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Abstract:

In this paper, we study the geodetic convexity of graphs focusing on the problem of the complexity to compute
inclusion-minimum hull set of a graph in several graph classes.

For any two vertices u,v ∈V of a connected graph G = (V,E), the closed interval I[u,v] of u and v is the the
set of vertices that belong to some shortest (u,v)-path. For any S ⊆ V , let I[S] =

⋃
u,v∈S I[u,v]. A subset S ⊆ V

is geodesically convex if I[S] = S. In other words, a subset S is convex if, for any u,v ∈ S and for any shortest
(u,v)-path P, V (P)⊆ S. Given a subset S ⊆V , the convex hull Ih[S] of S is the smallest convex set that contains S.
We say that S is a hull set of G if Ih[S] =V . The size of a minimum hull set of G is the hull number of G, denoted
by hn(G). The HULL NUMBER problem is to decide whether hn(G) ≤ k, for a given graph G and an integer k.
Dourado et al. showed that this problem is NP-complete in general graphs.

In this paper, we answer an open question of Dourado et al. [12] by showing that the HULL NUMBER problem
is NP-hard even when restricted to the class of bipartite graphs. Then, we design polynomial time algorithms to
solve the HULL NUMBER problem in several graph classes. First, we deal with the class of complements of
bipartite graphs. Then, we generalize some results in [1] to the class of (q,q−4)-graphs and to the class of cacti.
Finally, we prove tight upper bounds on the hull numbers. In particular, we show that the hull number of an n-node
graph G without simplicial vertices is at most 1+ ⌈ 3(n−1)

5 ⌉ in general, at most 1+ ⌈ n−1
2 ⌉ if G is regular or has no

triangle, and at most 1+ ⌈ n−1
3 ⌉ if G has girth at least 6.
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Le nombre enveloppe de quelques classes de graphes

Résumé : Dans cet article nous étudions une notion de convexité dans les graphes. Nous nous concentrons sur
la question de la compléxité du calcul de l’enveloppe minimum d’un graphe dans le cas de diverses classes de
graphes.

Étant donné un graphe G = (V,E), l’intervalle I[u,v] entre deux sommets u,v ∈V est l’ensemble des sommets
qui appartiennent à un plus court chemin entre u et v. Pour un ensemble S⊆V , on note I[S] l’ensemble

⋃
u,v∈S I[u,v].

Un ensemble S ⊆ V de sommets est dit convexe si I[S] = S. L’enveloppe convexe Ih[S] d’un sous-ensemble S ⊆ V

de G est défini comme le plus petit ensemble convexe qui contient S. S ⊆ V est une enveloppe de G si Ih[S] = V .
Le nombre enveloppe de G, noté hn(G), est la cardinalité minimum d’une enveloppe de graphe G.

Nous montrons que décider si hn(G) ≤ k est un problème NP-complet dans la classe des graphes bipartis
et nous prouvons que hn(G) peut être calculé en temps polynomial pour les cobipartis, (q,q− 4)-graphes et cac-
tus. Nous montrons aussi des bornes supérieures du nombre enveloppe des graphes en général, des graphes sans
triangles et des graphes réguliers.

Mots-clés : convexité des graphes, nombre enveloppe, graphes bipartis, graphes cobipartis, graphes cactus,
(q,q−4)-graphes
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1 Introduction

A classical example of convexity is the one defined in Euclidean spaces. In an Euclidean space E, a set S ⊆ E is
said convex if for any two points x and y of S, [x,y] ⊆ S, i.e., the set of points lying in the straight line segment
between x and y also belongs to S. Note that if two convex sets X ,Y ⊆ E contain a given set S ⊆ E of points,
then their intersection X ∩Y is also a convex set of E containing S. Hence, we can define the convex hull of S as
the inclusion-minimum convex set that contains S. Reciprocally, given a convex set S of E, a hull set of S is any
subset S′ of S such that S is the convex hull of S′. A naive way to compute the convex hull H of a set S consists in
starting with H = S and, while it is possible, adding [x,y] to H for any x,y ∈ H. However there exist more efficient
algorithms. For instance, for any set S of a d-dimensional euclidean space, the gift wrapping algorithm computes
the convex hull and a minimum-inclusion hull set of S in polynomial-time in the size of S (d being fixed). For more
results concerning the convexity in Euclidean spaces, we refer to [19].

In order to capture the abstract notion of convexity, [16] defines an alignment over a set X as a family C of
subsets of X that is closed under intersection and that contains both X and the empty set. The members of C are
called the convex sets of X . The pair (X ,C ) is then called an aligned space. An example of aligned space (E,C ) is
the one where E is an euclidean space and C = {H ⊆ E : ∀x,y ∈ H, [x,y]⊆ H}. Given an aligned space (X ,C ),
the definitions of convex hull and hull set are generalized as follows. For any S ⊆ X , the convex hull of S is the
smallest member of C containing S. For any S ∈ C , a hull set of S is a set S′ ⊆ S such that S is the convex hull of S′.

Various notions of convexity can be defined in graphs as specific alignments over the set of vertices. This
paper is devoted to the study of the geodetic convexity of graphs. Let G = (V,E) be a connected undirected graph.
For any u,v ∈ V , let the closed interval I[u,v] of u and v be the the set of vertices that belong to some shortest
(u,v)-path. The closed interval of a set of vertices can be seen as an analog to segments in Euclidian spaces. For
any S ⊆V , let I[S] =

⋃
u,v∈S I[u,v]. A subset S ⊆V is geodesically convex if I[S] = S. In this paper convexity refers

to the geodesical variant. In other words, a subset S is convex if, for any u,v ∈ S and for any shortest (u,v)-path P,
V (P)⊆ S. That is, the geodetic convexity can be defined as the alignment C over V where C = {S ⊆V : I[S] = S}.

Given a subset S ⊆ V , the convex hull Ih[S] of S is the smallest convex set that contains S. We say that S is a
hull set of G if Ih[S] =V . That is, S is a hull set of G if, starting from the vertices of S and successively adding in S

the vertices in some shortest path between two vertices in S, we eventually obtain V . The size of a minimum hull
set of G is the hull number of G, denoted by hn(G). The HULL NUMBER problem is to decide whether hn(G)≤ k,
for a given graph G and an integer k [15]. This problem is known to be NP-complete in general graphs [12]. In
this paper, we consider the problem of the complexity to compute inclusion-minimum hull set of a graph in several
graph classes.

Our results. We first answer an open question of Dourado et al. [12] by showing that the HULL NUMBER problem
is NP-hard even when restricted to the class of bipartite graphs (Section 3). Then, we design polynomial time
algorithms to solve the HULL NUMBER problem in several graphs’ classes. In Section 4, we deal with the class of
complements of bipartite graphs. In Section 5 we generalize some results in [1] to the class of (q,q− 4)-graphs.
Section 6 is devoted to the class of cacti. Finally, we prove tight upper bounds on the hull number of graphs in
Section 7. In particular, we show that the hull number of an n-node graph G without simplicial vertices is at most
1+⌈ 3(n−1)

5 ⌉ in general, at most 1+⌈ n−1
2 ⌉ if G is regular or has no triangle, and at most 1+⌈ n−1

3 ⌉ if G has girth at
least 6.

Related work. In the seminal work [15], the authors present some upper and lower bounds on the hull number
of general graphs and characterize the hull number of some particular graphs. The corresponding minimization
problem has been shown to be NP-complete [12]. Dourado et al. also proved that the hull number of unit interval
graphs, cographs and split graphs can be computed in polynomial time [12]. Bounds on the hull number of triangle-
free graphs are shown in [13]. The hull number of the cartesian and the strong product of two connected graphs
is studied in [5, 11]. In [18], the authors have studied the relationship between the Steiner number and the hull
number of a given graph. An oriented version of the HULL NUMBER problem is studied in [8, 17].

RR n° 7567
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Other parameters related to the geodetic convexity have been studied in [9,10]. Variations of graph convexity
have been further proposed and studied. For instance, the monophonic convexity that deals with induced paths
instead of shortest paths is studied in [14, 16]. Another example is the P3-convexity where just paths of order three
are considered [6, 16]. Other variants of graph convexity and other parameters are mentioned in [7].

2 Preliminaries

In this paper, we adopt the graph terminology defined in [4]. Otherwise stated, all graphs considered in this work
are simple, undirected and connected. Let G = (V,E) be a graph. Given a vertex v ∈ V , N(v) denotes the (open)
neighborhood of v, i.e., the set of neighbors of v. Let N[v] = N(v)∪{v} be the closed neighborhood of v. A vertex
v is universal if N[v] =V . A vertex is simplicial if N[v] induces a complete subgraph in G. Finally, a subgraph H

of G is isometric if, for any u,v ∈V (H), the distance distH(u,v) between u and v in H equals distG(u,v).
This section is devoted to basic lemmas on hull sets. These lemmas will serve as cornerstone of most of the

results presented in this paper.

Lemma 1 ([15]). For any hull set S of a graph G, S contains all simplicial vertices of G.

Lemma 2 ([12]). Let G be a graph which is not complete. No hull set of G with cardinality hn(G) contains a

universal vertex.

Lemma 3 ([12]). Let G be a graph, H be an isometric subgraph of G and S be any hull set of H. Then, the convex

hull of S in G contains V (H).

Lemma 4 ([12]). Let G be a graph and S a proper and non-empty subset of V (G). If V (G)\S is convex, then every

hull set of G contains at least one vertex of S.

3 Bipartite graphs

In this section, we answer an open question of Dourado et al. [12] by showing that the Hull Number Problem is
NP-complete in the class of bipartite graphs. Since the Hull Number Problem is in NP, as proved in [12], it only
remains to prove the following theorem:

Theorem 1. The HULL NUMBER problem is NP-hard in the class of bipartite graphs.

Proof. To prove this theorem, we adapt the proof presented in [12]. We reduce the 3-SATisfiability Problem to the
HULL NUMBER problem in bipartite graphs. Let us consider the following instance of 3-SAT. Given a formula in
the conjunctive normal form, let F ={C1,C2, . . . ,Cm} be the set of its 3-clauses and X ={x1,x2, . . . ,xn} the set of
its boolean variables. We may assume that m = 2p, for a positive integer p ≥ 1, since it is possible to add dummy
variables and clauses without changing the satisfiability of F and such that the size of the instance is at most twice
the size of the initial instance. Moreover, we also assume, without loss of generality, that each variable xi and its
negation appear at least once in F (otherwise the clauses where xi appeared could always be satisfied).

Let us construct the bipartite graph G(F ) as follows. First, let T be a full binary tree of height p rooted in r

with m = 2p leaves, and let L ={c1,c2, . . . ,cm} be the set of leaves of T . We then construct a graph H as follows.
First, let us add a vertex u that is adjacent to every vertex in L. Then, any edge {u,v} ∈ E(T ) with u the parent
of v is replaced by a path with 2h(v) edges, where h(v) is the distance between v and any of its descendent leaves.
Note that, in H, the distance between r and any leaf is ∑

p−1
i=0 2i = 2p −1 = m−1. Moreover, it is easy to see that

|V (H)|= O(m · logm).
The following claims are proved in [12].

RR n° 7567
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Figure 1: Subgraph of the bipartite instance G(F ) containing the gadget of a variable xi that appears positively
in clauses C1 and C2, and negatively in C8. If xi appears positively in C j, link a5

i to c j through y
j
i . If it appears

negatively, we use b5
i instead of a5

i .

Claim 1. Let v,w ∈ V (T )\{r}. The closed interval of v,w in H contains the parents of v in T if and only if v and

w are siblings in T .

Claim 2. The set L is a minimal hull set of H.

Then, let H ′ be obtained by adding a one degree vertex u′ adjacent to u in H. Finally, we build a graph G(F )

from H ′ by adding, for any variable xi, i ≤ n, the gadget defined as follows.
Let us start with a cycle {a1

i ,a
2
i ,v

1
i ,b

2
i ,b

1
i ,b

3
i ,b

4
i ,v

2
i ,a

4
i ,a

3
i } plus the edge {v2

i ,v
1
i }. Then, add the vertex v3

i

as common neighbor of v2
i and u. Add a neighbor b5

i (resp., a5
i ) adjacent to b3

i (resp., a3
i ) and a path of length

2h(r)− 3 = m− 3 edges between b5
i (resp., a5

i ) and r. Let D be the set of internal vertices of all these 2n paths
between a5

i , resp., b5
i , and r, i ≤ n. Finally, for any clause C j in which xi appears, if xi appears positively (resp.,

negatively) in C j then add a common neighbor y
j
i between c j and a5

i (resp., b5
i ). See an example of such a gadget

in Figure 1. Note that |V (G(F ))|= O(m · (n+ logm)).

Lemma 5. G(F ) is a bipartite graph.

Proof. Let us present a proper 2-coloring c of G(F ). Let c(r) = 1, and for each vertex w in V (H), define c(w)

as 1 if w is in an even distance from r, and 2 otherwise. Clearly, c is a partial proper coloring of G(F ) and
moreover we have c(u) = 1 and c(c j) = 2, for any j ∈{1, . . . ,m} (Indeed, any ci is at distance m−1 (odd) of r in

H). Let c(u′) = 2. For every i ∈{1, . . . ,n} and for any j such that xi ∈ C j, let c(y
j
i ) = 1. For any i ≤ n, for any

x ∈ {b5
i ,a

5
i ,v

3
i ,b

4
i ,a

4
i ,b

1
i ,v

1
i ,a

1
i }, c(x) = 2.

c(b5
i ) = c(a5

i ) = c(v3
i ) = 2. Again, this partial coloring of G(F ) is proper. One can easily verify that this

coloring can be extended to {a1
i ,a

2
i ,v

1
i ,b

2
i ,b

1
i ,b

3
i ,b

4
i ,v

2
i ,a

4
i ,a

3
i } for any i ≤ n. Moreover, since c(r) = 1 and c(a5

i ) =

2 (c(b5
i ) = 2), for every i ∈{1, . . . ,n}, and since the path that we add in G(F ) between r and a5

i (b5
i ) is of odd

length m−3, one can completely extend c in order to get a proper 2-coloring of G(F ). ⋄

RR n° 7567
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Claim 3. The set V (G(F ))\{a1
i ,a

2
i ,v

1
i ,b

1
i ,b

2
i } is convex, for any i ∈{1, . . . ,n}.

Proof. Denote Wi ={a1
i , a2

i , v1
i , b1

i , b2
i }, for some i ∈ {1, . . . ,n}, and W ′

i = {a3
i ,b

3
i ,v

2
i }. By contradiction, suppose

that there exists an (x,y)-shortest path containing a vertex of Wi, for some x,y ∈ V (G(F ))\Wi. Observe that it
implies that that there are x′,y′ ∈W ′

i such that I[x′,y′] contains a vertex of Wi, since W ′
i contains all the neighbors

of Wi in V (G(F ))\Wi. However, it is easy to verify that for any pair x,y ∈W ′
i , I[x,y] contains no vertex of Wi. This

is a contradiction. ⋄

Lemma 6. hn(G(F ))≥ n+1.

Proof. Let S be any hull set of G(F ). Clearly u′ ∈ S, because u′ is a simplicial vertex of G(F ) (Lemma 1).
Furthermore, Claim 3 and Lemma 4 imply that S must contain at least one vertex wi of the set {a1

i ,a
2
i ,v

1
i ,b

1
i ,b

2
i },

for every i ∈{1, . . . ,n}. Hence, |S| ≥ n+1. ⋄

The main part of the proof consists in showing:

Lemma 7. F is satisfiable if and only if hn(G(F )) = n+1.

First, consider that F is satisfiable. Given an assignment A that turns F true, define a set S as follows. For
1 ≤ i ≤ n, if xi is true in A add a1

i to S, otherwise add b1
i to S. Finally, add u′ to S. Note that |S| = n+ 1. We

show that S is a hull set of G(F ). First note that a5
i ,c j ∈ I[a1

i ,u
′], for every clause C j containing the positive

literal of xi. Similarly, observe that b5
i ,c j ∈ I[b1

i ,u
′], for every clause C j containing the negative literal of xi. Since

A satisfies F , it follows L ⊆ Ih[S]. Therefore, H being an isometric subgraph of G(F ), Lemma 3 and Claim 3
imply that V (H) ⊆ Ih[S]. Furthermore, the shortest paths between r and u have length m, which implies that all
vertices a5

i , b5
i , y

j
i (i ≤ n) and all vertices in D are included in Ih[S]. It remains to observe that Ih[a

5
i ,b

5
i ,w,u

′], where
w ∈ {a1

i ,b
1
i }, contains the variable subgraph of xi. Therefore we have that S is a hull set of G(F ).

We prove the sufficiency by contradiction. Suppose that G(F ) contains a hull set S with n+ 1 vertices and
that F is not satisfiable.

Recall that, by Lemma 1, u′ ∈ S. For any i ≤ n, let Wi as defined in Claim 3. Recall also that there must be a
vertex wi ∈Wi ∩S, for any i ≤ n. Since v1

i ∈ I[u′,a1
i ], v1

i ∈ I[u′,b1
i ], a2

i ∈ I[u′,a1
i ] and b2

i ∈ I[u′,b1
i ], we can assume,

without loss of generality, that wi ∈ {a1
i ,b

1
i }, for every i ∈{1, . . . ,n} (indeed, if wi ∈ {v1

i ,a
2
i }, it can be replaced by

a1
i , and if wi = b2

i , it can be replaced by b1
i ). Therefore S defines the following truth assignment A to F . If wi = a1

i

set xi to true, otherwise set xi to false. As F is not satisfiable, there exists at least one clause C j not satisfied by A .
Using the hypothesis that F is not satisfiable, we complete the proof by showing that there is a non empty set

U such that V (G(F ))\U is a convex set and U ∩S = /0. That is, we show that Ih[S]⊆V (G(F ))\U for some U 6= /0,
contradicting the fact that S is a hull set.

For any clause C j, let us define the subset U j of vertices as follows. Let Pj be the path in T between c j and
r, let X j be the p vertices in V (T ) \V (Pj) that are adjacent to some vertex in Pj. Then, U j is the union of the
vertices that are either in Pj or that are internal vertices of the paths resulting of the subdivision of the edges {x,y}

where x,y ∈ Pj ∪X j. Another way to build the set U j is to start with the set of vertices of the (unique) shortest path
between c j and r in H and then add successively to this set, the vertices of V (H)\ (V (T )∪{u}) that are adjacent
to some vertex of the current set.

Now, let U ′ = ∪ j∈JU j where J is the (non empty) set of clauses that are not satisfied by A . Note that r ∈U ′.
For any i ≤ n, let Wi be defined as follows. If wi = a1

i (xi assigned to true by A), then Wi is the union of
{bℓi : ℓ≤ 5} with the set of the yk

i that are adjacent to b5
i . Otherwise, wi = b1

i (xi assigned to false by A), then Wi

is the union of {aℓi : ℓ≤ 5} with the set of the yk
i that are adjacent to a5

i .
Finally, let U =U ′∪ (

⋃
i≤n Wi)∪D. In Figure 1, U is depicted by the white vertices, assuming that clause C2

is false and that xi is set to false by A . Observe that U ∩S = /0.
It remains to prove that V (G(F ))\U is a convex set. Consider the partition {A1,A2,A3} of V (G(F ))\U where

A1 = V (H)\(U ∪{u}), A2 ={u,u′} and A3 = V (G(F ))\(U ∪A1 ∪A2). To prove that V (G(F ))\U is convex, let

RR n° 7567
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w ∈ Ai and w′ ∈ A j for some i, j ∈ {1,2,3}. We show that I[w,w′]∩U = /0 considering different cases according to
the values of i and j. Recall that V (H)\{u} induces a tree T ′ rooted in r and that, if a vertex of T ′ is in A1, then,
by definition of U ′, all its descendants in T ′ are also in A1 (i.e., if v ∈ U ∩V (T ′), then all ancestors of v in T ′ are
in U). It is important to note that, for any vertex v in A1, the shortest path in G(F ) from v to any leaf ℓ of T ′ is the
path from v to ℓ in T ′ (in particular, such a shortest path does not pass through r and any vertices in D).

• The case i = j = 2, i.e., m,m′ ∈ {u,u′}, is trivial;

• First, let us assume that w∈ A1 =V (H)\(U ∪{u}) and w′ ∈ A2 = {u,u′}. If w′ = u (resp., if w′ = u′) then
Ih[w,w

′] consists of the subtree of T ′ rooted in w union u (resp., union u and u′). Hence, Ih[w,w
′]∩U = /0

because no descendants of w in T ′ are in U .

• Second, let w,w′ ∈ A1. If one of them, say w, is an ancestor of the other in T ′, then Ih[w,w
′] consists of

the path between them in T ′ (remember that r ∈ U so w 6= r). Since no descendants of w in T ′ are in
U , Ih[w,w

′]∩U = /0. Otherwise, there are three cases: (1) either Ih[w,w
′] consists of the path P between

w and w′ in T ′, or (2) Ih[w,w
′] consists of the union of the subtree R of T ′ rooted in w, the subtree R′

of T ′ rooted in w′ and u, or (3) Ih[w,w
′] = R∪R′ ∪P∪{u}. Again, (R∪R′ ∪{u})∩U = /0 because no

descendants of w and w′ in T ′ are in U . Hence, it only remains to prove that when P ⊆ Ih[w,w
′] then

P∩U = /0. It is easy to check that P ⊆ Ih[w,w
′] only in the following case: there exist x,y,z ∈V (T ) such

that x is the parent of y and z in T , and w (resp., w′) is a vertex of the path resulting from the subdivision
of {x,y} (resp., {x,z}). In this case, it means that all clause-vertices that are descendants of y and z are
not in U . Therefore x /∈U and hence no descendants of x are in U . In particular, P∩U = /0.

• Assume now that w ∈ A3. Let i ≤ n such that w belongs to the gadget Gi corresponding to variable xi.
Let us assume that wi = b1

i . The case wi = a1
i can be handled in a similar way by symmetry. Then, by

definition, U contains {a1
i , · · · ,a

5
i } and the y

j
i ’s adjacent to a5

i . With this setting, xi is set to false in the
assignment A . If there is a vertex y

j
i adjacent to b5

i , let C j be the other neighbor of j
j
i . By definition, it

means that clause C j contains the negation of variable xi. Since xi is set to false, it means that clause C j

is satisfied and so C j /∈U .

Let x ∈V (Gi)\U . Then, any shortest path P from w to x either passes through V (Gi)\U or, there is y
j
i

adjacent to b5
i such that P passes through y

j
i ,C j,u and v3

i (the latter case may occur if a ∈ {y
j
i ,b

5
i } and

b = v3
i , or a = y

j
i and b ∈ {v3

i ,v
2
i } where {a,b}= {x,w}). Hence, such a path P avoid U , and the result

holds if x = w′ ∈ A3 ∩Gi.

Similarly, if x ∈ {u,u′}, then, any shortest path P from w to x either passes through V (Gi)\U or through
y

j
i ,C j,u with y

j
i adjacent to b5

i . In particular, if x = w′ ∈ {u,u′}= A2, then the result holds.

Now, let x = C j′ be a leaf of T ′ that is not in U . Then, any shortest path P from w to x either passes

through u or through y
j
i ,C j and, if j 6= j′, through u. In any case, P avoids U . If w′ ∈ A3 \Gi, any path

between w and w′ passes through u or through one or two leaves that are not in U . Finally, if w′ ∈ A1,
let R be the subtree of T ′ rooted in w′. V (R) ⊆ Ih[w,w

′]. Moreover, any shortest path from w to w′

path through a leaf of R, i.e., a leaf not in U . By previous remarks, in all these cases, the shortest paths
between w and w′ avoid u, and Ih[w,w

′] are disjoint from U .

We conclude this section by showing one approximability result. Let IG(G) be the incidence graph of G,
obtained from G by subdividing each edge once. That is, let us add one vertex suv, for each edge uv ∈ E(G), and
replace the edge uv by the edges usuv,suvv.

Proposition 2. hn(IG(G))≤ hn(G)≤ 2hn(IG(G)).
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Proof. Let IG(G) be the incidence graph of G. Observe that any hull set of G is a hull set of IG(G), since for any
shortest path, P = {v1, . . . ,vk} in G there is a shortest path P′ = {v1,sv1v2 ,v2, . . . ,svk−1vk

,vk} in IG(G) (the edges
were subdivided). Consequently, hn(IG(G))≤ hn(G). However, given a hull set Sh of IG(G), one may find a hull
set of G by simply replacing each vertex of Sh that represents an edge of G by its neighbors (vertices of G). Thus,
hn(G)≤ 2hn(IG(G)).

Corollary 1. If there exists a k-approximation algorithm B to compute the hull number of bipartite graphs, then B

is a 2k-approximation algorithm for any graph.

4 Complement of bipartite graphs

A graph G = (V,E) is a complement of a bipartite graph if there is a partition V = A∪B such that A and B are
cliques. In this section, we give a polynomial-time algorithm to compute a hull set of G with size hn(G). We start
with some notations.

Given the partition (A,B) of V , we say that an edge uv ∈ E is a crossing-edge if u ∈ A and v ∈ B. Denote by
S the set of simplicial vertices of G, by SA = S∩A and by SB = S∩B. Let U be the set of universal vertices of G.
Note that, if G is not a clique, U ∩ S = /0. Let H be the graph obtained from G by removing the vertices in S and
U , and removing the edges intra-clique, i.e., V (H) =V \ (U ∪S) and E(H) = {{u,v} ∈ E : u ∈ A∩V (H) and v ∈

B∩V (H)}. Let C = {C1, · · · ,Cr} (r ≥ 1) denote the set of connected components Ci of H. Observe that, if G is
neither one clique nor the disjoint union of A and B, H is not empty and each connected component Ci has at least
two vertices, for every i ∈ {1, . . . ,r}. Indeed, any vertex in A \ SA (resp., in B \ SB) has a neighbor in B∩V (H)

(resp. in A∩V (H)).

Theorem 3. Let G = (A ∪ B,E) be the complement of a bipartite n-node graph. There is an algorithm that

computes hn(G) and a hull set of this size in time O(n7).

Proof. We use the notations defined above. Recall that, by Lemma 1, S is contained in any hull set of G. In
particular, if G is a clique or G is the disjoint union of two cliques A and B, then hn(G) = n. From now on, we
assume it is not the case. By Lemma 2, no vertices in U belong to any minimal hull set of G. Now, several cases
have to be considered.

Claim 4. If U = /0, SA 6= /0 and SB 6= /0, then S is a minimum hull set of G and thus hn(G) = |S|.

Proof. Since G has no universal vertex, a simplicial vertex in SA (in SB) has no neighbor in B (resp., in A). Since
G is not the disjoint union of two cliques, every vertex u ∈ A\SA has a neighbor v ∈ B\SB and vice-versa. Thus,
sauvsb is a shortest (sa,sb)-path, for any sa ∈ A and sb ∈ B, and then u,v ∈ Ih[S].

Hence, from now on, let us assume that U 6= /0 or, w.l.o.g., SB = /0.
Again, if there is some simplicial vertex in G, i.e., if SA 6= /0, all the vertices of S belong to any hull set of G

and thus hn(G)≥ |S|. In fact, for each connected component of H, we prove that it is necessary to choose at least
one of its vertices to be part of any hull set of G.

Claim 5. If U 6= /0 or SB = /0 or SA = /0, then hn(G)≥ |S|+ r.

Proof. Again, all vertices of S belong to any hull set of G. We show that, for any 1 ≤ i ≤ r, V\Ci is a convex set.
Thus, by Lemma 4, any hull set of G contains at least one vertex of Ci for any i ≤ r.

It is sufficient to show that no pair u,v ∈ V (G)\Ci can generate a vertex vi of Ci. By contradiction, suppose
that there exists a pair of vertices u,v ∈ V (G)\Ci such that there is a shortest (u,v)-path P containing a vertex vi

of Ci. Consequently, u and v must not be adjacent and we consider that u ∈ A and v ∈ B. If U = /0, then, w.l.o.g.,
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SB = /0 and v is not simplicial and has at least one neighbor in A. Hence, since U 6= /0 or Sb = /0, u and v are
at distance two. Consequently, P = uviv. However, if vi ∈ A, v belongs to Ci, because of the crossing edge viv,
otherwise, u ∈Ci. In both cases we reach a contradiction.

Now, two cases remain to be considered. We recall that U 6= /0 or SB = /0.

1. If r ≥ 2, then hn(G) = |S|+ r, and we can build a minimum convex hull by taking the vertices in S, one
arbitrary vertex in A∩Ci for all i < r and one arbitrary vertex in B∩Cr.

Let R = {v1, . . . ,vr} such that vi ∈Ci ∩A for any i < r and vr ∈Cr ∩B.

Claim 6. S∪R is a hull set of G.

Proof. Since all vertices in U are generated by v1 and vr (that are not adjacent, since they are in different
components), it is sufficient to show that S∪R generates all the vertices in Ci, for any i ∈ {1, . . . ,r}.
Actually, we show that R generates all the vertices in Ci.

By contradiction, suppose that there is a vertex z /∈ Ih[R]. Let i ≤ r such that z ∈Ci. Because Ci contains
one vertex in R and is connected, we can choose z and w ∈Ci ∩ Ih[R] linked by a crossing edge. We will
show that z ∈ Ih[R] (a contradiction), hence, w.l.o.g., we may assume that z ∈ A. If i = r, then v1zw is a
shortest (v1,w)-path and z ∈ Ih[R].

Otherwise, recall that N(vr)∩A∩Cr 6= /0 and, for any i < r, N(vi)∩B∩Ci 6= /0 because vi is not simplicial
for any i ≤ r. Let x ∈ N(vr)∩ A ∩Cr and yi ∈ N(vi)∩ B ∩Ci. Note that x ∈ Ih[R] because v1xvr is
a shortest (vr,v1)-path, and yi ∈ Ih[R] because viyivr is a shortest (vr,vi)-path. Hence, since xzyi is a
shortest (x,yi)-path, we have z ∈ Ih[R].

As |R|= r, we conclude by Claim 5 that hn(G) = |S|+ r.

2. If r = 1, then hn(G)≤ |S|+4, and any minimum convex hull contains at most 4 vertices not in S.

Again, S is included in any hull set of G by Lemma 1, and no vertices in U belong to some hull set by
Lemma 2. In this case, when H has just one connected component C1 = C, one vertex of C may not
suffice to generate this component, as in the previous case. However, we prove that at most 4 vertices in
C are needed.

(a) If SA 6= /0 and SB 6= /0 (and thus U 6= /0 because Claim 4 applies otherwise), then hn(G) = |S|+1.

By Claim 5, we know that hn(G)≥ |S|+1. Let v be an arbitrary vertex of C. We claim that S∪{v}

is a minimum hull set of G. By contradiction, let z /∈ Ih[S∪{v}]. Since C is a connected component
of H, we may choose z such that there is w ∈ N(z)∩C∩ Ih[S∪{v}]. Moreover, we may assume
w.l.o.g. that z ∈ A, and thus w ∈ B. In that case, since SA 6= /0, there is vA ∈ SA and as vAw /∈ E(G)

(indeed, any vertex in N(vA)∩B must be universal because vA is simplicial, which is not the case
since w is not universal because it belongs to C), z is generated by vA and w.

(b) If SA 6= /0 and SB = /0, then hn(G)≤ |S|+2.

Let vA ∈ A∩C be such that |N(vA)∩B∩C| is maximum. Since vA is not universal in G, there exists
x ∈ B such that vAx /∈ E(G). Note that x ∈ C since x is not universal and SB = /0. Let R = {vA,x}.
Observe that N(vA)∩B∩C ⊆ Ih[R∪S] since vAx /∈ E.

By contradiction, assume V (G)\Ih[R∪ S] 6= /0. Let z ∈ V (G)\Ih[R∪ S]. First, suppose that z ∈ A.
Since C is connected in H, we may assume that z has a neighbor w ∈ Ih[R∪S]∩B∩C. As SA 6= /0,
there is v ∈ SA and as vw /∈ E(G) (because otherwise w would be universal in G and not in C), z is
generated by v and w. Now suppose that z ∈ B, and now it has a neighbor w ∈ Ih[R∪ S]∩A∩C.
Observe that Ih[R∪S]∩B ⊆ N(w), otherwise z would be in Ih[R∪S]. However, since N(vA)∩B∩
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C ⊂ (N(vA)∩B∩C)∪{x}⊆ Ih[R∪S]∩B, we get that N(vA)∩B∩C ⊂ N(w)∩B∩C, contradicting
the maximality of |N(vA)∩B∩C|.

(c) If SA = /0 and SB = /0, then hn(G)≤ 4.

Let vA ∈ A∩C be such that |N(vA)∩B∩C| is maximum and vB ∈ B∩C be such that |N(vB)∩A∩C|

is maximum. Since vA is not universal in G and SB = /0, there exists y ∈C∩B\N(va), and similarly
there exists x∈C∩A\N(vB). Let R= {vA,vB,x,y}. Observe that N(vA)∩B⊆ Ih[R] and N(vB)∩A⊆

Ih[R], since vAy /∈ E and vBx /∈ E.

By contradiction, assume V (G)\Ih[R] 6= /0. Let z ∈V (G)\Ih[R]. First, suppose that z ∈ A. As in the
previous case, since C is connected in H, we may assume that z has a neighbor w ∈ Ih[R]∩B∩C.
Observe that Ih[R]∩A∩C ⊆ N(w), otherwise z would be in Ih[R]. However, since N(vB)∩A∩C ⊂

(N(vB)∩A∩C)∪{x}⊆ Ih[R]∩A∩C, we get that N(vB)∩A∩C ⊂ N(w)∩A∩C, contradicting the
maximality of |N(vB)∩A∩C|.

Whenever z ∈ B, one can use the same arguments to reach a contradiction on the maximality of
|N(vA)∩B∩C|.

Since |S|+1 ≤ hn(G) ≤ |S|+4, S is included in any hull set of G and no vertices in U belong to some
hull set, there exist a subset R of at most 4 vertices in C such that S∪R is a minimum hull set of G.
There are O(|V |4) subsets to be tested and, for each one, its convex hull can be computed in O(|V ||E|)

time [12]. This leads to the announced result.

5 Graphs with few P4’s

A graph G = (V,E) is a (q,q− 4)-graph, for a fixed q ≥ 4, if for any S ⊆ V , |S| ≤ q, S induces at most q− 4
paths on 4 vertices [2]. Observe that cographs and P4-sparse graphs are the (q,q−4)-graphs for q = 4 and q = 5,
respectively. The hull number of a cograph can be computed in polynomial time [12]. This result is improved
in [1] to the class of P4-sparse graphs. In this section, we generalize these results by proving that for any fixed
q ≥ 4, computing the hull number of a (q,q− 4)-graph can be done in polynomial time. Our algorithm runs in
time O(2qn2) and is therefore a Fixed Parameter Tractable for any graph G, where the number of induced P4’s of
G is the parameter.

5.1 Definitions and brief description of the algorithm

The algorithm that we present in this section uses the canonical decomposition of (q,q−4)-graphs, called Primeval

Decomposition. For a survey on Primeval Decomposition, the reader is referred to [3]. In order to present this
decomposition of (q,q−4)-graphs, we need the following definitions.

Let G1 and G2 be two graphs. G1 ∪G2 denotes the disjoint union of G1 and G2. G1 ⊕G2 denotes the join
of G1 and G2, i.e., the graph obtained from G1 ∪G2 by adding an edge between any two vertices v ∈ V (G1) and
w ∈V (G2). A spider G = (S,K,R,E) is a graph with vertex set V = S∪K ∪R and edge set E such that

1. (S,K,R) is a partition of V and R may be empty;

2. the subgraph G[K∪R] induced by K and R is the join K⊕R, and K separates S and R, i.e., any path from
a vertex in S to a vertex in R contains a vertex in K;

3. S is a stable set, K is a clique, |S| = |K| ≥ 2, and there exists a bijection f : S → K such that, either
N(s)∩K = K−{ f (s)} for all vertices s ∈ S, or N(s)∩K = { f (s)} for all vertices s ∈ S. In the latter case
or if |S|= |K|= 2, G is called thin, otherwise G is thick.
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A graph G = (S,K,R,E) is a pseudo-spider if it satisfies only the first two properties of a spider. A graph
G = (S,K,R,E) is a q-pseudo-spider if it is a pseudo-spider and, moreover, |S∪K| ≤ q. Note that q-pseudo-spiders
and spiders are pseudo-spiders.

We now describe the decomposition of (q,q−4)-graphs.

Theorem 4 ([2]). Let q ≥ 0 and let G be a (q,q−4)-graph. Then, one of the following holds:

1. G is a single vertex, or

2. G = G1 ∪G2 is the disjoint union of two (q,q−4)-graphs G1 and G2, or

3. G = G1 ⊕G2 is the join of two (q,q−4)-graphs G1 and G2, or

4. G is a spider (S,K,R,E) where G[R] is a (q,q−4)-graph if R 6= /0, or

5. G is a q-pseudo-spider (H2,H1,R,E) where G[R] is a (q,q−4)-graph if R 6= /0.

Theorem 4 leads to a tree-like structure T (G) (the primeval tree) which represents the Primeval Decomposi-
tion of a (q,q−4)-graph G. T (G) is a rooted binary tree where any vertex v corresponds to an induced (q,q−4)-
subgraph Gv of G and the root corresponds to G itself. Moreover, the vertices of subgraphs corresponding to the
leaves of T (G) form a partition of V (G), i.e., {V (Gℓ)}ℓ lea f o f T (G) is a partition of V (G).

For any leaf ℓ of T (G), Gℓ is either a spider (S,K, /0,E), or has at most q vertices. Moreover, any internal
vertex v has its label following one of the four cases in Theorem 4 corresponds to Gv. More precisely, let v be an
internal vertex of T (G) and let u and w be its two children. v is a parallel node if Gv = Gu ∪Gw. v is a series node

if Gv = Gu ⊕Gw. v is a spider node if u is a leaf with Gu is a spider (S,K, /0,F) and Gv is the spider (S,K,R,E)

where Gv[R] = Gw and Gv[S∪K] = Gu. Finally, v is a small node if u is a leaf with |V (Gu)| ≤ q and Gv is the
q-pseudo-spider (S,K,R,E) where Gv[R] = Gw and Gv[S∪K] = Gu.

This tree can be obtained in linear-time [3].
We compute hn(G) by a post-order traversal in T (G). More precisely, given v∈V (T (G)), let Hv be an optimal

hull set of Gv and let H∗
v be an optimal hull set of G∗

v , the graph obtained by adding a universal vertex to Gv. We
show in next subsection that we can compute (Hℓ,H

∗
ℓ ) for any leaf ℓ of T (G) in time O(2qn). Moreover, for any

internal vertex v of T (G), we show that we can compute (Hv,H
∗
v ) in time O(2qn), using the information that was

computed for the children and grand children of v in T (G).

Theorem 5. Let q ≥ 0 and let G be a n-node (q,q−4)-graph. An optimal hull set of G can be computed in time

O(2qn2).

Before going into the details of the algorithm in next subsection, we prove some useful lemmas.

Lemma 8 ([1]). Let G = (S,K,R,E) be a pseudo-spider with R neither empty nor a clique. Then any minimum

hull set of G contains a minimum hull set of the subgraph G[K ∪R].

Proof. Let H be a minimum hull set of G. Let HS = H ∩S and HR = H \HS. We prove that HR is a minimum hull
set of G[K ∪R].

Let H ′ be any minimum hull set of G[K ∪R]. Note that H ′ ⊆ R because K is a set of universal vertices in
G[K ∪R] and by Lemma 2. Moreover, By Lemma 3, because G[K ∪R] is an isometric subgraph of G, the convex
hull of H ′ in G contains G[K ∪R]. Hence, HS ∪H ′ is a hull set of G and hn(G)≤ |HS|+hn(G[K ∪R]).

Now it remains to prove that HR is a hull set of G[K ∪R]. Clearly, if HR generate all vertices of R in G[K ∪R]

then HR is a hull set of G[K ∪R] since there are at least two non adjacent vertices in R and any vertex in K is
adjacent to all vertices in R. For purpose of contradiction, assume HR does not generate R in G[K∪R]. This means
that there is a vertex v ∈ R, that is generated in G by a vertex in S∪K, i.e., v ∈ R is an internal vertex of a shortest
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path between s ∈ S∪K and some other vertex, which is not possible, since we have all the edges between K and
R. Hence, hn(G[K ∪R])≤ |HR|.

Therefore, |HS|+ |HR| = hn(G) ≤ |HS|+hn(G[K ∪R]) ≤ |HS|+ |HR|. So, hn(G[K ∪R]) = |HR|, i.e., HR is a
minimum hull set of G[K ∪R] contained in H.

The next lemma is straightforward by the use of isometry.

Lemma 9. Let G be a graph which is not complete and that has a universal vertex. Let H obtained from G by

adding some new universal vertices. A set is a minimum hull set of G if, and only if, it is a minimum hull set of H.

5.2 Dynamic programming and correctness

In this section, we detail the algorithm presented in previous section and we prove its correctness. Let v∈V (T (G)),
which may therefore be either a leaf, a parallel node, a series node, a spider node or a small node. For each of these
five cases, we describe how to compute (Hv,H

∗
v ), in time O(2qn).

Let us first consider the case when v is a leaf of T (G).
If Gv is a singleton {w}, then Hv =V (Gv) = {w} and H∗

v =V (G∗
v). If Gv is a spider (S,K, /0,E) then Hv = S

since S is a set of simplicial vertices (so it has to be included in any hull set by Lemma 1) and it is sufficient to
generate Gv. One may easily check that if Gv is a thick spider, S is also a minimum hull set of G∗

v , i.e., S = H∗
v .

However, in case Gv is a thin spider, S does not suffice to generate G∗
v and in this case it is easy to see that this is

done by taking any extra vertex k ∈ K, in which case we have H∗
v = S∪{k}. Finally, if Gv has at most q vertices,

Hv and H∗
v can be computed in time O(2q) by an exhaustive search.

Now, let v be an internal node of T (G) with children u and w.
If v is a parallel node, then Gv = Gu ∪Gw. Then, (Hv,H

∗
v ) can be computed in time O(1) from (Hu,H

∗
u ) and

(Hw,H
∗
w) thanks to Lemma 10.

Lemma 10 ([12]). Let Gv = Gu ∪Gw. Then (Hv,H
∗
v ) = (Hu ∪Hw,H

∗
u ∪H∗

w).

Proof. The fact that Hu ∪Hw is an optimal hull set for Gv is trivial. The second part comes from the fact that H∗
u

(resp., H∗
w) is an isometric subgraph of H∗

v and from Lemma 3.

Now, we consider the case when v is a series node.

Lemma 11. If Gv = Gu ⊕Gw, then (Hv,H
∗
v ) can be computed from the sets (Hx,H

∗
x ) of the children or grand

children x of v in T (G), in time O(2qn).

Proof. If Gu and Gw are both complete, then Gv is a clique and (Hv,H
∗
v ) = (V (Gv),V (G∗

v)).
If Gu and Gw are both not complete, let x,y be any two non adjacent vertices in Gu. Then, we claim that

Hv = H∗
v = {x,y}. Indeed, in Gv, x and y generate all vertices in V (Gw) (resp., of G∗

w). In particular, two non
adjacent vertices z,r ∈V (Gw) are generated. Symmetrically, z,r generate all vertices in V (Gu) (resp., in V (G∗

u)).
Without loss of generality, we suppose now that Gu is a complete graph and that Gw is a non-complete

(q,q−4)-graph. First, observe that no vertex of Gu belongs to any minimum hull set of Gv, since they are universal
(Lemma 2). Note also that, by Lemma 9 and since Gv is not a clique and has universal vertices, we can make
Hv = H∗

v . Hence, in what follows, we consider only the computation of Hv. Let us consider all possible cases for
w in T (G).

• w is a series node. Gw is the join of two graphs. We claim that Hv = Hw.

In this case, Gw is an isometric subgraph of Gv. Thus, by Lemma 3, any minimum hull set of Gw

generates all vertices of V (Gw) in Gv. Finally, since Gw has two non-adjacent vertices they generate all
vertices of Gu in Gv.
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• w is a parallel node. Gw is the disjoint union of two graphs. Let x and y the children of w in T (G). Then
Gw = Gx ∪Gy. Let X = H∗

x if Gx is not a clique and X = V (Gx), otherwise, let Y = H∗
y if Gy is not a

clique and Y =V (Gy), otherwise. We claim that Hv = X ∪Y .

Clearly, if Gx (resp., Gy) is a clique, all its vertices are simplicial in Gv and then must be contained in
any hull set by Lemma 1. Moreover, recall that, by Lemma 2, no vertex of Gu belongs to any minimum
hull set of G.

Now, let z ∈ {x,y} such that Gz is not complete. It remains to show that it is necessary and sufficient to
also include any minimum hull set H∗

z of G∗
z , in any minimum hull set of G.

The necessity can be easily proved by using Lemma 8 to every Gz that is not a complete graph.

The sufficiency follows again from the fact that Gu is generated by two non adjacent vertices of Gw and
since, in all cases, X ∪Y contains at least one vertex in Gx and one vertex in Gy, all vertices in Gu will
be generated.

• w is a spider node and Gw is a thin spider (S,K, /0,E ′). Then, Hv = S∪{k} = G∗
w where k is any vertex

in K.

All vertices in S are simplicial in Gv, hence any hull set of Gv must contain S by Lemma 1. Now, in
Gv, the vertices in S are at distance two and no shortest path between two vertices in S passes through a
vertex in K, since there is a join to a complete graph. Therefore, S is not a hull set of Gv. However, since
|S| ≥ 2, it is easy to check that adding any vertex k ∈ K to S is sufficient to generate all vertices in Gv.
So S∪{k} is a minimum hull set of Gv.

Note that, in that way, Hv = S∪{k}= G∗
w

• w is a spider node and Gw is a spider (S,K,R,E ′) that is either thick or R 6= /0 and R induces a (q,q−4)-
graph. Then, Hv = Hw.

If R = /0, then Gw is thick. In this case, it is easy to check that the only minimum hull set of Gw is S

(because it consists of simplicial vertices) and it is also a minimum hull set for Gv. Hence, Hv = Hw = S.

If R 6= /0, then by Lemma 1 any minimum hull set of Gw contains S. Moreover, by Lemma 8 any minimum
hull set of Gw contains a minimum hull set of K ∪R which is composed by vertices of R.

By the same lemmas, a minimum hull set of Gw is a minimum hull set of Gv since, by Lemma 2, no
vertex of Gu belongs to any minimum hull set of Gv and Gu is generated by non-adjacent vertices of Gw.

• w is a small node. Gw is a q-pseudo-spider (H2,H1,R,E
′) and R induces a (q,q−4)-graph.

If R = /0, Gv is the join of a clique Gu with a graph Gw that has at most q vertices. No vertex of Gu

belongs to any minimum hull set of Gv, since they are universal. Thus, Hv can be computed in time
O(2q) by testing all the possible subsets of vertices of Gw.

Similarly, if R is a clique, all vertices in R are simplicial in Gv so they must belong to any hull set of
Gv. Moreover, no vertices in Gu belong to any minimum hull set of Gv. So Hv can be computed in time
O(2q) by testing all the possible subsets of vertices of H1 ∪H2 and adding R to them.

In case R 6= /0 nor a clique, two cases must be considered. By definition of the decomposition, there exists
a child r of w in T (G) such that V (Gr) = R.

– If G[H1] is a clique, then, Gv =(H2,H1∪V (Gu),R,E) is a pseudo-spider that satisfies the conditions
in Lemma 8. Hence, any minimum hull set of Gv contains a minimum hull set of P = G[H1 ∪

V (Gu)∪ R]. Let Z be a minimum hull set of Gv and let Z′ = Z ∩H2. By Lemma 8, we have
|Z′| ≤ hn(Gv)−hn(P).

By Lemma 9, H∗
r is a minimum hull set of G[H1 ∪V (Gu)∪R]. Now, G[H1 ∪V (Gu)∪R] is an

isometric subgraph of Gv. Hence, by Lemma 3, H∗
r generates all vertices of G[H1 ∪V (Gu)∪R] in
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Gv. Therefore, H∗
r ∪Z′ will generate all vertices of Gv. Since |H∗

r |= hn(P), we get that |H∗
r ∪Z′| ≤

hn(Gv) and then H∗
r ∪Z′ is a minimum hull set of Gv.

So, we have shown that there exists a minimum hull set for Gv that can be obtained from H∗
r by

adding some vertices in H1 ∪H2. Since |H1 ∪H2| ≤ q, such a subset of H1 ∪H2 can be found in
time O(2q).

– In case G[H1] is not a clique, let x and y be two non adjacent vertices of H1. We claim in this case
that there exists a minimum hull set of Gv containing at most one vertex of R. Let S be a minimum
hull set of Gv containing at least two vertices in R. Observe that S′ = (S\R)∪{x,y} is also a hull
set of Gv since x and y are sufficient to generate all vertices in R. Consequently, |S′| ≤ |S| and S′ is
minimum.

Since no hull set of Gv contains a vertex in V (Gu), there always exists a minimum hull set of Gv that
consists of only vertices in H1 ∪H2 plus at most one vertex in R. Therefore an exhaustive search
can be performed in time O(n2q).

Now, we consider the case when v is a spider node or a small node. That is Gv = (S,K,R,E). If R 6= /0, let r

be the child of v such that V (Gr) = R.

Lemma 12. Let Gv = (S,K,R,E) be a spider such that R induces a (q,q−4)-graph.

Then, Hv = H∗
v = S∪H∗

r if R 6= /0 and R is not a clique, and Hv = H∗
v = S∪R, otherwise.

Proof. Since all the vertices in S are simplicial vertices in Gv and in G∗
v , we apply Lemma 1 to conclude that they

are all contained in any hull set of Gv (resp., of G∗
v).

By the structure of a spider, every vertex of K (and the universal vertex in G∗
v) belongs to a shortest path

between two vertices in S and are therefore generated by them in any minimum hull set of Gv (resp., of G∗
v).

Consequently, if R = /0, S is a minimum hull set of Gv (resp., of G∗
v). If R is a clique, S∪R is the set of simplicial

vertices of Gv (resp., of G∗
v) and also a minimum hull set of Gv (resp., of G∗

v).
Finally, if R 6= /0 and R is not a clique, then Gv is a pseudo-spider satisfying the conditions of Lemma 8.

Similarly, G∗
v is a pseudo-spider (by including the universal vertex in K). Then, by Lemma 8, any hull set of

Gv (resp., of G∗
v) contains a minimum hull set of G[K ∪R] (resp., of G∗

v \ S. Moreover, any hull set contains all
vertices in S since they are simplicial. Hence, hn(Gv) = hn(G∗

v) = |S|+ hn(G[K ∪R]) (recall that, by Lemma 9,
hn(G[K∪R]) = hn(G∗

v \S)). Finally, since G[K∪R]) is an isometric subgraph of Gv, then H∗
r (which is a minimum

hull set of G[K ∪R] by Lemma 9) generates G[K ∪R] in Gv (resp., in G∗
v).

Hence, S∪H∗
r is a hull set of Gv and G∗

v . Moreover, it has size |S|+hn(G[K ∪R]), so it is optimal.

Lemma 13. Let Gv = (H2,H1,R,E) be a q-pseudo-spider such that R is a (q,q−4)-graph. Then, Hv and H∗
v can

be computed in time O(2qn).

Proof. All the arguments to prove this lemma are in the proof of Lemma 11. Moreover, the following arguments
hold both for Gv and G∗

v : they allow to compute both Hv and H∗
v .

If R = /0, Gv has at most q vertices, for a fixed positive integer q. Thus, its hull number can be computed in
O(2q)-time.

Otherwise, if H1 is a clique, by Lemma 8, any minimum hull set of Gv contains a minimum hull set of
G[H1 ∪R]. Moreover, by the same arguments as in Lemma 11, we can show that there is an optimal hull set for Gv

that can be obtained from H∗
r (minimum hull set of G[H1 ∪R]) and some vertices in H2.

If H1 is not a clique, two non-adjacent vertices of H1 can generate R. Thus, we conclude that there exists
a minimum hull set of Gv containing at most one vertex of R. Then, a minimum hull set of Gv can be found in
O(2qn)-time, where n = |V (Gv)|.
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6 Hull Number via 2-connected components

In this section, we introduce a generalized variant of the hull number of a graph. Let G = (V,E) be a graph and
S ⊆V . Let hn(G,S) denote the minimum size of a set U ⊆V \S such that U ∪S is a hull set for G. We prove that
to compute the hull number of a graph, it is sufficient to compute the generalized hull number of its 2-connected
components (or blocks). This extends a result in [15].

Theorem 6. Let G be a graph and G1, . . . ,Gn be its 2-connected components. For any i ≤ n, let Si ⊆V (Gi) be the

set of cut-vertices of G in Gi. Then,

hn(G) = ∑
i≤n

hn(Gi,Si).

Proof. Clearly, the result holds if n = 1, so we assume n > 1.
A block Gi is called a leaf-block if |Si|= 1. Note that, for any leaf-block Gi, G[V \ (V (Gi)\Si)] is convex, so

by Lemma 4, any hull set of G contains at least one vertex in V (Gi)\Si. Moreover,

Claim 7. For any minimum hull set S of G, S∩ (∪i≤nSi) = /0.

Proof. For purpose of contradiction, let us assume that a minimum hull set S of G contains a vertex v ∈ Si for some
i ≤ n. Note that there exist two leaf-blocks G1 and G2 such that v is on a shortest path between vertices in V (G1)

and V (G2) or {v}=V (G1)∩V (G2). By the remark above, there exist x∈ (V (G1)\S1)∩S and y∈ (V (G2)\S2)∩S.
Hence, v is on a shortest (x,y)-path, i.e., v ∈ I[x,y]⊆ Ih[S\{v}]. Hence, V ⊆ Ih[S]⊆ Ih[S\{v}] and S\{v} is a hull
set of G, contradicting the minimality of S. ⋄

Claim 8. Let S be a hull set of G. Then S′ = (S∩V (Gi))∪Si is a hull set of Gi.

Proof.

For purpose of contradiction, assume that Ih[S
′] = V (Gi) \X for some X 6= /0. Then, there is v ∈ X ∩ I[a,b]

for some a ∈V (G)\V (Gi) and b ∈V (G)\X . Then, there is a shortest (a,b)-path P containing v. Hence, there is
u ∈ Si such that u is on the subpath of P between a and v. Moreover, let w = b if b ∈ Gi, and else let w be a vertex
of Si on the subpath of P between v and b. Hence, v ∈ I[u,w]⊆ Ih[S

′], a contradiction.
⋄

Let X be any minimum hull set of G. By Claim 7, X ∩ (∪i≤nSi) = /0, hence we can partition X = ∪i≤nXi

such that Xi ⊆ V (Gi) \ Si and Xi ∩X j = /0 for any i 6= j. Moreover, by Claim 8, Xi ∪ Si is a hull set of Gi, i.e.,
|Xi| ≥ hn(Gi,Si). Hence, hn(G) = |X |= ∑i≤n |Xi| ≥ ∑i≤n hn(Gi,Si).

It remains to prove the reverse inequality. For any i ≤ n, let Xi ⊆ V (Gi) \ Si such that Xi ∪ Si is a hull set
of Gi and |Xi| = hn(Gi,Si). We prove that S = ∪i≤nXi is a hull set for G. Indeed, for any v ∈ Si, there are two
leaf-blocks G1,G2 such that v is on a shortest path between G1 and G2 or {v} = V (G1)∩V (G2). So, there exist
x ∈ X1 and y ∈ X2 such that v is on a shortest (x,y)-path, i.e., v ∈ I[x,y]⊆ Ih[S]. Hence, ∪i≤nSi ⊆ Ih[S] and therefore,
V = ∪i≤nIh[Xi ∪Si]⊆ Ih[∪i≤n(Xi ∪Si)]⊆ Ih[∪i≤n(Xi)] = Ih[S].

A cactus G is a graph in which every pair of cycles have at most one common vertex. This definition implies
that each block of G is either a cycle or an edge. By using the previous result, one may easily prove that:

Corollary 2 ([1]). In the class of cactus graphs, the hull number can be computed in linear time.
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7 Bounds

In this section, we use the same techniques as presented in [12, 15] to prove new bounds on the hull number of
several graphs classes. These techniques mainly rely on a greedy algorithm for computing a hull set of a graph
and that consists of the following: given a connected graph G = (V,E) and its set S of simplicial vertices, we start
with H = S or H = {v} (v is any vertex of V ) if S = /0, and C0 = Ih[H]. Then, at each step i ≥ 1, if Ci−1 ⊂ V , the
algorithm greedily chooses a subset Xi ⊆V \Ci−1, add Xi to H and set Ci = Ih[H]. Finally, if Ci =V , the algorithm
returns H which is a hull set of G.

Claim 9. If for every i ≥ 1, |Ci \ (Ci−1 ∪ Xi)| ≥ c · |Xi|, for some constant c > 0, then |H| ≤ max{1, |S|}+
⌈

|V |−max{1,|S|}
1+c

⌉

.

In the following, we keep the notation used to describe the algorithm.

Claim 10. Let G be a connected graph. Then, before each step i ≥ 1 of the algorithm, for any v ∈ V \Ci−1,

N(v)∩Ci−1 induces a clique. Moreover, any connected component induced by V \Ci−1 has at least 2 vertices.

Proof. Let v ∈V \Ci−1 and assume v has two neighbors u and w in Ci−1 that are not adjacent. Then, v ∈ I[u,w]⊆

Ci−1 because Ci−1 is convex, a contradiction. Note that, at any step i ≥ 1 of the algorithm, V \Ci−1 contains no
simplicial vertex. By previous remark, if v has only neighbors in Ci−1, then v is simplicial, a contradiction.

Claim 11. If G is a connected C3-free graph, then, at every step i ≥ 1 of the algorithm, a vertex in V \Ci−1 has at

most one neighbor in Ci−1.

Proof. Assume that v ∈ V \Ci−1 has two neighbors u,w ∈ Ci−1. {u,w} /∈ E because G is triangle-free. This
contradicts Claim 10.

Lemma 14. For any C3-free connected graph G and at step i ≥ 1 of the algorithm, either Ci−1 =V or there exists

Xi ⊂V \Ci−1 such that |Ci \ (Ci−1 ∪Xi)| ≥ |Xi|.

Proof. If there is v ∈V \Ci−1 at distance at least 2 from Ci−1, let Xi = {v} and the result clearly holds. Otherwise,
let v be any vertex in V \Ci−1. By Claim 10, v has a neighbor u in V \Ci−1. Moreover, because no vertices of
V \Ci−1 are at distance at least 2 from Ci−1, v and u have some neighbors in Ci−1. Finally, u and v have no common
neighbors because G is triangle-free. Hence, by taking Xi = {v}, we have u ∈Ci and the result holds.

Recall that the girth of a graph is the length of its smallest cycle.

Lemma 15. Let G connected with girth at least 6. Before any step i ≥ 1 of the algorithm when Ci−1 6= V , there

exists Xi ⊂V \Ci−1 such that |Ci \ (Ci−1 ∪Xi)| ≥ 2|Xi|.

Proof. If there is v ∈V \Ci−1 at distance at least 3 from Ci−1, let Xi = {v} and the result clearly holds. Otherwise,
let v be a vertex in V \Ci−1 at distance two from any vertex of Ci−1. Let w ∈ V \Ci−1 be a neighbor of v that
has a neighbor z ∈ Ci−1. Since v is not simplicial, v has another neighbor u 6= w in V \Ci−1. If u is at distance
two from Ci−1, let y ∈ V \Ci−1 be a neighbour of u that has a neighbor x ∈ Ci−1. In this case, since the girth of
G is at least six, z 6= x and, there is a shortest (v,z)-path containing w and a shortest (v,x)-path containing u and
y. Consequently, by setting Xi = {v} we obtain the desired result. The same happens in case u has a neighbor
x ∈Ci−1. One may use again the hypothesis that the girth of G is at least six to conclude that, by setting Xi = {v}

we obtain that w,u ∈Ci.
Finally, we claim that no vertex remains in V \Ci−1. By contradiction, suppose that it is the case and that there

are in V \Ci−1 and all these vertices have a neighbor in Ci−1. Let v be a vertex in V \Ci−1 that has a neighbor z in
Ci−1. Again, v has a neighbor u ∈V \Ci−1, since it is not simplicial. The vertex u must have a neighbor x in Ci−1.
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Observe that x and z are at distance 3, since the girth of G is at least six. Consequently, v and u are in a shortest
(x,z)-path should not be in V \Ci−1, that is a contradiction.

Lemma 16. Let G be a connected graph. Before any step i ≥ 1 of the algorithm when Ci−1 6= V , there exist

Xi ⊂V \Ci−1 such that |Ci \ (Ci−1 ∪Xi)| ≥ 2|Xi|/3.

Moreover, if G is k-regular (k ≥ 1), there exist Xi ⊂V \Ci−1 such that |Ci \ (Ci−1 ∪Xi)| ≥ |Xi|.

Proof. By Claim 10, all connected component of V \Ci−1 contains at least one edge.

• If there is v ∈V \Ci−1 at distance at least 2 from Ci−1, let Xi = {v} and |Ci \ (Ci−1 ∪Xi)| ≥ |Xi|.

• Now, assume all vertices in V \Ci−1 are adjacent to some vertex in Ci−1. If there are two adjacent vertices
u and v in V \Ci−1 such that there is z ∈ Ci−1 ∩N(u) \N(v), then let Xi = {v}. Therefore, u ∈ Ci and
|Ci \ (Ci−1 ∪Xi)| ≥ |Xi|. So, the result holds.

• Finally, assume that for any two adjacent vertices u and v in V \Ci−1, N(u)∩Ci−1 = N(v)∩Ci−1 6= /0.

We first prove that this case actually cannot occur if G is k-regular. Let v ∈ V \Ci−1. By Claim 10,
K = N(v)∩Ci−1 induces a clique. Moreover, for any u ∈ N(v) \Ci−1, N(u)∩Ci−1 = K. Note that
k = |K|+ |N(v) \Ci−1|. Let w ∈ K. Then, A = (K ∪ N(v)∪ {v}) \ {w} ⊆ N(w) and since |A| = k,
we get that A = N(w). Moreover, N[u] cannot induce a clique since V \Ci−1 contains no simplicial
vertices, i ≥ 1. Hence, there are x,y ∈ N(v)\Ci−1 such that {x,y} /∈ E. Because G is k-regular, there is
z ∈ N(x)\(N(v)∪Ci−1). However, N(z)∩Ci−1 = N(x)∩Ci−1 = K. Hence, z ∈ N(w)\A, a contradiction.

Now, assume that G is a general graph. Let v be a vertex of minimum degree in V \Ci−1. Recall
that, by Claim 10, N(v)∩Ci−1 induces a clique. Because any neighbor u ∈ V \Ci−1 of v has the same
neighborhood as v in Ci−1 and because v is not simplicial, then there must be u,w ∈ N(v)\Ci−1 such that
{u,w} /∈ E. Now, by minimality of the degree of v, there exists y ∈ N(u)\ (N(v)∪Ci−1) 6= /0. Similarly,
there exists z ∈ N(w)\ (N(v)∪Ci−1) 6= /0. Let us set Xi = {v,z,y}. Hence, u,w ∈Ci \ (Ci−1 ∪Xi) and the
result holds.

Theorem 7. Let G be a connected n-node graph with s simplicial vertices. All bounds below are tight:

• hn(G)≤ max{1,s}+
⌈

3(n−max{1,s})
5

⌉

;

• If G is C3-free or k-regular (k ≥ 1), then hn(G)≤ max{1,s}+
⌈

n−max{1,s}
2

⌉

;

• If G has girth ≥ 6, then hn(G)≤ max{1,s}+
⌈

1(n−max{1,s})
3

⌉

.

Proof. First statement follows from Claim 9 and first statement in Lemma 16. The second statement follows from
Claim 9 and Lemma 14 (case C3-free) and second part of Lemma 16 (case regular graphs) . Last statement follows
from Claim 9 and Lemma 15.

All bounds are reached in case of complete graphs. In case with no simplicial vertices: the first bound is
reached by the graph obtained by taking several disjoint C5 and adding a universal vertex, the second bound is
obtained for a C5, and the third one is reached by a C7.

The first statement of the previous theorem improves another result in [15]:
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Corollary 3. If G is a graph with no simplicial vertex, then:

limsup
|V (G)|→∞

hn(G)

|V (G)|
=

3
5
.

It it important to remark that the second statement of Theorem 7 is closely related to a bound of Everett and
Seidman proved in Theorem 9 of [15]. However, the graphs they consider do not have simplicial vertices and,
consequently, they do not have vertices of degree one, which is not a constraint for our result.

8 Conclusions

In this paper, we simplified the reduction of Dourado et al. [12] to answer a question they asked about the com-
plexity of computing the hull number of bipartite graphs. We presented polynomial-time algorithms for computing
the hull number of cobipartite graphs, (q,q−4)-graphs and cactus graphs. Finally, we presented upper bounds for
general graphs and two particular graph classes.

The result in Section 5 provides an FPT algorithm where the parameter is the number of induced P4’s in the
input graph. It would be nice to know about the paramerized complexity of HULL NUMBER when the parameter
is the size of the hull set.

Another question of Dourado et al. [12], concerning to the complexity of this problem for interval graphs and
chordal graphs, remains open. Up to the best of our knowledge, determining the complexity of the HULL NUMBER

problem on planar graphs is also an open problem.
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