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Audio InpaintingAmir Adler , Valentin Emiya , Maria G. Jafari , Mihael Elad ,Rémi Gribonval , Mark D. PlumbleyDomaine :Équipe-Projet MetissRapport de reherhe n° 7571 � Marh 16, 2011 � 24 pagesAbstrat:We propose the Audio Inpainting framework that reovers audio intervalsdistorted due to impairments suh as impulsive noise, lipping, and paket loss.In this framework, the distorted samples are treated as missing, and the signalis deomposed into overlapping time-domain frames. The restoration problemis then formulated as an inverse problem per audio frame. Sparse representa-tion modeling is employed per frame, and eah inverse problem is solved usingthe Orthogonal Mathing Pursuit algorithm together with a disrete osine or aGabor ditionary. The performane of this algorithm is shown to be ompara-ble or better than state-of-the-art methods when bloks of samples of variabledurations are missing. We also demonstrate that the size of the blok of missingsamples, rather than the overall number of missing samples, is a ruial pa-rameter for high quality signal restoration. We further introdue a onstrainedMathing Pursuit approah for the speial ase of audio delipping that exploitsthe sign pattern of lipped audio samples and their maximal absolute value, aswell as allowing the user to speify the maximum amplitude of the signal. Thisapproah is shown to outperforms state-of-the-art and ommerially availablemethods for audio delipping.Key-words: Inpainting, lipping, sparse representation, mathing pursuit.A. Adler and M. Elad are with the Computer Siene Department, The Tehnion, Haifa32000, Israel. V. Emiya and R. Gribonval are with INRIA, Centre Inria Rennes - BretagneAtlantique, 35042 Rennes Cedex, Frane. M. G. Jafari and M. D. Plumbley are with QueenMary University of London, Centre for Digital Musi, Department of Eletroni Engineering,London E1 4NS, U.K., (e-mail: maria.jafari�ele.qmul.a.uk).This work has been submitted to IEEE Transations on Audio Speeh and LanguageProessing. Part of this work has been presented at the IEEE International Conferene onAoustis, Speeh and Signal Proessing (ICASSP) in 2011 [1℄.This work was supported by the EU Framework 7 FET-Open projet FP7-ICT-225913-SMALL: Sparse Models, Algorithms and Learning for Large-Sale data.



Audio InpaintingRésumé : Nous introduisons le onept d'Inpainting Audio pour la restaurationde portions de données audio distordues par des dégradations tels que les lis,le lipping ou la perte de paquets. Dans e ontexte, les données distordues sontonsidérées omme manquantes et le signal est déomposé dans le domaine tem-porel en trames. Le problème de restauration est formulé omme un problèmeinverse dans haque trame. Celle-i est modélisée par une représentation pari-monieuse et le problème inverse est résolu via l'algorithme Orthogonal MathingPursuit en utilisant un ditionnaire de osinus disret ou de Gabor. Les perfor-manes obtenues sont omparables à l'état de l'art, ave des blos d'éhantillonsmanquants de durée variable. Nous montrons également que la qualité de larestauration dépend davantage de la taille des blos d'éhantillons manquantsque du nombre total d'éhantillons manquants. Nous introduisons en�n unalgorithme de type Mathing Pursuit ave ontraintes pour le as partiulierdu delipping audio, dans laquelle sont exploitées les propriétés d'amplitude deséhantillons saturés: signe, amplitude minimum et maximum. Les performanesobtenues sont supérieures à elles de l'état de l'art et à de logiiels ommeriauxpour le delipping.Mots-lés : Inpainting, lipping, représentations parimonieuses, mathingpursuit.
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() The image inpainting problem: reov-ery of loally-hidden pixels.Figure 1: Examples of restoration problems related to inpainting.1 IntrodutionSpeeh and musi signals are often subjet to loalized distortions, where theintervals of distorted samples are surrounded by undistorted samples. Exam-ples inlude impulsive noise or liks (see Fig. 1a), lipping (see Fig. 1b), CDsrathes, paket loss in ordless phones or Voie over IP (VoIP) and more. Insuh situations, the distorted samples an be treated as missing. A restorationalgorithm is employed to reonstrut the missing samples, in a similar way asfor image inpainting (see Fig. 1). However, in the audio �eld, suh problemshave been treated separately and depending on the ontext, they have beenreferred to as audio interpolation [2�6℄, extrapolation [3,7,8℄, imputation [9,10℄,indution [11℄, (bandwidth) extension [12�15℄ or onealment [16, 17℄.Substantial e�ort has been foused on the restoration of audio signals or-rupted by liks due to old reordings or srathed CDs (see Fig. 1a). In thisproblem, intervals of orrupted samples � from 20 µs to 4 ms [4℄ � our at ran-dom loations. Typial approahes employ autoregressive (AR) modeling [2,3℄,or Bayesian estimation to reover the orrupted samples [4℄. Other methodsutilize neural networks [18℄ or sinusoidal modeling [5, 8℄. A related problem isautomati speeh reognition in the presene of isolated noisy samples. Thisproblem is treated in [10℄ with a ompressive sensing approah in the spetro-gram image domain, and by solving an l1 regularized least squares problem.RR n° 7571



Audio Inpainting 4Another important � though less often addressed � problem is audio lip-ping [6,7,19℄, whih refers to the trunation of the waveform beyond a thresholdwhen the maximum range in an aquisition system is exeeded (see Fig. 1b).The lipped samples are arranged in groups and their loations are determinedby the amplitude of the signal (rather than being randomly spread). The delip-ping problem is partiularly hallenging for this reason and as the informationarried by the highest-amplitude samples is ompletely absent.Long intervals of samples may be lost during transmission over ordlessphones or in VoIP systems, where the problem is addressed using paket lossonealment algorithms [16, 17℄. Missing intervals lengths are in the range of
5 ms to 60 ms, whih are lose to the typial duration for the pseudo-stationarityof audio signals. The low lateny requirement in the VoIP ase results in rel-atively simple algorithms; however, estimating missing pakets in peer-to-peerrepositories is a new appliation where higher quality reonstrution an beexpeted (as the lateny requirement is less stringent).Finally, the unreliable or missing audio data an be time-frequeny re-gions [5,9,11,14,20℄, in lassi�ation appliations like automati speeh reogni-tion [9,20℄ or soure separation with time-frequeny loalized interferene � thephrase �audio inpainting� has been used one in this spei� ase [11℄. Band-width extension [12�15℄ is another important time-frequeny-domain applia-tion, where high frequeny ontent is estimated from the low frequeny ontentin order to provide high quality audio.In this paper, we present a uni�ed framework for the restoration of distortedaudio data, leveraging the onept of Image Inpainting [21�23℄. In the proposedframework, termed Audio Inpainting, the distorted data is assumed missingand its loation is assumed to be known a-priori. We further employ SparseRepresentations (SR), whih have been demonstrated to faithfully model audiosignals [24, 25℄ and to address the image inpainting framework [22, 26, 27℄. Theproposed approah is diretly based upon those prior works.The ontributions of this paper are four-fold:a) Audio inpainting is de�ned as an inverse problem, based upon the oneptof image inpainting.b) A framework for audio inpainting in the time domain is proposed, based onsparse representations. It exploits two possible ditionaries (disrete osineand Gabor) known to provide aurate sparse models for audio signals.) The Orthogonal Mathing Pursuit (OMP) algorithm for audio inpainting isadapted, in partiular to deal with the properties of the Gabor ditionary.d) A onstrained mathing pursuit approah is applied to signi�antly enhanethe performane for audio delipping problems.This paper is organized as follows. In Setion 2, audio inpainting is formal-ized as an inverse problem. The proposed framework is introdued in Setion 3inluding the sparse models used for time-domain audio inpainting. The adap-tation of the OMP algorithm for audio inpainting in the time domain and foraudio delipping is presented in Setion 4. Several experiments are proposed inSetion 5, while we disuss our �ndings and draw onlusions in Setion 6.RR n° 7571



Audio Inpainting 52 Audio Inpainting Problem StatementWe de�ne audio inpainting as a general problem enountered in many appli-ations: one observes a partial set of reliable audio data while the remainingunreliable data is either totally missing or highly degraded; the unreliable datais onsidered missing and it is estimated from the reliable data portion.The general formulation of audio inpainting is given in Setion 2.1 whileseveral partiular time-domain ases are detailed in Setions 2.2 and 2.3.2.1 Formulation of audio inpaintingWe onsider a vetor s ∈ R
L of audio data and an a-priori known partition

{Im, Ir} of the support I , {1, 2, · · · , L} of s: Im ⊂ I and Ir , I\Im. Weassume that the oe�ients s (Im) are either missing or masked by a severedistortion. Thus, the observed data y ∈ R
L oinides with s on Ir only. Theaudio inpainting problem is de�ned as the reovery of the oe�ients s (Im)based on the knowledge of:1. the reliable data yr , y (Ir) = s (Ir),2. the partition {Im, Ir},3. additional information about the observed signal,4. and, optionaly, information about the missing data (see e.g. in the aseof lipping below).In matrix form, the reliable data yr result from the linear model

yr = Mrs, (1)where Mr is the so-alled measurement matrix obtained from the L×L identitymatrix IL by seleting the rows Ir assoiated with the reliable oe�ients in s.In a similar way, the missing data to be reovered are s (Im) = Mms, where
Mm onsists of the rows Im in IL.In the general audio inpainting framework, audio data an be either samplesin waveforms or oe�ients in transforms like time-frequeny representations.The problem formulation above an be used for multi-dimensional signals likemultihannel waveforms or time-frequeny oe�ients, by simply reshaping thesignal matrix as a vetor s.In the rest of this paper, we only onsider the inpainting of missing samplesin a single-hannel waveform. The multi-dimensional ase is disussed in theonlusion (see Se. 6).2.2 Inpainting samples distorted by impulsive noiseIn the partiular ase of a signal orrupted by impulsive noise suh as liks (seeFig. 1a), Im is a set of integers between 1 and L and must be estimated in apreliminary stage. One often onsiders that the distorted samples are orruptedby a Gaussian noise n with high variane. Hene, the omplete observed signalinludes both the reliable samples yr and distorted ones ym:

{
yr = Mrs
ym = Mms + n,

(2)RR n° 7571



Audio Inpainting 6where the samples Mms in ym are masked by n so that they are onsidered asunknown.2.3 Inpainting intervals of missing samplesIn the ase where intervals of samples are missing, due to paket loss duringtransmission or to masking by audible interferenes, Im is omposed of groupsof onseutive integers: the samples s (Im) are totally missing and one onlyobserves yr = Mrs.In the ase of lipped signals, the samples to be estimated are also arrangedin intervals of onseutive samples, as depited in Fig. 1b. Their loationsdepend on the amplitude of the signal, suh that
Im , {n |1 ≤ n ≤ L, |s (n)| ≥ θlip } , (3)where θlip is the lipping level. One observes both the un-lipped, reliablesamples yr and the lipped, masked samples ym
{

yr = Mry = Mrs
ym = Mmy = Mm sign (s) θlip, (4)where sign (·) is the element-wise sign funtion. As presented in the next se-tions, the information provided by ym, even though very rude � a sign (persample) and the lipping level �, still substantially enhanes the estimation per-formane.3 Time-domain framework and modelsThe proposed framework fouses on time-domain audio inpainting. It relies ona frame-based proessing, as detailed in Setion 3.1 and on the sparse represen-tations modeling of audio signals, as presented in Setion 3.2. Two ditionariesused in this modeling are introdued in Setion 3.3.3.1 Frame-based proessing and reonstrutionAs in many audio proessing tasks, the signal is loally proessed:� by segmenting it into frames,� by independently inpainting eah frame,� and by synthesizing the full restored signal using the overlap-add (OLA)method [28℄.We deompose the signal into overlapping frames indexed by i, starting at time

ti and weighted by an analysis window wa with length N . By straightforwardlyadapting to the loal frames the problem statement de�ned for the full signalin Setion 2, the reliable samples in frame i an be written as
yri = Mr

isi (5)RR n° 7571



Audio Inpainting 7where Mr
i is the measurement matrix of the i-th frame obtained from Mr and

si (t) , s (t + ti)wa (t) is the windowed frame de�ned for 0 ≤ t ≤ N − 1. Wealso de�ne the supports Iri and Imi of the reliable samples and of the missing ormasked samples, respetively. One the estimation ŝi of si by some inpaintingalgorithm is ahieved, the reonstrution of the full signal is obtained as
ŝ(t) ,

∑

i

ws (t − ti) ŝi (t − ti) (6)where ws is the synthesis window suh that ∑
i ws (t − ti)wa (t − ti) = 1, ∀t.In the proposed approahes, we utilized 64ms-frames with 75% overlap, a ret-angular window for wa and a sine window for ws.3.2 Sparse Representations modeling of audio framesIn the Sparse Representations (SR) modeling framework [23℄, it is assumed thateah frame is well approximated by a sparse linear ombination of the olumnsof a (possibly overomplete) ditionary:

si ≈ Dxi, (7)where D ∈ R
N×KD is the ditionary, N ≤ KD and xi ∈ R

KD×1 is the repre-sentation vetor of the i-th frame. xi is assumed to be sparse, i.e. to have fewnon-zero oe�ients ompared to N . As a onsequene, we an also utilize theSR model for the observed reliable samples in eahframe
yri , Mr

isi ≈ Mr
iDxi. (8)We propose to reover the unknown samples si (Imi ) by estimating as x̂ithe (sparse) representation vetor of eah frame, given only the lean observedsamples (8) and limited side information (for the lipping ase)

ŝi (Imi ) = Mm
i Dx̂i. (9)This formulation inluding the notion of sparsity was �rst introdued forimage inpainting [22℄ with a global treatment with global transforms. Then,e�orts were dediated to work on loal pathes � similar to audio frames � andto introdue a learned ditionary to improve the inpainting results [26℄; theyhave been improved [27℄ by modeling better the problem and by learning theditionary diretly from the orrupted image.3.3 DitionariesWe propose two options to hoose a ditionary D in whih audio signals aresparse: the Disrete Cosine Transform ditionary, and a Gabor ditionary. Bothare widely used for sparse models of audio signals [24, 25, 29℄. Other �xedditionaries suh as multisale DCT [30℄, or learned ditionary [26℄ spei� topartiular inpainting tasks may also be interesting options.

RR n° 7571



Audio Inpainting 83.3.1 Disrete Cosine Transform (DCT) ditionaryThe �rst option onsists in a windowed Disrete Cosine Transform (DCT) over-omplete ditionary Dc =
[
dc

0, . . . ,d
c
Kc−1

], atom j being de�ned for 0 ≤ j ≤
Kc − 1 and 0 ≤ t ≤ N − 1 as

dc
j (t) , wd (t) cos

(
π

Kc

(
t +

1

2

) (
j +

1

2

)) (10)where Kc is the size of the DCT ditionary � i.e. the number of disrete frequen-ies � and wd is a weighting window set by the user. This hoie is motivatedby the wide use of windowed DCT atoms for sparse representation of audio sig-nals [25℄. However, the zero phase of Dc atoms is not adapted to audio signalsthat are made up with sinusoidal omponents with initial phase distributed be-tween 0 and 2π. As a onsequene, the DCT model ats as a basis rather thanas a synthesis model and the signals are not really sparse in Dc.3.3.2 Gabor ditionaryThe seond option aims at sparsely modeling arbitrary-phase sinusoidal ompo-nents by using a Gabor ditionary Dg =
{
d

g
(j,ϕ)

}
(j,ϕ)∈Γ

in whih the atoms areindex by a ontinuous set Γ , J0, Kg − 1K × [0, 2π[ and are de�ned as
d

g
j,ϕ , wd (t) cos

(
π

Kg

(
t +

1

2

) (
j +

1

2

)
+ ϕ

)
, (11)where Kg is the size of the Gabor ditionary.Note that in the urrent ase of a ontinuously-indexed ditionary, eq. (7),(8) and (9) are still valid if we de�ne

Dgxi =
∑

(j,ϕ)∈Γ
xi(j,ϕ) 6=0

d
g
j,ϕxi (j, ϕ) (12)where xi = {xi (j, ϕ)}(j,ϕ)∈Γ. Indeed, eq. (12) is a �nite sum sine only a fewoe�ients in the sparse representation vetor xi are non-zero. The algorithmiaspets of this deomposition will be addressed in Setions 4.2 and 4.3.4 Audio inpainting algorithms based on Orthog-onal Mathing PursuitFor a given ditionary D, we use the Orthogonal Mathing Pursuit algorithmto perform the inpainting of an audio frame, as presented in Setion 4.1. Someditionary-dependent algorithmi stages are then detailed in Setion 4.2 and 4.3.An extension of the algorithm spei� to delipping is �nally detailled in Se-tion 4.4.

RR n° 7571



Audio Inpainting 9Table 1: OMP Inpainting Algorithm
yri , Mr

i, D = {dj}j∈Γ , KOMP, ǫOMP
iInitialization:� Ditionary D̃ =

{
d̃j

}
j∈Γ

= Mr
i × D × W, where Wjj′ = 0 for

j 6= j′ and Wjj = ‖Mr
idj‖

−1
2 .� Iteration ounter k = 0� Support set Ω0 = ∅� Residual r0 = yriSparse support seletion and oe�ients estimation:Repeat until k = KOMP or ‖rk‖2
2 < ǫOMP

i� Inrement iteration ounter k = k + 1� Selet atom: �nd
j = argmax

j∈Γ
| < rk−1, d̃j > | (14)� Update Support Ωk = Ωk−1 ∪ j� Update urrent solution

xk = argmin
u

‖yri − D̃Ωk
u‖2 (15)� Update Residual rk = yri − D̃Ωk

xkOutput: x̂i = Wxk4.1 Orthogonal Mathing Pursuit (OMP) algorithm forinpaintingThe approah emerges from the following optimization problem
x̂i = argmin

x

‖x‖0 s.t. ‖yri −Mr
iDx‖2

2 ≤ ǫi. (13)for a given approximation error threshold ǫi.The l0 pseudo-norm ‖x‖0 ounts the non-zeros omponents of the vetor x,leading to an NP-hard problem [31, 32℄. Therefore, a diret solution of (13)is infeasible. An approximate solution is given by applying the OrthogonalMathing Pursuit (OMP) algorithm [24, 33℄, whih suessively approximatesthe sparsest solution. The inpainting OMP algorithm [23℄, detailed in Table 1,is a slightly modi�ed version of the lassial OMP algorithm in the sense thatall ditionary olumns d̃j are internally normalized to unit norm, using diagonalmatrix W, due to the availability of only the lean samples. The algorithm stopsiterating as soon as either the residual energy drops below the threshold ǫOMP
ior the maximum sparsity level KOMP is exeeded.RR n° 7571



Audio Inpainting 104.2 Atom seletionWhen using the DCT ditionary, the algorithmi stage for the atom sele-tion (14) at eah iteration is well known: it onsists of expliitly omputingthe orrelation mentioned in eq. (14) of Table 1, or of using a fast transform.However, the atom seletion (14) needs explaining in the ase of the Ga-bor ditionary in order to deal with the ontinuous indexing. Without anyapproximation, the deomposition with ontinuously-indexed atoms dg an beexpressed using pairs of atoms in a disrete ditionary with Kg frequeny bins.Pairs of atoms an be either onjugate omplex exponentials [24,34℄, or pairs ofosine and sine at the same frequeny and with a zero phase [29℄. In order touse this latter option, we introdue sine atoms ds
j as

ds
j (t) , wd (t) sin

(
π

Kg

(
t +

1

2

) (
j +

1

2

)) (16)and we de�ne the unit-norm version d̃c
j and d̃s

j of the atoms dc
j and ds

j , respe-tively, as desribed in Table 1.At eah iteration k, seleting the best orrelated Gabor atom d
g
j (eq. (14))is then equivalent to piking the pair (

d̃c
j , d̃

s
j

) suh that
j = argmin

j∈J1,KD/2K

∥∥∥rk−1 − d̃c
j x̂

c
j − d̃s

j x̂
s
j

∥∥∥
2

2
(17)where





x̂c
j =

〈
d̃

c
j ,rk−1

〉
−
〈
d̃

c
j ,d̃s

j

〉〈
d̃

s
j ,rk−1

〉

1−
〈
d̃c

j
,d̃s

j

〉
2

x̂s
j =

〈
d̃

s
j ,rk−1

〉
−
〈
d̃

c
j ,d̃s

j

〉〈
d̃

c
j ,rk−1

〉

1−
〈
d̃c

j
,d̃s

j

〉
2

. (18)This partiular seletion stage has been proposed in [34, Appendix II℄ foronjugate Gabor hirp atoms and the use of bloks of oherent atoms in MPand OMP has been further studied in [35℄. In the restrited ase where atoms ina andidate pair are unorrelated (i.e. 〈
d̃c

j , d̃
s
j

〉
= 0), eq. (17) an be simpli�edas j = argmaxj∈J1,KD/2K

〈
d̃c

j , rk−1

〉2

+
〈
d̃s

j , rk−1

〉2 and the resulting algorithmis equivalent to the existing Modi�ed Mathing Pursuit [36℄ and Blok OMPalgorithms [37℄.4.3 Solution updateWhen using the DCT ditionary, the solution update (15) performed at eahiteration usually onsists of a least-square projetion.In the ase of the Gabor ditionary, one the best atom has been addedto the set of atoms seleted in previous iterations, the update of the urrentsolution (15) an be performed by a least-square projetion using the seletedGabor atoms {
d

g
j,ϕj

}
j∈Ωk

, their phases ϕj being �xed in the atom-seletionstage.RR n° 7571



Audio Inpainting 11However, this update an be improved by using the equivalent osine andsine atoms {
dc

j ,d
s
j

}
j∈Ωk

in the least-square projetion: not only amplitudes butalso phases are thus updated at eah iteration, leading to a better approximationof the signal. As far as we know, suh an implementation of OMP with a Gaborditionary has never been proposed before.4.4 Algorithmi enhanements for inpainting lipped sig-nals4.4.1 The `min' delipping onstraintInpainting lipped signals an be performed with the algorithm presented inSetion 4.1, by treating the lipped samples as ompletely unknown. However,extra information inherent to this problem an be integrated as additional on-straints into equations (13). Constrained optimization approahes were alsoutilized in the ase of l1-minimization for image desaturation [38℄ and of audiodelipping based on a band-limited assumption [7℄.Let θlip be the lipping level (whih an be easily estimated as the maximumabsolute value among the observed samples) and Mm+
i (resp. Mm-

i ) be thematrix suh that Mm+
i si (resp. Mm-

i si) is the vetor of positive (resp. negative)lipped samples. The matries Mm+
i and Mm-

i are known from the loation andthe sign of the lipped samples. The missing samples should satisfy the `min'onstraints
Mm+

i si ≥ θlip and Mm-
i si ≤ −θlip. (19)4.4.2 The `max' delipping onstraintThe set of `min' onstraints an be further augmented by `max' onstraints,introduing an upper limit on the absolute value of the reovered samples θmax,as follows

Mm+
i si ≤ θmax and Mm-

i si ≥ −θmax. (20)The upper limit θmax is an optional parameter that annot be estimatedautomatially in a straightforward way but may be adjusted manually by theuser.4.4.3 The `minmax' onstrained SR problemUsing both sets of onstraints, the `minmax' delipping version of the l0-normminimization problem (13) is given by
x̂i = arg min

x

‖x‖0 s.t. 



‖yri −Mr
iDx‖2

2 ≤ ǫi

θmax ≥ Mm+
i Dx ≥ θlip

−θmax ≤ Mm-
i Dx ≤ −θlip (21)where θmax an be set to +∞ if one does not want to use the `max' onstraint.

RR n° 7571



Audio Inpainting 12Table 2: Summary of the proposed algorithms: eah row indiates the algorithmusage (general inpainting or delipping), depending on possible additional on-traints, while ditionaries vary aross olumns. Algorithm nomenlature ap-pears within quotes in eah ell.Additional spei�ation DCT GaborInpainting `OMP-C' [Table 1℄ `OMP-G' [Table 1℄Min-onstraint delip-ping `OMP-C-min' [Ta-ble 1 + eq. (22)℄ `OMP-G-min' [Ta-ble 1 + eq. (22)℄Minmax-onstraint de-lipping `OMP-C-minmax' [Ta-ble 1 + eq. (23)℄ `OMP-G-minmax' [Ta-ble 1 + eq. (23)℄4.4.4 OMP delipping algorithmWe propose approximate solutions by inorporating the onstraints (19) and (20)into the �nal solution update stage of the OMP Inpainting algorithm. In otherwords, the OMP Inpainting algorithm presented in Table 1 is applied, in or-der to selet the sparse support. One the support Ωk is seleted, the sparserepresentation oe�ients are re-estimated by solving the following onstrainedoptimization problem:
xk = arg min

u

‖yri − D̃Ωk
u‖2 s.t. {

Mm+
i DWu ≥ θ̂lip

Mm-
i DWu ≤ −θ̂lip (22)in the ase of the `min' onstraint, or

xk = arg min
u

‖yri − D̃Ωk
u‖2s.t. {

θ̂max ≥ Mm+
i DWu ≥ θ̂lip

−θ̂max ≤ Mm-
i DWu ≤ −θ̂lip (23)for the ase of the `minmax' onstraint. The onstraints are linear, thus standardonvex optimization solvers an be employed.In theory, the solution of the onstrained problem may not exist. We ob-served that this ours very seldom in pratie. Whenever no solution exists, theframe is restored using the unonstrained minimization xk = arg minu ‖yri − D̃Ωk

u‖2.5 Experimental ResultsA summary of all versions of the algorithm presented in this paper is given inTable 2. This setion reports the major trends through di�erent experiments.The performane measures are introdued in Setion 5.1. The test material andparameter settings are presented in Setions 5.2 and 5.3. The global perfor-mane of all the proposed inpainting algorithms and a more detailed inpaintingexperiment are presented in Setion 5.4. Setion 5.5 �nally fouses on the aseof lipping.RR n° 7571



Audio Inpainting 135.1 Performane measuresThe performane an be assessed by the signal-to-noise ratio (SNR) omputedon the full signals, de�ned bySNRfull (s, ŝ) , 10 log
‖s‖2

2

‖s − ŝ‖2
2

. (24)While SNRfull gives an overview of the global quality of the restored signal,it an be deomposed asSNRfull (s, ŝ) = SNRm (s, ŝ) + 10 log
‖s‖2

2

‖s (Im)‖2
2

(25)where SNRm (s, ŝ) , 10 log
‖s (Im)‖2

2

‖s (Im) − ŝ (Im)‖2
2

. (26)SNRm re�ets the reonstrution performane per estimated sample and dif-fers from SNRfull by an o�set that does not depend on the inpainting algorithm.Indeed, the seond term in Eq. (25) is a bias that re�ets the degradation rateonly. Thus, SNRm will be preferred to show some detailed performane, with-out the in�uene of this bias, while SNRfull will be used to assess the globalrestoration quality.Note that in the ontext of a pereptually-motivated evaluation of the re-sults, SNR measures may be replaed by sores from listening tests or by obje-tive measures. To the authors' knowledge, existing subjetive test protools andobjetive measures for audio quality assessment are not dediated to the evalua-tion of audio inpainting. Indeed, they generally apply to signals that su�er fromglobal degradation rather than loal ones, in appliations suh as oding [39,40℄or soure separation [41℄. Thus, working on the evaluation of audio inpaintingis an important future diretion to onsider.5.2 The olletion of tested signalsThe experiments are onduted using three datasets:� Musi�16kHz: a set of musi signals sampled at 16 kHz, this samplingrate being a good trade-o� between audio quality and omputational re-quirements.� Speeh�16kHz: a set of speeh signals sampled at 16 kHz, i.e. high qualityspeeh for whih results an be ompared to the previous ase of musisignals.� Speeh�8kHz: a set of speeh signals sampled at 8 kHz, representingphone-quality speeh; this dataset was obtained by downsampling the pre-vious 16 kHz speeh dataset.
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Audio Inpainting 14Eah dataset is omposed by ten 5-seonds signals from the 2008's SignalSeparation Evaluation Campaign [42℄ and are freely available online1. Theyinlude a large diversity of audio mixtures and isolated soures: male and femalespeeh from di�erent speakers, singing voie, pithed and perussive musialinstruments.In order to have omparable degradations among all signals in the lippingexperiments (Setion 5.5), eah original signal is normalized so that the maxi-mum amplitude is 1.5.3 Parameter settingsA spei� training dataset was used to tune the parameters of the inpaintingalgorithms manually and without �ne adjustment. The values of the tunedparameters are shown in Table 3.Table 3: Parameter settingsParameter ValueFrame length 64 ms (i.e. N , 512 at 8 kHz, N , 1024at 16 kHz)Frame Overlap 75%Analysis window wa retangularSynthesis window ws sineDitionary size Kc = 2N (DCT), Kg = N (Gabor)Atom weighting window wd retangular (wd = wa)
ǫOMP
i ǫ×#Iri where ǫ , 10−6 is a �xed param-eter and #Iri is the number of reliablesamples in the ith frame

KOMP N
4

θ̂lip ‖y‖∞
θ̂max 4θ̂lip5.4 Inpainting experiments5.4.1 Global e�et of the duration of missing intervalsThe inpainting performane of the proposed algorithms was evaluated for vari-able durations of missing intervals of samples. Eah experiment tested theperformane with the entire olletion of signals, for a �xed missing interval du-ration that repeated periodially every 100 ms. The missing intervals durationswere in the range of a fration of 1ms (orresponding to impulsive noise or liksdistortions) and up to 10 ms (orresponding to paket loss senarios).For omparison, we used the method by Janssen [2℄ based on linear preditionand a reonstrution method based on spline interpolation � the Matlab `interp1'1http://www.irisa.fr/metiss/vemiya/inpainting/ (this url may be hanged to a more stableone by the submission of the �nal version of this paper)RR n° 7571
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Figure 2: Performane of inpainting algorithms as a funtion of the durationof missing intervals for eah dataset (sub�gures). The missing intervals weregenerated periodially every 100ms (a total of 50 equal duration missing intervalsper signal).funtion. These methods are representatives of the two main families of state-of-the-art methods for interpolation of audio data and are able to handle multiplebloks of onseutive missing samples. In Janssen's method, the autoregressivemodel order is set to 3Nmiss + 2, where Nmiss is the number of missing samplesin the urrent frame, as reommended by the authors.The results are presented in Fig. 2. On the average, the OMP algorithmwith the Gabor ditionary provides an advantage of 1-2dB ompared to theOMP with DCT ditionary. For Musi�16Khz and Speeh�8Khz these algo-rithms also outperform Janssen's approah for short missing intervals of du-rations up to 1 ms. For durations above 1ms Janssen's approah provides anadvantage of 1-3dB. For Speeh�16Khz, Janssen's method performs better thanthe proposed ones, linear predition being partiularly well-adapted for speeh.However, using more information with the proposed method an enhane theperformane, as will be shown in the delipping experiment in Setion 5.5. Thespline interpolation approah provides substantially worse results for all ases.5.4.2 Fine e�et of the `topology' of the missing samplesThe reovery or approximation performane of sparse approahes is often as-sessed as a funtion of the sparsity degree and the number of observations inthe ase of a random measurement matrix [43℄. However, the latter assump-tion, reently highlighted in the ompressed sensing framework, does not hold inmany audio inpainting appliations: as introdued in the previous experiment,one must deal with bloks of onseutive missing samples. In this experiment,we question this assumption and assess empirial performane as a funtion ofthe randomness and the onseutiveness of the loation of the missing samples.The maximum randomness is ahieved when the missing samples are isolatedand distributed aording to e.g. a uniform law. Conversely, when they aregrouped, the missing samples in a given blok are not randomly loated, evenif the bloks themselves may be randomly loated. Hene the question: for a�xed number of missing samples, to whih extent is the inpainting of few largeRR n° 7571
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Figure 3: Performane of the OMP-G algorithm, on the Speeh�8kHz dataset,as a funtion of the hole size, for di�erent values of the number Nmiss of missingsamples in a frame: estimation by the proposed algorithm with �xed parameters(left), ideal estimation with the best stopping parameters KOMP and ǫ seletedfor eah observed frame (enter) and performane di�erene (right). The framelength is 512 samples and the hole size ranges from 1 sample (i.e. 0.12 ms, 0.2%of the frame) to 240 samples (i.e. 30 ms, 46.8% of the frame).bloks a more di�ult problem than the inpainting of many small bloks (orisolated samples)?The experimental protool onsists in the following steps:� Choose a set of frames2� Fix the number of missing samples Nmiss;� For eah (a, b) ∈ N
2 suh that a × b = Nmiss;� For eah frame in the set,* Randomly generate a holes with length b;* Reover the samples inside the holes from the samples outsidethe holes;* Compute SNRm;� Average the SNRm values w.r.t. all frames.We use the OMP-G algorithm to reover the samples. The set of values forthe number of missing samples Nmiss is {12, 36, 60, 120, 180, 240}, whih allowa large number of fatorizations of the form a × b = Nmiss, (a, b) ∈ N

2. Foreah test point (Nmiss, a, b), one thousand 64 ms frames from the 8 kHz speehdataset are proessed.Results are presented in the left plot of Fig. 3. When the hole size is 1 � i.e.samples are randomly and uniformly distributed �, the reovery performane is2The frames are randomly hosen in the datasets, only ensuring that the energy in theseleted frames is high enough � i.e. down to -10 dB below the frame with maximum energy� to avoid silenes.RR n° 7571



Audio Inpainting 17very high with SNRm values above 35 dB, inluding the ase where the numberof missing samples is high (e.g. Nmiss = 120). When holes get larger, theperformane signi�antly dereases: thus, inpainting a single 12-length holehappens to be a muh more di�ult problem than inpainting a frame with 120isolated missing samples. Yet, a positive performane is still obtained for thelargest holes (e.g. SNRm ≈ 5dB at Nmiss = 100).The sensitivity of OMP-G to the stopping riteria was measured thanksto an orale algorithm. It onsists in applying the OMP-G algorithm withdi�erent values of (
KOMP, ǫ

), and in seleting the set of parameters that givesthe best performane for eah frame independently. The tested parameterswere (
KOMP, ǫ

)
∈

{
N

21.5 , N
22 , . . . , N

24.5

}
×

{
10−10, 10−9, . . . , 10−1

}. Results arepresented in the enter plot of Fig. 3 and the di�erene between the orale andblind systems is shown in the right plot. One an see that �xing parametersis a onvenient, simple approximation that leads to suboptimal but satisfyingperformane ompared to the orale ase. However, adapting the parameters tothe frame to proess may be worth studying: the di�erene between orale andblind performane ranges from 4 to 10 dB in most of ases, showing a signi�antpotential for improvement.5.5 Delipping experimentClipping restoration is illustrated in Fig. 4 when the lipping level is 0.2. Here,the OMP-C-minmax algorithm is applied to an example of musi signal, whereone an observe that the reonstruted samples are lose to the original signal.
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Figure 4: Restoration of a musi signal: original (light gray), lipped (blak),estimate by the OMP-C-minmax algorithm (dark gray).In a larger experiment, some of the proposed methods for restoring lippedsignals are tested on the 3 datasets Speeh�8kHz, Speeh�16kHz and Mu-si�16kHz. Eah sound is arti�ially lipped with suessive lipping levels,from 0.2 up to 0.9 with a 0.1-step. For this experiment, we seleted the OMP-C-minmax, OMP-G, OMP-G-min and OMP-G-minmax algorithms after testingall the algorithms, sine the results provide the most interesting onlusions (seebelow).The performane of those algorithms are reported in Fig. 5, and show that:� The use of the `min' or `minmax' delipping onstraint results in a largeimprovement of the SNR, on the average by 3 dB for OMP-G. A similarimprovement has been obtained in the ase of OMP-C. As in previousexperiments, we see that methods based on SR, if e�ient under random-measurement onditions [23℄, annot straightforwardly reover partially-RR n° 7571



Audio Inpainting 18sampled signals when groups of missing samples are involved. But theyare �exible enough to integrate additional onstraints that leads to highperformane.� The minmax-onstraint OMP-G-minmax algorithm reahes better resultsthan the min-onstraint OMP-G-min algorithm when the lipping levelis 0.2. This orresponds to the range where the approximate value θ̂maxis lose to the atual maximum value as well as to the most degradedsignals. A lose analysis of the individual restored sounds reveals thatlarge spikes are avoided thanks to the maximum value onstraint. In apratial appliation, the maximum value θ̂max should be adjusted by theuser until the best audio quality is ahieved.� The omparison between OMP-C-minmax and OMP-G-minmax showsthat the initial-phase modeling by the Gabor ditionary signi�antly im-proves the performane, as already observed in Setion 5.4.1.Performane omparison is obtained using two onurrent methods: theClipFix Audaity plug-in based on ubi interpolation, the Cute Studio Delipommerial software3 and Janssen's method [2℄ based on linear predition. TheOMP-G-minmax algorithm is ompared against these methods and results areshown in Fig. 6. On the average, OMP-G-minmax outperform Janssen's methodby 2.8 dB for the Speeh�8kHz dataset; by 0.5 dB for the Speeh�16kHzdataset; and by 3 dB for the Musi�16kHz dataset. Lower performane isobtained from the Cute Studio Delip software, for whih the underlying restora-tion tehnique is unknown. The ClipFix plug-in reahes poor results, below allthe reported ones.6 ConlusionsIn this paper, we have presented the Audio Inpainting framework as the generalproblem of restoring distorted or missing audio data based on the availablereliable data. We have de�ned Audio Inpainting as an inverse problem, andfollowing from image inpainting approahes, we have proposed to use sparserepresentation methods to restore in the time domain the audio samples thatare distorted or missing.Using a frame-based proessing of the audio signal, we have adapted theOrthogonal Mathing Pursuit algorithm to address the Audio Inpainting prob-lem, with either a disrete osine or Gabor ditionary. The performane of thisalgorithm has been shown to be omparable to or better than state-of-the-artmethods when bloks of samples of variable durations were missing, and OMPwith the Gabor ditionary has been found to give better results than OMP withDCT ditionary. Moreover, it has been shown that the size of the blok of miss-ing samples is more ruial for good signal restoration than the overall numberof missing samples to estimate. For the speial ase of audio delipping, a on-strained mathing pursuit approah has been applied, that takes into aount apriori and user-spei�ed knowledge about the amplitude of the restored signal.This approah has been shown to signi�antly enhane the performane of thealgorithm, whih also outperforms state-of-the-art and ommerially available3http://www.utestudio.net/data/produts/audio/seedelip/RR n° 7571
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Audio Inpainting 20methods for audio delipping.Based on the audio inpainting framework and on the baseline results pre-sented in this paper, a number of future diretions may be investigated. Tehni-ally, one may ompare the OMP-based methods to l1-minimization tehniques,known to be another family of approahes to deal with sparse models. Theyare theoretially e�ient but so far, we an only report preliminary perfor-mane that is lower than with greedy algorithms for audio inpainting. Anotherperspetive is the use of new sparse models for audio signals. In partiular,strutured sparse models and learned ditionary are promising diretions. Froman appliation point of view, time-frequeny audio inpainting is a new investi-gation �eld for sparse approahes. Using the formulation of audio inpainting(see Setion 2.1) in the time-frequeny domain, one must then introdue newditionaries, targetting appliations like soure separation and bandwidth ex-tension.Referenes[1℄ A. Adler, V. Emiya, M. Jafari, M. Elad, R. Gribonval, and M. D. Plumbley,�A Constrained Mathing Pursuit Approah to Audio Delipping,� inIEEE Int. Conf. on Aoustis, Speeh and Signal Proessing, Prague, CzehRepubli, May 2011.[2℄ A. Janssen, R. Veldhuis, and L. Vries, �Adaptive interpolation of disrete-time signals that an be modeled as autoregressive proesses,� IEEE Trans.Aoustis, Speeh and Sig. Pro., vol. 34, no. 2, pp. 317 � 330, apr 1986.[3℄ W. Etter, �Restoration of a disrete-time signal segment by interpolationbased on the left-sided and right-sided autoregressive parameters,� IEEETransations on Signal Proessing, vol. 44, no. 5, pp. 1124 �1135, may 1996.[4℄ S. J. Godsill and P. J. W. Rayner, Digital Audio Restoration - A StatistialModel-based Approah. Springer-Verlag, 1998.[5℄ M. Lagrange and S. Marhand, �Long interpolation of audio signals usinglinear predition in sinusoidal modeling,� Journal of the Audio Eng. So.,vol. 53, pp. 891�905, 2005.[6℄ A. Dahimene, M. Noureddine, and A. Azrar, �A simple algorithm for therestoration of lipped speeh signal,� Informatia, vol. 32, pp. 183�188,2008.[7℄ J. S. Abel and J. O. Smith, �Restoring a lipped signal,� in IEEE Int. Conf.on Aoustis, Speeh and Signal Proessing, Toronto, Canada, May 1991.[8℄ R. C. Maher, �A method for extrapolation of missing digital audio data,�in 95th AES Convention, 1993.[9℄ M. Cooke, P. Green, L. Josifovski, and A. Vizinho, �Robust automatispeeh reognition with missing and unreliable aousti data,� SpeehCommuniation, vol. 34, no. 3, pp. 267 � 285, 2001.RR n° 7571
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