C⊤), where

C = diag{Ci, i ∈ E}, Ci =




Iri

−1




, ri =
ci∑

j=1

ñiτi(j) − 1.

Let Φ1 and T1 be Φ and T respectively, regarded as functions with domain Θ∗
1,

where Φ and T are defined in Corollary 3. We give in the following two propo-

sitions the asymptotic normality results for the MLE of the characteristics of

the semi-Markov system, defined by (16) and (17).

Proposition 4 Under conditions (A1)-(A2), (B1)-(B4) and (C1)-(C6), the

MLE of the embedded Markov chain is asymptotically normal, that is,
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√
n((p̂i,j(n)) − (p0

ij))
D−−−→

n→∞
N (0, Φ

′

1Ψ
′

1σ(θ̃0)
−1(Φ

′

1Ψ
′

1)
⊤), where Φ

′

1Ψ
′

1 is given

by relations (41) and (42).

PROOF. Let for all i ∈ E,

pe(i) =
(
piτi(1), piτi(2), . . . , piτi(ci)

)
. (37)

Then, an arrangement of the parameters (pij) of the embedded MC can be

presented as follows:

(pij) =
(
pe(1), pe(2), . . . , pe(s)

)
. (38)

If we denote by

(
∂pe(i1)

∂q(i2)

)
:=

(
∂pi1j1

∂qi2j2(k)

)
= Φ1

′, and V (i) :=

(
∂pe(i)

∂q(i)

)
,

then,

Φ1
′ = diag{V (i), i ∈ E}, (39)

where

V (i) =




1
(i)
11 0 . . . 0 0

0 1
(i)
22 . . . 0 0

...
...

. . .
...

...

0 0 . . . 1
(i)
ci−1,ci−1 0

−1
(i)
ci1 −1

(i)
ci2 . . . −1

(i)
ci,ci−1 0




, (40)

and 1
(i)
jj , 1

(i)
cij

, are ñiτi(j)−dimensional row vectors, with entries 1, for all j such

that 1 ≤ j ≤ ci − 1.

Since
√

n
(
(p̂i,j(n)) − (p0

ij)
)

=
√

n
(
Φ1(q̂ij(k, n)) − Φ1(q

0
ij(k))

)
, by using Theo-

rem 3 and the differentiability of Φ1 on Θ∗
1, we conclude from an application of

the delta method that
√

n
(
(p̂i,j(n)) − (p0

ij)
)
→ N (0, Φ

′

1Ψ
′

1σ(θ̃0)
−1(Φ

′

1Ψ
′

1)
⊤),
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where

Φ
′

1Ψ
′

1 = diag{V (i)M (i), i ∈ E}, (41)

and V (i),M (i) are given by (40) and (27) respectively. The explicit form of

their product for all i ∈ E, is given as follows:

V (i)M (i) =




d
(i)
1 0 . . . 0 0

0 d
(i)
2 . . . 0 0

...
...

. . .
...

0 0 . . . d
(i)
ci−1 0

−d
(i)
1 −d

(i)
2 . . . −d

(i)
ci−1 0




, (42)

where d
(i)
j =

(
1, ai(1), ai(2), . . . , ai(c

+
ij)
)
, and ai(k) are given by (28). 2

Proposition 5 Under conditions (A1)-(A2), (B1)-(B4) and (C1)-(C6), the

MLE of the conditional sojourn times is asymptotically normal, that is,

√
n
(
(f̂ij(k, n)) − (f 0

ij(k, n))
)

D−−−→
n→∞

N (0, T
′

1Ψ
′

1σ(θ0)
−1(T

′

1Ψ
′

1)
t).

PROOF. Let for all i ∈ E, 1 ≤ j ≤ ci,

f(iτi(j)) =
(
fiτi(j)(1), fiτi(j)(2) . . . , fiτi(j)(ñiτi(j))

)
, (43)

and for all i ∈ E,

f(i) =
(
f(iτi(1)), f(iτi(2)), . . . , f(iτi(ci))

)
. (44)

Then, an arrangement of the parameters (fij(k)) of the conditional sojourn

times can be presented as follows:

(fij(k)) =
(
f(1), f(2), . . . , f(s)

)
. (45)
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If we denote by

(
∂f(i1)

∂q(i2)

)
:=
(∂fi1j1(k1)

∂qi2j2(k2)

)
= T

′

1, and F (i) :=

(
∂f(i)

∂q(i)

)
,

then,

T
′

1 = diag{F (i), i ∈ E}, (46)

where

F (i) =




F
(i)
11 0 . . . 0 0

0 F
(i)
22 . . . 0 0

...
...

. . .
...

...

0 0 . . . F
(i)
ci−1,ci−1 0

F
(i)
ci1 F

(i)
ci2 . . . F

(i)
ci,ci−1 F (i)

cici




, (47)

and the matrices F
(i)
j1j2

:=

(
∂f(iτi(j1))

∂q(iτi(j2))

)
, for the different values of j1 and j2

that correspond to the non zero matrices in (47), are given by

F
(i)
jj = − 1

p2
iτi(j)




−
∑

k 6=1

qiτi(j)(k) qiτi(j)(1) . . . qiτi(j)(1)

qiτi(j)(2) −
∑

k 6=2

qiτi(j)(k) . . . qiτi(j)(2)

...
...

. . .
...

qiτi(j)(ñiτi(j)) qiτi(j)(ñiτi(j)) . . . −
∑

k 6=ñiτi(j)

qiτi(j)(k)




, (48)
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F
(i)
cij

=
1

p2
iji




qiji
(1) qiji

(1) . . . qiji
(1)

...
...

. . .
...

qiji
(ñi − 1) qiji

(ñi − 1) . . . qiji
(ñi − 1)

−
∑

k 6=ñi

qiji
(k) −

∑

k 6=ñi

qiji
(k) . . . −

∑

k 6=ñi

qiji
(k)




, (49)

F (i)
cici

=
1

piji




Isi

−1




, where si = c+
iji

. (50)

Since
√

n
(
(f̂ij(k)) − (f 0

ij(k))
)

=
√

n
(
T1(q̂ij(k, n)) − T1(q

0
ij(k))

)
, by using The-

orem 3, and the differentiability of T1 on Θ∗
1, we conclude from an application

of delta method that
√

n
(
(f̂ij(k)) − (f 0

ij(k))
)
→ N (0, T

′

1Ψ
′

1σ(θ0)
−1(T

′

1Ψ
′

1)
⊤),

where

T
′

1Ψ
′

1 = diag{F (i)M (i), i ∈ E}, (51)

and F (i), M (i), are given by (47) and (27) respectively. The explicit form of

these matrices for all i ∈ E, is given as follows:

F (i)M (i) =




D
(i)
11 0 . . . 0 0

0 D
(i)
22 . . . 0 0

...
...

. . .
...

...

0 0 . . . D
(i)
ci−1,ci−1 0

D
(i)
ci1 D

(i)
ci2 . . . D

(i)
ci,ci−1 D(i)

ci,ci




, (52)
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where for 1 ≤ j ≤ ci − 1,

D
(i)
jj = − 1

p2
iτi(j)




−
∑

k 6=1

qiτi(j)(k) ai(1)qiτi(j)(1) . . . ai(c
+
ij)qiτi(j)(1)

qiτi(j)(2) −ai(1)
∑

k 6=2

qiτi(j)(k) . . . ai(c
+
ij)qiτi(j)(2)

...
...

. . .
...

qiτi(j)(ñiτi(j)) ai(1)qiτi(j)(ñiτi(j)) . . . −ai(c
+
ij)

∑

k 6=ñiτi(j)

qiτi(j)(k)




,

(53)

D
(i)
cij

=
1

p2
iji




−
∑

k 6=1

qiji
(k) ai(1)qiji

(1) . . . ai(c
+
ij)qiji

(1)

qiji
(2) −ai(1)

∑

k 6=2

qiji
(k) . . . ai(c

+
ij)qiji

(2)

...
...

. . .
...

qiji
(ñi) ai(1)qiji

(ñi) . . . −ai(c
+
ij)

∑

k 6=ñi

qiji
(k)




, (54)

and

D(i)
ci,ci

=
ci∑

j=1

F
(i)
cij

M
(i)
jci

, (55)

where F
(i)
cij

, M
(i)
jci

are given by (34)-(35) and (49)-(50). 2
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