Skip to Main content Skip to Navigation
Journal articles

On-line changepoint detection and parameter estimation with application to genomic data

Abstract : An efficient on-line changepoint detection algorithm for an important class of Bayesian product partition models has been recently proposed by Fearnhead and Liu (in J. R. Stat. Soc. B 69, 589-605, 2007). However a severe limitation of this algorithm is that it requires the knowledge of the static parameters of the model to infer the number of changepoints and their locations.We propose here an extension of this algorithm which allows us to estimate jointly on-line these static parameters using a recursive maximum likelihood estimation strategy. This particle filter type algorithm has a computational complexity which scales linearly both in the number of data and the number of particles. We demonstrate our methodology on a synthetic and two real world datasets from RNA transcript analysis. On simulated data, it is shown that our approach outperforms standard techniques used in this context and hence has the potential to detect novel RNA transcripts.
Complete list of metadata

https://hal.inria.fr/inria-00577217
Contributor : Francois Caron Connect in order to contact the contributor
Submitted on : Wednesday, March 16, 2011 - 5:35:35 PM
Last modification on : Friday, February 4, 2022 - 3:22:45 AM

Links full text

Identifiers

Collections

Citation

Francois Caron, Arnaud Doucet, Raphael Gottardo. On-line changepoint detection and parameter estimation with application to genomic data. Statistics and Computing, Springer Verlag (Germany), 2012, 22 (2), pp.579-595. ⟨10.1007/s11222-011-9248-x⟩. ⟨inria-00577217⟩

Share

Metrics

Record views

125