
HAL Id: inria-00577736
https://inria.hal.science/inria-00577736

Submitted on 17 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Implementation of Concurrent Objects
Michel Raynal

To cite this version:
Michel Raynal. On the Implementation of Concurrent Objects. [Research Report] PI-1968, 2011,
pp.22. �inria-00577736�

https://inria.hal.science/inria-00577736
https://hal.archives-ouvertes.fr

Publications Internes de l'IRISA

ISSN : 2102-6327

PI 1968 � Mars 2011

On the Implementation of Concurrent Objects*

Michel Raynal**

Abstract: The implementation of objects shared by concurrent processes, with provable safety and
liveness guarantees, is a fundamental issue of concurrent programming in shared memory systems. It is now
largely accepted that linearizability (or atomicity) is an appropriate consistency condition for concurrent
objects. On the liveness side, progress conditions (mainly absence of deadlock or the stronger absence of
starvation) have been stated and investigated since a long time and are now well-mastered. The situation is
di�erent in asynchronous shared memory systems prone to process failures.

This paper visits three progress conditions suited to concurrent objects in presence of failures, namely
obstruction-freedom, non-blocking and wait-freedom. To that end, the paper visits also appropriate com-
putation models and paradigm problems to illustrate this family of progress conditions. The paper has
consequently an introductory and survey �avor. Its aim is to help people better understand the di�culties,
subtleties and beauties encountered when one has to implement concurrent objects despite the net e�ect of
asynchrony and failures.

Key-words: Asynchronous shared memory system, Atomicity, Compare&Swap, Consensus object, Con-
sensus number, Enriched system, Failure detector, Linearizability, Lock, Lock-freedom, Obstruction-freedom,
Non-Blocking, Process crash, Progress condition, Queue, Read/Write atomic register, Set, Snapshot, Splitter,
Synchronization, System boosting, Timestamp, Wait-free algorithm.

Sur l'implémentation des objects concurrents

Résumé : Ce rapport s'intéresse à la mise en ÷uvre des objects concurrents.

Mots clés : Système asynchrone, mémoire partagée, objet concurrent, tolérance aux fautes.

* To appear in a Springer Verlag LNCS volume dedicated to Brian Randell.
** Membre senior de l'IUF et Projet ASAP: équipe commune avec l'INRIA, le CNRS et l'université Rennes 1, raynal@irisa.fr.

c©IRISA � Campus de Beaulieu � 35042 Rennes Cedex � France � +33 2 99 84 71 00 � www.irisa.fr

Preamble This paper has been written for the Festschrift volume celebrating Brian Randell's 75th birth-
day. When I was contacted to participate to this liber amicorum, I immediately remembered a famous and
seminal paper of Brian. This paper, titled �Process structuring� and co-authored with J.J. Horning, was
published in 1973 [23]. I was a PhD student at that time, and the reading of this paper (together with
a paper by Dijkstra [9]) illuminated my view of what a process is and what synchronization is. (I would
like to encourage young people to read these papers for their clarity and the ideas they have introduced
and developed 40 years ago!) Hence, when I was asked if I was interested in contributing to the Festschrift

volume, my answer was at once �yes�, and the topic was evident: recent results in fault-tolerant concurrency
and synchronization.

1 Introduction

1.1 Consistency and progress conditions for concurrent objects

Concurrent objects A concurrent object is an object that can be concurrently accessed by several pro-
cesses. As any object, a concurrent object is de�ned by a set of operations that processes can invoke to
cooperate through this object. These operations are the only way to access the internal representation of
the object (that remains otherwise invisible to processes).

We are interested here in concurrent objects that have a sequential speci�cation and supply processes with
total operations. A total operation is an operation that always returns a result (e.g., a dequeue() operation
on an empty queue returns the value empty instead of blocking the invoking process).

Linearizability The most popular safety property associated with concurrent objects is called lineariz-

ability [20]. This consistency condition extends atomicity to all objects de�ned by a sequential speci�cation
on total operations. Hence, an implementation of an object satis�es linearizability (and we say that the
object implementation is linearizable) if the operation invocations issued by the processes appear (from an
external observer point of view) as if they have been executed sequentially, each invocation appearing as
being executed instantaneously at some point of the time line between its start event and its end event. Said
di�erently, an implementation is linearizable if it could have been produced by a sequential execution.

An important property associated with linearizable object implementations is the fact that linearizable
implementations compose for free. This means that, if each of the implementations of an object A and an
object B (each taken independently) are linearizable, then these implementations without any modi�cation
constitute a linearizable implementation of the composite object (A,B) (i.e., an object made up of (A and
B). It is important to notice that, in contrast to linearizability, neither sequential consistency [28] nor
serializability [5] are consistency conditions that compose for free.

Traditional lock-based shared memory synchronization One of the most popular way to obtain
linearizable implementations of concurrent objects is to use locks. Associating a single lock with an object
prevents several processes/threads from accessing it simultaneously. This approach is based on the classical
notion of mutual exclusion [9, 38, 45]. Interestingly, locks can take di�erent shapes according to the abstrac-
tion level at which they are considered. The most known example of locks is certainly the semaphore object
[9], on top of which more friendly (i.e., high level) locks-based abstractions (such as monitors [22] or serial-
izers [21]) can be built. This approach has proved its usefulness in providing solutions to basic paradigms of
shared memory synchronization (such as the producer-consumer problem, or the readers-writers problem).
One of the main di�culties when one has to design a lock-based solution lies in ensuring deadlock prevention,
and more generally, provable fairness guarantees.

Limit of locks Using lock-based mutual exclusion to implement linearizable concurrent objects has two
major drawbacks. First, using locks to protect large pieces of data can drastically limit concurrency and
consequently reduce e�ciency. Although tricky, this issue can be solved by clever programmers who use
locks on small pieces of data in order to favor parallelism.

2

The second and more severe drawback due to locks appears when one wants to use them in failure-prone
systems [40]. Let us consider an asynchronous system in which processes (a) can crash and (b) communicate
only by reading and writing a shared memory. If a process locks an item and crashes before releasing the lock,
no process can know if this process is very slow (e.g., due a page fault or an input/output) or has crashed.
(More generally, this impossibility to distinguish between these scenarios make some problems impossible to
solve in failure-prone asynchronous read/write systems.) This means that, according to the failure pattern,
locks can entail the permanent blocking of processes in these systems.

Progress conditions Several progress conditions (liveness properties) for concurrent objects have been
proposed for failure-prone asynchronous systems. We consider three of them here.

• Obstruction-freedom. An implementation of a concurrent object is obstruction-free if it guarantees that
any process p that executes an operation eventually terminates if it (p) executes alone during a long
enough period of time (without crashing) [18]. (In some papers, it is said that obstruction-freedom
guarantees termination only in solo executions.)

The wording �long enough period� is due to asynchrony. From a practical point of view, this means
that, due to asynchrony, no upper bound on the time needed to execute an operation can be known. It
is important to notice that obstruction-freedom does not guarantee termination if no process executes
solo for long enough. This progress condition is meaningful in systems in which, while con�ict can
happen, they are rare (we will see in Section 6 how con�icts can be solved in these rare occasions).

• Non-blocking. An implementation of a concurrent object is non-blocking if it guarantees that at least
one of the processes that have invoked an operation on the object will terminate its invocation whatever
the concurrency pattern and the behavior of the other processes.

It is easy to see that non-blocking is a progress condition stronger than obstruction-freedom. It can be
seen as deadlock-freedom despite asynchrony and process crashes.

• Wait-freedom. An implementation of a concurrent object is wait-free if it guarantees that any process
that has invoked an operation terminates it (if it does not crash) whatever the concurrency pattern
and the behavior of the other processes [16]. This is the strongest possible progress condition.

It is easy to see that wait-freedom is a progress condition stronger than non-blocking. It corresponds
to (n− 1)-resilience (where n is the total number of processes). It provides starvation-freedom despite
asynchrony and any number of process crashes.

It follows from the previous de�nitions that obstruction-freedom, non-blocking and wait-freedom de�ne
a hierarchy of progress conditions for the implementation of concurrent objects. Moreover, it is easy to see
that obstruction-free, non-blocking and wait-free implementations are necessarily lock-free (i.e., they cannot
be based on locks).

1.2 Content of the paper

The paper is an introduction to lock-free, obstruction-free, non-blocking and wait-free implementations of
concurrent objects. To that end, it �rst introduces the base asynchronous read/write computation model
and associated enriched models (Section 2). Then it presents algorithms implementing objects with the
previous liveness properties.

• Section 3 presents a lock-based implementation of a concurrent set object due to Heller, Herlihy,
Luchangco, Moir, Scherer and Shavit [15]. Such an object has three operations: add(), remove() and
contain(). As we will see, add(), remove() use locks on at most two items while the operation contain()
is lock-free. This implementation is particularly e�cient when the number of add() and remove()
operations is small with respect to the number of contain() operations.

3

• Section 4 describes a non-blocking implementation of a queue due to Michael and Scott [34]. This im-
plementation considers an asynchronous read/write system enriched with a Compare&Swap operation.

• Section 5 describes wait-free implementations of two objects suited to the base read/write shared
memory model. The �rst object has been implicitly introduced by Lamport [30]. It has then been
given an object status in [37] where it is called splitter. This object can be used to implement more
sophisticated objects. The second object, called the snapshot object, is a fundamental object for
fault-tolerant computing in asynchronous read/write shared memory systems [2].

• Section 6 is focused on obstruction-freedom. It �rst presents and obstruction-free implementation of a
concurrent timestamping object. It then addresses the following question: how to boost an obstruction-
free implementation to obtain a wait-free implementation? A failure detector-based answer proposed
by Guerraoui, Kapalka and Kuznetsov is presented [11].

Finally, Section 7 concludes the paper with a few remarks on the notions of consensus and universal

construction [16], which is a consensus-based construction that allows the design of wait-free implementations
of any object de�ned by a sequential speci�cation.

2 Computation model

2.1 Base read/write computation model

Process model The system consists of n sequential processes denoted p1, p2, ..., pn. The integer i is called
the index of pi. The processes are asynchronous. This means that the relative execution speed of di�erent
processes is arbitrary, and there is no bound on the time it takes for a process to execute a step.

Failure model A process may crash (halt prematurely). After it has crashed, a process executes no step.
A process executes correctly until it possibly crashes. A process that does not crash in a run is correct in
that run. Otherwise it is faulty in that run. Let t be a model parameter that de�nes the upper bound on
the number of processes that may crash in a run. In the following we consider the case t = 0 (failure-free
model) and the case t = n− 1 (wait-free model).

Communication model In the base model, the processes communicate through multi-writer/multi-reader
atomic registers. �Atomic� means the read and write operations appear as if they have been executed (1)
sequentially, (2) the order being such that if an operation op1 terminates before an operation op2 starts
then op1 appears before op2 (said in another way, the total order respects the real-time occurrence order
on operations). The words �atomicity� and �linearizability� are synonym. The word �atomicity� is generally
used for shared registers [29], while the word �linearizability� is used mainly for arbitrary objects de�ned by
a sequential speci�cation [20].

The registers are assumed to be reliable. This assumption is without loss of generality as it is possible
to build atomic reliable registers on top of crash prone atomic registers [4, 13, 33]. Moreover, it is assumed
that each atomic register can contain arbitrary values.

Notation Atomic registers and all the objects that are in the shared memory are denoted with upper case
letters. Di�erently, all the local variable are denoted with lower case letters; the process index is sometimes
used as a subscript for local variables.

In the algorithms that are presented, some atomic registers contain pointers. The following notations are
used with respect to pointers. If P is a pointer, P ↓ denotes the object pointed to by P . If X is an object,
↑ X denotes a pointer that points to X. Hence, (↑ X) ↓ and X denote the same object.

Default value The value ⊥ and > are default values that are used only by the algorithms. This means
that they are unknown to the processes everywhere else.

4

2.2 Enriched computation models

Each of the algorithms that are presented is designed for a given computation model. We distinguish here
the following models. The acronym ASM stands for Asynchronous SharedMemory.

System model ASMn,0[∅] This is the pure failure-free (t = 0) read/write asynchronous model. In this
model, atomic registers are the only way for processes to communicate.

System model ASMn,0[lock] This computation model is the failure-free ASMn,0[∅] model enriched with
locks. Given an object X, the operation X.lock() allows the invoking process to obtain exclusive access to
X while X.unlock() allows it to release the lock. It is assumed that the locks are fair.

Let us observe that, as locks can be built from atomic registers inASMn,0[∅] [38], both modelsASMn,0[∅]
and ASMn,0[lock] have the same computational power. This is no longer the case as soon as (even only)
one process may crash (t ≥ 1) [16].

System model ASMn,n−1[∅] This is the pure asynchronous wait-free computation model. Processes can
communicate only through read/write registers and up to t = n− 1 processes may crash.

System model ASMn,n−1[Compare&Swap] This computation model is the wait-freeASMn,n−1[∅] model
enriched with the Compare&Swap operation. This operation, denoted C&S(a, b), is on an atomic register
say X. It does the following atomically: if the current value of X is a, it assigns b to X and returns true;
otherwise, it returns false.

primitive X.C&S(old, new):
if (X = old) then X ← new; return(true) else return(false) end if.

This base operation exists on some machines such as Motorola 680x0, IBM 370, and on some SPARC
architectures. In some cases, the returned value is not a boolean, but the previous value of X.

System model ASMn,n−1[3P] This is the wait-free computation model enriched with a failure detector
of the class 3P . A failure detector is a device that provides processes with information on failures [7, 41].
According to the type and the quality of this information, several failure detector classes can be de�ned.

3P is the class of eventually perfect failure detectors [7]. A failure detector of this class provides each
process pi with a read-only set register, denoted suspectedi, that satis�es the following properties.

• Completeness. Eventually, the set suspectedi of every correct process pi contains the index of every
faulty process.

• Eventual strong accuracy. Eventually, the set suspectedi of every correct process pi does not contain
indexes of correct processes.

Assumptions that allow failure detectors of the class 3P to be implemented and corresponding algorithms
are described in [43].

Wait-free system model vs liveness property of an algorithm As we have seen previously the pure
wait-free asynchronous read/write system model, namely, ASMn,nn−1[∅], considers that up to t = n − 1
processes may crash in a run.

The algorithms implementing an object in that model can be obstruction-free, non-blocking or wait-free.
This means that, while an algorithm designed for ASMn,nn−1[∅] has to ensure the liveness property despite
up to n − 1 process crashes, this liveness property it not necessarily wait-freedom (it can be obstruction-
freedom or non-blocking).

5

3 A concurrent set object

This section presents algorithms that implements a concurrent set in the system model ASMn,0[lock] (i.e.,
the reliable asynchronous read/write shared memory model enriched with locks). Interestingly, the algo-
rithms that are described still work when processes crash provided they do not crash while they own a
lock.

The aim is here e�ciency. The algorithms have to use locks as sparingly as possible and use them on
small data.

3.1 De�nition and assumptions

De�nition A concurrent set object provides the processes with three operations.

• add(v) adds element v into the set. It returns true if v was not already present in the set. Otherwise
it returns false.

• remove(v) suppresses element v from the set. It returns true if v was present in the set. Otherwise it
returns false.

• contain(v) returns true if v is present in the set and false otherwise.

As already indicated any concurrent execution of this object has to be linearizable. It has to appear as
if the operations have been invoked one after the other, and the corresponding sequence has to belong to
speci�cation of the set.

Assumptions It is assumed that the elements that the set can contain belong to a well-founded set. This
means that they can be compared, have a smallest element, a greatest element and that there is a �nite
number of elements between any two elements.

As already indicated, it is assumed that the number of invocations of contain() is much bigger than the
number of invocations of add() and remove(). This application-related assumption is usually satis�ed when
the set represents dictionary-like shared data structures.

3.2 The algorithm

As already said, the algorithm presented here is due to Heller, Herlihy, Luchangco, Moir, Scherer and Shavit
[15]. The reader will also �nd in that reference a performance study based on experimental evaluation.

Design principles In order to be e�cient the algorithm implementing the operation contain() has to
be lock-free: a process has to terminate it whatever the concurrency pattern. Moreover, the algorithm
implementing the operations add() plus remove() has to use locks �as little as possible� which means that
locks have to be used parsimoniously.

The underlying data structures The set is represented by a linked list pointed to by a pointer kept in
an atomic register HEAD . A cell of the list (say NEW_CELL) is made up of four atomic registers.

• NEW_CELL.val that contains a value (element of the set).

• NEW_CELL.out is a boolean (initialized to false) that is set to true when the corresponding element
is suppressed from the list.

• NEW_CELL.lock is a lock used to ensure mutual exclusion on the registers composing the cell. This
lock is accessed with the base operation lock() and unlock() (which can be easily implemented with
underlying primitives such as Test&Set()/Reset()).

6

• NEW_CELL.next is a pointer to the next cell. The set in organized as a sorted linked list. Initially
the list is empty and contains two sentinel cells, as indicated in Figure 1. The values associated with
these cells are the default values denoted ⊥ and >. These values cannot belong to the set and are such
that for any value v of the set we have ⊥ < v < >. All operations are based on a list traversal.

⊥ >HEAD /

Figure 1: The initial state of the list

The remove(v) operation The algorithm implementing this operation is described at Lines 01-09 of Fig-
ure 4. Using the fact that the list is sorted in increasing order, the invoking process pi traverses the list
from the beginning until the �rst cell whose element v′ is greater than v (lines 01-02). Then it locks the cell
containing the element v′ (that is pointed to by its local variable curr) and the immediately preceding cell
(that is pointed to by its local variable pred).

The list traversal and the locking of the two consecutive cells are asynchronous and other processes
can concurrently access the list to add or remove elements. It is consequently possible that there are
synchronization con�icts that make the content of pred and curr no longer valid. More speci�cally, the cell
pointed to by pred or curr could have been removed, or new cells could have been inserted between the cells
pointed to by pred and curr. Hence, before suppressing the cell containing v (if any), pi checks that pred
and curr are still valid. The boolean procedure validate(pred, curr) is used to that end (lines 10-11).

If the validation predicate is false, pi restarts the removal operation (line 09). This is the price that
to be paid to have an optimistic removal operation (there is no global locking of the whole list that would
prevent concurrent processes from traversing the list). Let us remember that, as by assumption there are
few invocations of the remove() and add() operations, pi will eventually terminate its invocation.

If the validation predicate is satis�ed, pi checks whether v belongs to the set or not (boolean pres, line
05). If v is present, it is suppressed from the set (line 06). This is done in two steps.

• First the boolean �eld out of the cell containing v is set to false. This is a logical removal (logical,
because the pointers have not yet been modi�ed to suppress th cell from the list). This logical removal
is denoted S1 in Figure 2.

• Then, the physical removal occurs. The pointer (pred ↓).next is updated to its new value, namely
(curr ↓).next. This physical removal is denoted S2 in Figure 2.

a c

S1S2

⊥ :>

predi curri

HEAD

Tv

Figure 2: The remove() operation

The add(v) operation The algorithm implementing the add(v) operation is described at lines 12-23 of
Figure 4. It is very close to the algorithm implementing the remove(v) operation. Process pi �rst traverses
the list until it reaches the cell whose value �eld is greater than v (lines 12-13) and then locks the cell that
precedes it (line 14). Then, as previously, it checks if the values of its pointers pred and curr are valid (line
14). If they are and v is not in the list, pi creates a new cell that contains v and insert it in the list (lines
17-20).

7

It is interesting to observe that, as in the removal operation, the addition of a new element v is done in
two steps. The �eld NEW_CELL.next is �rst updated (line 18). This is the logical addition (denoted S1 in
Figure 3). Only then, the �eld (pred ↓).next is updated to a value pointing to NEW_CELL (line 18). This
is the physical addition (denoted S1 in Figure 3).

Finally, pi releases the lock on the cell pointed to by its local pointer variable ptr. It returns a boolean
value if the validation predicate was satis�ed and restarts if it was not.

a c⊥ :>

predi curri

HEAD
S1

S2

NEW_CELL

Fv

Figure 3: The add() operation

operation remove(v): % (code for pi) %
(01) pred← HEAD ; curr ← (HEAD ↓).next;
(02) while ((curr ↓).val < v) do pred← curr; curr ← (curr ↓).next end while;
(03) lock

`
(pred ↓).lock

´
; lock

`
(curr ↓).lock

´
; valid← false;

(04) if validate(pred, curr)
(05) then valid← true; pres←

`
(curr ↓).val = v

´
;

(06) if (pres) then (curr ↓).out← true; (pred ↓).next← (curr ↓).next end if

(07) end if;
(08) unlock

`
(pred ↓).lock

´
; unlock

`
(curr ↓).lock

´
;

(09) if (valid) then return(pres) else restart the operation end if.
===
predicate validate(pred, curr): % (code for pi) %
(10) let res =

`
¬((pred ↓).out) ∧ ¬((curr ↓).out) ∧ ((pred ↓).next = curr)

´
;

(11) return(res).
===
operation add(v): % (code for pi) %
(12) pred← HEAD ; curr ← (HEAD ↓).next;
(13) while ((curr ↓).val < v) do pred← curr; curr ← (curr ↓).next end while;
(14) lock

`
(pred ↓).lock

´
; valid← false;

(15) if validate(pred, curr)
(16) then valid← true; to_add← (curr ↓).val 6= v);
(17) if (to_add) then NEW_CELL← new_cell(); NEW_CELL.out← false;
(18) NEW_CELL.val← v; NEW_CELL.next← curr;
(19) NEW_CELL.lock ← open; (pred ↓).next← (↑ new_cell)
(20) end if

(21) end if;
(22) unlock

`
(pred ↓).lock

´
;

(23) if (valid) then return(to_add) else restart the operation end if.
===
operation contain(v): % (code for pi) %
(24) curr ← HEAD ;
(25) while ((curr ↓).val < v) do curr ← (curr ↓).next end while;
(26) let res = (curr ↓).val = v) ∧ (¬(curr ↓).out);
(27) return(res).

Figure 4: Implementation of a concurrent set object in ASMn,0[lock] [15]

The contain(v) operation This operation is lock-free: it does not use locks and cannot be delayed by locks
used by the add() and remove() operations. It consists of a simple traversal of the list. Let us remark that,
during this traversal, the list does not necessarily remain constant: cells can be added or removed and then

8

the values of the pointers are not necessarily up to date when they are read by the process pi that executes
the contain operation. Let us consider Figure 5. It is possible that the pointer values predi and curri of
the current invocation of contain(v) by pi are as indicated on the �gure while all the cells between the ones
containing a1 and b are removed and a new cell containing b is concurrently added.

a c

ba1

/>F

TT

>

HEAD

F

curripredi

Figure 5: The contain() operation

The list traversal is the same as for the add() and remove() operations. The value true is returned if and
only if v is currently the value of the cell pointed at by curr and this cell has not been logically removed.
The algorithm relies on the fact that a cell cannot be recycled as long as it is reachable from a global or
local pointer. (In contrast, cells that are no longer accessible can be recycled.)

3.3 Properties of the construction

Base properties The previous implementation of a concurrent set has the following noteworthy properties.

• The contain() operation is lock-free.

• The traversal of the list by an add()/remove() operation is lock-free (a cell locked by an add()/remove()
does not prevent another add()/remove() from progressing until it locks a cell).

• Locks are used on at most two (consecutive) cells by an add()/remove() operation.

• There is no atomically markable reference (indicating that a cell is no longer meaningful requires to
use a pointer to update the appropriate �eld of the pointed cell).

• Invocations of the add()/remove() operations on non-adjacent list entries do not interfere, thereby
favoring concurrency.

Linearization points As already indicated, the linearization point of an operation invocation is a point of
the time line such that the operation appears as if it has been executed instantaneously at that time instant.
This point must lie between the starting time and the ending time of the operation.

The algorithm described in Figure 4 provide the operations add(), remove() and contain() with the
following linearization points. Let an operation be successful (unsuccessful) if it returns true (false).

• remove() operation.

� The linearization point of a successful remove(v) operation is when it marks the value v as being
removed from the set, i.e., when it executes the statement (curr ↓).out← true (line 06).

� The linearization point of an unsuccessful remove(v) operation is when, during its list traversal,
it reads the �rst unmarked cell with a value v′ > v (line 02).

• add(v) operation.

� The linearization point of a successful add(v) operation is when it updates the pointer (pred ↓
).next that, from then on, points to the new cell (line 19).

� The linearization point of an unsuccessful add(v) operation is when it reads the value kept in
(curr ↓).val and that value is not v (line 16).

9

• contain(v) operation.

� The linearization point of a successful contain(v) operation is when it checks whether the value v
kept in (curr ↓).val belongs to the set, i.e., (curr ↓).out is then false (line 26).

� The linearization point of an unsuccessful contain(v) operation is more tricky to de�ne. This is
due to the fact that (as discussed previously with the help of Figure 5), while contain(v) executes,
an execution of add(v) or remove(v) can proceed concurrently.

Let τ1 be the time at which a cell containing v is found but its �eld out is marked true (line 26),
or a cell containing v′ > v is found (line 25). Let τ2 be the any time before the linearization point
of a new operation add(v) that adds v to the set (if there is no such add(v), let τ2 = +∞). The
linearization point of an unsuccessful contain(v) operation is min(τ1, τ2).

This implementation of a concurrent set has been formally proved correct in [8].

4 A lock-free non-blocking queue

This section describes a non-blocking implementation of a queue due to Michael and Scott [34]. Interestingly,
this implementation is included in the standard Java Concurrency Package. As we have seen, non-blocking
means that, whatever the concurrency pattern, at least one process has to terminate its enqueue() or dequeue()
operation.

The implementation of the queue does not rely on locks, it assumes an underlying Compare&Swap
primitive, hence it is for the system model denoted ASMn,n−1[Compare&Swap], (Let us notice that Com-
pare&Swap can be replaced by the pair of LL/SC primitives or the memory-to-memory Swap operation
supplied by some machines. This is because they have the same computational power [16].)

The interested reader will �nd other lock-free algorithms for shared queues in [17, 31, 36, 50] and non-
blocking algorithms for shared stacks and queues in [44] and for shared queues in [49].

4.1 Underlying data structure

The queue is implemented by a linked list as described in Figure 6. The core of the implementation consists
then in handling pointers with the help of the Compare&Swap primitive.

The underlying list The list is accessed from an atomic register Q that contains a pointer to a record
made up of two �elds denoted head and tail. Each of these �eld is an atomic register.

Each atomic register (Q ↓).head and (Q ↓).tail has two �elds denoted ptr and tag. The �eld ptr contains
a pointer, while the �eld tag contains an integer (see below). To simplify the exposition, it is assumed that
each �eld ptr and tag can be read independently.

head

ptr tag

tail

ptr next

value

ptr ptr ptr next

value

⊥

Q

CELL

v1 v′ v”

tag tag tag tag

Figure 6: The list implementing the queue

The list is made up of cells such that the �rst cell is pointed to by (Q ↓).head.ptr and the last cell of the
list is pointed to by (Q ↓).tail.ptr.

10

Let CELL be a cell. It is a record composed of two atomic registers. The atomic register CELL.value
contains a value enqueued by a process, while (similarly to (Q ↓).head and (Q ↓).tail) the atomic register
CELL.next is made up of two �elds: CELL.next.ptr is a pointer to the next cell of the list (or ⊥ if CELL is
the last cell of the list) and CELL.next.tag is an integer.

Initially the queue contains no element but the list Q contains a dummy cell CELL (see Figure 7). This
cell is such that CELL.next.ptr is (always) irrelevant and CELL.next.ptr = ⊥. This dummy cell allows
for a simpler algorithm. It always belongs to the list and (Q ↓).head.ptr always points to it. Di�erently,
(Q ↓).tail.ptr points to the dummy cell only when the list is empty. Moreover, we have initially (Q ↓
).head.tag = (Q ↓).tail.tag = 0.

head

ptr tag

tail

tagptr next

irrelevant

0

0 ⊥

value

Q
CELL

Figure 7: Initial state of the list

Compare&Swap primitive and the ABA issue The algorithms implementing the operations enqueue()
and dequeue() consist basically in pointer management. To enqueue a new element a process prepares a new
cell and has then to appropriately update pointers. Similarly, a dequeue consists in handling pointers. To
that end, the algorithms use the hardware-provided Compare&Swap primitive.

When using Compare&Swap, a process pi usually does the following. It �rst reads the atomic register X
(obtaining value a), and later updates X to a new value c only if X has not been modi�ed by another process
since it has been read by pi. Hence, pi invokes X.C&S(a, c). Unfortunately, the fact that this invocation
returns true to pi does not allow pi to conclude that X has not been modi�ed since the last time it read it.
This is because between the read of X and the invocation X.C&S(a, c) both issued by pi, X could have been
updated twice, �rst by a process pj that has successfully invoked X.C&S(a, b) and then by a process pk that
has successfully invoked X.C&S(b, a), restoring thereby the value a into X. This is called the ABA problem.

This problem can be solved by associating tags (sequence numbers) with each value that is written. The
atomic register X is then composed of two �elds 〈content, tag〉. When it reads X, a process pi obtains a pair
〈x, y〉 (where x is the current �data value� of X) and it later invokes X.C&S(〈x, y〉, 〈c, y + 1〉) to write a new
value c into X. It is easy to see that the write succeeds only if X has continuously been equal to 〈x, y〉. (As
we are about to see in the enqueue() and dequeue() algorithms implementing the queue, the �eld content
denotes a pointer value).

4.2 The dequeue(v) and enqueue() algorithms

As already indicated, these algorithms consist in handling pointers in an appropriate way. An interesting
point is the fact that these algorithms require processes to help other process terminate their operations.
Actually, this helping mechanism is the mechanism that implements the non-blocking property.

The enqueue() algorithm The algorithm implementing the enqueue() operation is described at lines
lines 01-13 of Figure 8. The invoking process pi �rst creates a new cell in the shared memory, assigns
its address to the local pointer `cell and updates its �elds value and next.ptr (line 01). Then pi enters a
loop that it will exit when the value v has been enqueued.

In the loop, pi executes the following statements. It is important to notice that, in order to obtain
consistent pointer values, these statements include sequences of read and re-read (with Compare&Swap) to
check that pointer values have not been modi�ed.

11

operation enqueue(v): % (code for pi) %
(01) `cell←↑ new_cell(); (`cell ↓).value← v; (`cell ↓).next.ptr ← ⊥;
(02) repeat forever

(03) `tail← (Q ↓).tail;
(04) `next← (`tail.ptr ↓).next;
(05) if (`tail = (Q ↓).tail) then
(06) if (`next.ptr = ⊥)
(07) then if ((`tail.ptr ↓).next).C&S(`next, 〈`cell, `next.tag + 1〉)
(08) then (Q ↓).tail).C&S(`tail, 〈`cell, `tail.tag + 1〉); return(ok)
(09) end if

(10) else ((Q ↓).tail).C&S(`tail, 〈`next.ptr, `tail.tag + 1〉)
(11) end if

(12) end if

(13) end repeat.
===
operation dequeue(): % (code for pi) %
(14) repeat forever

(15) `head← (Q ↓).head;
(16) `tail← (Q ↓).tail;
(17) `next← (`head.ptr ↓).next;
(18) if (`head = (Q ↓).head) then
(19) if (`head.ptr = `tail.ptr)
(20) then if (`next.ptr = ⊥) then return(empty) end if;
(21) ((Q ↓).tail).C&S(`tail, 〈`next.ptr, `tail.tag + 1〉)
(22) else result← (`next.ptr ↓).value;
(23) if ((Q ↓).head).C&S(`head, 〈`next.ptr, `head.tag + 1〉)
(24) then free(`head.ptr); return(result)
(25) end if

(26) end if

(27) end if

(28) end repeat.

Figure 8: Non-blocking implementation of a concurrent queue in ASMn,n−1[Compare&Swap] [34]

• Process pi �rst makes local copies (kept in `tail and `next) of (Q ↓).tail and (`tail.ptr ↓).next,
respectively. These values inform pi on the current state of the tail of the queue (lines 03-04).

• Then pi checks if the content of (Q ↓).tail has changed since it read it (line 05). If it has changed,
`tail.ptr no longer points to the last element of the queue. Consequently, pi starts the loop again.

• If `tail = (Q ↓).tail (line 06), pi optimistically considers that no other process is currently trying to
enqueue a value. It then checks if `next.ptr is equal to ⊥.

� If `next.ptr = ⊥, pi optimistically considers that `tail points to the last element of the queue. It
consequently tries to add the new element v to the list (lines 07-08) This is done in two steps,
each based on a Compare&Swap: the �rst to append the cell to the list, the second to update the
pointer (Q ↓).tail.

∗ Process pi tries �rst to append its new cell to the list. This is done by executing ((`tail.ptr ↓
).next).C&S(`next, 〈`cell, `next.tag + 1〉) (line 07). If pi does not succeed, this is because
another process succeeded in appending a new cell to the list. If it is the case, pi continues
looping.

∗ If process pi succeeds in appending its new cell to the list, tries to update the content of
(Q ↓).tail. This is done by executing (Q ↓).tail).C&S(`tail, 〈`cell, `tail.tag + 1〉) (line 08).
Finally, pi returns from its invocation.

12

Let us observe that it is possible that the second Compare&Swap does not succeed. This is
the case when, due to asynchrony, another process pj did the work for pi by executing line
(line 10 of enqueue() or line 21 of dequeue().

� If `next.ptr 6= ⊥, pi discovers that `next does not point to the last element of the queue. Hence,
pi discovers that the value of (Q ↓).tail was not up to date when it read it. Another process has
added an element to the queue but had not yet updated (Q ↓).tail when pi read it.

In that case, pi tries help the other process terminate the update of (Q ↓).tail if not yet done. To
that end, it executes ((Q ↓).tail).C&S(`tail, 〈`next.ptr, `tail.tag + 1〉) (line 10) before restarting
the loop.

Linearization point of an enqueue() operation The linearization point associated with an enqueue()
operation corresponds to the execution of the Compare&Swap statement of line 07. This means that an
enqueue() operation appears as if it has been executed atomically when the new cell is linked to the last cell
of the list.

The dequeue() algorithm The algorithm implementing the dequeue() operation is described at lines 14-28
of Figure 8. The invoking process loops until it returns a value at line 24. Due to its strong similarity with
the algorithm implementing the enqueue() operation, the dequeue() algorithm is not described in details.

Let us notice that if `head 6= (Q ↓).head (i.e., the predicate at line 18 is false), the head of the list has
been modi�ed while pi is trying to dequeue an element. In that case, pi restarts the loop.

If `head = (Q ↓).head (line 18) then the values kept in `head and `next de�ning the head of the list
are consistent. Process pi then checks if `head.ptr = `tail.ptr, i.e., if (according to the values it has read at
lines 15-16) the list consists currently in a single cell (line 19). If it is the case and this cell is the dummy
cell (as witnessed by the predicate `next.ptr = ⊥), the value empty is returned (line 20). In contrast, if
`next.ptr 6= ⊥, a process is concurrently adding a new cell to the list. To help it terminate its operation, pi

executes ((Q ↓).tail).C&S(`tail, 〈`next.ptr, `tail.tag + 1〉) (line 21).
Otherwise (`head 6= (Q ↓).head), there is at least one cell in addition to the dummy cell. This

cell is pointed to by `next.ptr. The value kept in that cell can be returned (lines 22-24) if pi succeeds
in updating the atomic register (Q ↓).head that de�nes the head of the list. This is done by ((Q ↓
).head).C&S(`head, 〈`next.ptr, `head.tag + 1〉) (line 23). If this Compare&Swap succeeds, pi returns the
appropriate value and frees the cell (pointed to by `next.ptr which has been suppressed from the list (line
24). Let us observe that the cell that is freed is the previous dummy cell while the cell containing the
returned value v is the new dummy cell.

Linearization point of a dequeue() operation The linearization point associated with a dequeue() op-
eration is the execution of the Compare&Swap statement of line 23 that terminates successfully. This means
that an dequeue() operation appears as if it has been executed atomically when the the pointer to the head
of the list (Q ↓).head is modi�ed.

Remark 1 Both linearization points correspond to the execution of successful Compare&Swap statements.
The two other invocations of Compare&Swap statements (lines 10 and 23) constitute the helping mechanism
that realize the non-blocking property.

Remark 2 It is important to notice that, due to the helping mechanism, the crash of a process does not
annihilate the non-blocking property. If processes crash at any point while executing enqueue() or dequeue()
operations, at least one process that does not crash while executing its operation terminates it.

Remark 3 The interested reader will �nd other object constructions based on similar principles in [1, 14,
35, 39, 40, 42].

13

5 Two wait-free objects

This section describes wait-free implementations of two objects, namely a splitter and a snapshot object, in
the base read/write system, i.e., ASMn,n−1[∅]. It is important to observe that this is the weakest shared
memory model: processes can communicate by read/write registers only and up to n − 1 processes may
crash.

5.1 A wait-free splitter object

De�nition A splitter is a concurrent object that provides processes with a single operation, denoted
direction(). This operation returns a value to the invoking process. The semantics of a splitter is de�ned by
the following properties [30, 37].

• Validity. The value returned by direction() is right, down or stop.

• Solo execution. If a single process invokes direction(), only stop can be returned.

• Concurrent execution. If x processes invoke direction(), then:
� At most x− 1 processes obtain the value right,

� At most x− 1 processes obtain the value down,

� At most one process obtains the value stop.

• Termination. If a correct process invokes direction() it obtains a value.

The splitter object has been introduced in an implicit way by Lamport to implement fast mutual exclusion
in failure-free systems [30]. It has then been captured �as an object� by Moir and Anderson [37] who used it
to design a wait-free algorithm solving the renaming problem [3, 6].

A wait-free splitter algorithm The very elegant and simple algorithm described in Figure 9 implements
a splitter [30]. The internal state of a splitter SP is made up of two atomic registers: LAST that can contain
a process index, and is initialized to any value, and a boolean CLOSED initialized to false.

When a process pi invokes SP .direction() it �rst writes its name in the atomic register LAST (line 01).
Then it checks if the �door� is open (line 02). If it has been closed by another process, pi returns right
(line 03). Otherwise, pi closes the door (which can be closed by several processes, line 04) and then checks
if it was the last process to invoke the direction() operation (line 05). If this is the case, pi returns stop,
otherwise it returns down.

operation SP .direction(): % (code for pi) %
(01) LAST ← i;
(02) if (CLOSED)
(03) then return(right)
(04) else CLOSED ← true;
(05) if (LAST = i)
(06) then return(stop)
(07) else return(down)
(08) end if

(09) end if.

Figure 9: Wait-free implementation of a splitter object in ASMn,n−1[∅] [30, 37]

Remark A process that moves right is actually a late process: it arrived late at the splitter and found
CLOSED = true. Di�erently, a process that moves down is actually a slow process: it set LAST ← true
but was not quick enough during the period that started when it updated LAST (line 01) and ended when
it read LAST (line 05). At most one process can be neither late not slow, it is on time and gets stop.

14

5.2 A wait-free snapshot object

De�nition A multi-writer snapshot object is made up of m atomic registers (components). It provides the
processes with two operations denoted update() and snapshot().

• update(r, v) allows the invoking process to write a value v in component r (1 ≤ r ≤ m) of the snapshot
object. The operation returns the control value ok.

• snapshot() allows the invoking process to obtain the values all components. It returns consequently an
array of m values.

Let us remember that, as the implementation has to be linearizable, an invocation of snapshot() appears as if
it has been executed instantaneously, hence it is as if the m values it returns have been read simultaneously.

The wait-free snapshot algorithm that follows is due to Imbs and Raynal [27].

Underlying shared data structures The wait-free snapshot algorithm that follows is due to Imbs and
Raynal [27] (where a proof can be found). It uses two arrays of atomic registers.

• The �rst, denoted REG [1..m], is made up of m atomic registers. Register REG [r] is associated with
component r. It has three �elds 〈value, pid, sn〉 whose meaning is the following. REG [r].value contains
the current value v of the component r, while REG [r].(pid, sn) is the �identity� of v. REG [r].pid is
the index of the process that issued the corresponding update(r, v) operation, while REG [r].sn is the
sequence number of this update when considering all updates issued by ppid.

• The second array, denoted HELPSNAP [1..n] is made up of n atomic registers, one per process.
HELPSNAP [i] is written only by pi and contains a snapshot of REG [1..m] computed by pi during
its last update() invocation. This snapshot value is destined to help processes that issued snapshot()
invocations concurrent with pi's update. More precisely, if during its invocation of snapshot() a process
pj discovers that it can be helped by pi, it returns the value currently kept in HELPSNAP [i] as output
of its own snapshot invocation.

The local variable can_helpi is a set initialized to ∅ that will contain process identities.

operation snapshot(): % (code for pi) %
(01) can_helpi ← ∅;
(02) for each r ∈ {1, · · · , m} do aa[r]← REG[r] end for;
(03) while (true) do
(04) for each r ∈ {1, · · · , m} do bb[r]← REG[r] end for;
(05) if (∀r ∈ {1, · · · , m} : aa[r] = bb[r]) then return(bb[1..m].value) end if;
(06) for each r ∈ {1, · · · , m} such that bb[r] 6= aa[r] do
(07) let 〈−, w,−〉 = bb[r];
(08) if (w ∈ can_helpi) then return(HELPSNAP [w])
(09) else can_helpi ← can_helpi ∪ {w}
(10) end if

(11) end for;
(12) aa← bb
(13) end while.
===
operation update(r, v): % (code for pi) %
(14) sni ← sni + 1; REG[r]← 〈v, i, sni〉;
(15) HELPSNAP [i]← snapshot();
(16) return(ok).

Figure 10: Wait-free implementation of a snapshot object in ASMn,n−1[∅] [27]

15

The snapshot() operation The algorithm implementing the snapshot() operation (for process pi) is de-
scribed in Figure 10. The read of the array HELPSNAP [1..n] (at line 02 or line 04) is called a scan. A scan
is asynchronous and not atomic (the array is read in any order and at any speed, only the reading of each
entry is atomic). As in [2], process pi �rst uses a �sequential double scan� to try compute a snapshot value
by itself. If it cannot terminate by itself, it looks for a process pw which can help it. As we will see, this
occurs when pi observes that there is a process pw that issued two update invocations while it (pi) is still
executing its snapshot invocation.
• Try to terminate without help: successful double scan.

A process pi �rst scans REG twice (line 02 and line 04). The important point here is that, when
considering any two scans issued by a process, the second one always starts after the �rst one has
terminated (scans issued by a process are sequential). The values obtained from the �rst scan are
saved in the local array aa, while the values obtained from the second scan are saved in the local array
bb.

If the local predicate ∀r : aa[r] = bb[r] is true, pi has obtained the same values in both scans. This is
called a successful double scan. This means that REG [1..m] was containing these values at any time
during the period starting at the end of the �rst scan and �nishing at the beginning of the second scan.
Consequently, pi returns the array of values bb[1..m].value as the result of its snapshot invocation (line
05).

• Otherwise, try to bene�t from the help of other processes. If the predicate ∀r : aa[r] = bb[r] is false, pi

looks for all entries r that have been modi�ed during its previous double scan. Those are the entries
r such that aa[r] 6= bb[r]. Let r be such an entry. As witnessed by bb[r] = 〈−, w,−〉, the component r
has been modi�ed by pw.

The predicate w ∈ can_helpi (line 08) is the helping predicate. It means that process pw issued two
updates that are concurrent with pi's snapshot invocation. As we are about to see (Figure 11 and
line 15 of the code of operation update(r, v) described in Figure 10), this means that pw has issued a
snapshot embedded in an update concurrent with pi's snapshot invocation. If this predicate is true,
the corresponding snapshot value, that has been saved in HELPSNAP [w], can be returned by pi as
output of its snapshot invocation (line 08).

If the predicate is false, process pi adds the identity w to the set can_helpi (line 09). Hence, can_helpi

(that is initialized to ∅, line 01) contains identities x indicating that process px has issued its last update
while pi is executing its snapshot operation. Process pi then moves the array bb into the array aa (line
12) and enters the while loop again. As we can see, the lines 12 and 04 constitute a new double scan.

time line

HELPSNAP [w]← snapshot()

update(r1,−)
pw

pi

REG [r2]← 〈−, w, sn2〉
REG [r1]← 〈−, w, sn1〉

snapshot()

aa[r2] 6= bb[r2]aa[r1] 6= bb[r1]

update(r2,−)

possibly others update()

by pw

Figure 11: A snapshot with two concurrent updates by the same process

The update() operation The algorithm implementing the update(r, v) operation (for process pi) is de-
scribed in Figure 10. First, pi increases the local sequence number generator sni (initialized to 0) and writes
atomically the triple 〈v, i, sni〉 into REG[r] (line 14). Then, pi asynchronously computes a snapshot value
(a size m array) and writes it into HELPSNAP [i] (line 15). This constitutes the �write �rst, help later�
strategy. The way HELPSNAP [i] can be used by other processes as described previously. Finally, pi returns
from its update() invocation (line 16).

16

6 From obstruction-freedom to wait-freedom

This section presents �rst an obstruction-free implementation of a timestamping object that works in the
pure wait-free asynchronous read/write shared memory model ASMn,n−1[∅] (Section 6.1). Then it shows
how to enrich this system model in order to be able to transform any obstruction-free implementation into
a wait-free implementation (Section 6.2).

6.1 Obstruction-free objects

As just indicated, this section considers the base unreliable read/write system model ASMn,n−1[∅].

The di�culty of obstruction-freedom Obstruction-freedom has been de�ned in the Introduction. It is
a progress condition stating that if a process executes an operation in concurrency-free context it terminates
its operation. It is important to see that several process may have started executing operations on the object.
Hence, an obstruction-free implementation of a concurrent object must ensure two important things:

• The safety properties that de�ne the object consistency have never to be violated (i.e., whatever the
concurrency pattern on the operation invocations).

• Di�erently, the liveness property of each operation has to be guaranteed only if the invoking process
does not crash during the operation and executes alone during a long enough period (namely, the
period required to terminate the operation).

The di�culty in implementing obstruction-freedom lies in the fact that several processes may have pending
operations. Even if after some time only one processes keeps on executing, other processes can have stopped
at any statement of their operation execution.

A simple example Lots of algorithms implementing obstruction-free objects have been designed. One of
the most popular is the double-ended queue presented in [18]. We present here a simpler concurrent object,
namely, a timestamping object. Such an object X provides the processes with a single operation denoted
get_timestamp() that returns an integer. No two invocations returns the same integer and, if invocation
gt1() returns before invocation gt2() starts, the timestamp returned by gt2() is greater than the one returned
by gt1().

It is easy to see that a lock-based implementation of a timestamp object is trivial: an atomic register
protected by a lock is used to supply timestamps. But, as already indicated, locking and obstruction-freedom
are incompatible in asynchronous crash-prone systems.

An algorithm The following obstruction-free implementation of a timestamp object has been proposed
by Guerraoui, Kapalka and Kuznetsov in [11]. It relies on the underlying data structures.

• NEXT de�nes the value of the next integer value that can be used as a timestamp.

• LAST is an unbounded array of atomic registers. A process pi deposits its index i in LAST [k] to
indicate it is trying to obtain the timestamp k.

• COMP is another unbounded array of atomic boolean registers with each entry initialized to false. A
process pi sets COMP [k] to true in order to indicate that it is competing for the timestamp k (hence
several processes can write true into COMP [k]).

The algorithm implementing the obstruction-free operation get_timestamp() is described in Figure 12.
It is inspired from the wait-free algorithm described in Figure 9 that implements a splitter. (The pair of
registers LAST [k] and COMP [k] in Figure 12 plays the same role as the registers LAST and CLOSED in
Figure 9.) A process pi �rst reads the next possible timestamp value (register NEXT). Then it enters a loop
that it will exit after it has obtained a timestamp (line 06).

17

operation get_timestamp(i): % code for pi %
(01) k ← NEXT ;
(02) repeat forever

(03) LAST [k]← i;
(04) if (¬COMP [k])
(05) then COMP [k]← true;
(06) if (LAST [k] = i) then NEXT ← NEXT + 1; return(k) end if

(07) end if;
(08) k ← k + 1
(09) end repeat.

Figure 12: Obstruction-free implementation of a timestamp object in ASMn,n−1[∅] [11]

In the loop, pi �rst writes its index in LAST [k] to indicate that it is the last process competing for the
timestamp k (line 03). Then if it �nds COMP [k] = false, pi sets it to true to indicate that processes are
competing for timestamp k. Let us observe that it is possible that several processes �nd COMP [k] equal to
true and set it to true (lines 04-05). Then, pi checks the predicate LAST [k] = i. If this predicate is satis�ed,
pi can conclude that it is the last process that wrote into LAST [k]. Consequently, all other processes (if
any) competing for timestamp k will �nd COMP [k] equal to false, and will directly proceed to line 08 to try
to obtain timestamp k + 1. Hence, they don not execute lines lines 05-06.

It is easy to see that if, after some time, a single process keeps on executing its get_timestamp() invocation,
it eventually obtain a timestamp. In contrast, when several processes �nd COMP [k] equal to false, there is
no guarantee that one of them obtains the timestamp k.

6.2 From obstruction-freedom to wait-freedom

An important question related to fault-tolerance is the following: How to boost an obstruction-free imple-
mentation of an object to a wait-free implementation? To answer this question, this section considers the
enrichment of ASMn,n−1[∅] with a failure detector of the class 3P , i.e., the system model ASMn,n−1[3P].

Failure detector-based contention manager The answer to the previous question relies on the notion
of a contention manager. Such an object CM can be used by an obstruction-free implementation in order
to obtain a wait-free implementation. It provides each process pi with two operations denoted contender(i)
and finished(i). The former is used by pi to indicate that it suspects that concurrency will prevent it from
terminating, while pi invokes the latter one to indicate that it does no longer compete to terminate its
operation.

In our case, the algorithm described in Figure 12 is enriched as follows in order to obtain a wait-free
implementation.

• When pi executes line 08, it knows that there is concurrency to obtain timestamp k. Hence, the
invocation CM .contender(i) is added to that line.

• When pi executes return() (line 06), it is no longer competing to acquire a timestamp. Hence, before
returning, it invokes CM .finished(i) to inform of it the contention manager.

The weakest failure detector to boost obstruction-freedom to wait-freedom The issue raised to
solve the previous boosting has been moved to the implementation of a general contention manager object
CM , and the previous question becomes: What is the weakest information on failures needed to implement
such an object?

This question has been answered in [11] where it is shown that 3P [7] is this weakest class of failure
detectors that allows boosting obstruction-freedom to wait-freedom.

18

3P -based contention manager A 3P -based contention manager is described in Figure 13. let us
remember (see Section 2.2) that 3P provides each process pi with a set suspectedi that eventually contains
all faulty processes and only them.

The contention manager uses an underlying operation, denoted weak_ts(), that generates locally increas-
ing timestamps and are such that if a process obtains a timestamp value ts, then any process can obtain
timestamp values lower than ts a �nite number of times only. This operation weak_ts() can be imple-
mented from atomic read/write registers only. It is easy to see that weak_ts() is an operation weaker than
get_timestamp().

operation contender(i): % code for pi %
(01) if (TS [i] = 0) then TS [i]← weak_ts() end if;
(02) repeat competi ← {j | TS [j] 6= 0) ∧ j /∈ suspectedi};
(03) let 〈ts, j〉 be the smallest pair ∈ {〈TS [x], x〉 | x ∈ competi}
(04) until (j = i) end repeat.
===
operation finished(i): TS [i]← 0.

Figure 13: 3P -based contention manager in ASMn,n−1[3P] [11]

The processes access an array of atomic registers TS that has one entry per process. This array is
initialized to [0, . . . , 0]. When pi invokes contender(i), it assigns a weak timestamp to TS [i] (line 01). It
will reset TS [i] to 0 when it executes finshed(i). Hence, TS [i] 6= 0 means that pi is competing inside
the contention manager. After it has assigned a value to TS [i], pi waits (loops) until the pair (TS [i], i)
is the smallest (according to lexicographical order) among the processes competing inside the contention
manager that are not locally suspected to have crashed (lines 02-04). On can easily see that this contention
management mechanism ensures that any process will eventually have priority to execute its object operation.
A proof is given in [11].

7 Concluding remark (in one way or another anything is consen-
sus!)

The consensus problem Consensus is one of the most important problems of fault-tolerant asynchronous
computing. It is an agreement problem de�ned as follows. Every process is assumed to propose a value and
(a) each non-faulty process has to decide a value (termination), such that (b) a decided value is a proposed
value (validity) and (c) no two processes decide di�erent values (agreement).

This agreement problem is central in a lot of coordination problems and is at the core of many fault-
tolerant algorithms. In one way or another processes have to �agree� in nearly all applications. Unfortu-
nately, the most important result associated with the consensus problem is the impossibility to solve it in
ASMn,n−1[∅] (i.e., in the pure asynchronous wait-free read/write model) [10, 32].

The notion of consensus number Let ASMn,n−1[X] be the system model ASMn,n−1[∅] enriched with
(as many as we want) objects X. A fundamental question of concurrent programming in the presence of
asynchrony and process crashes is the following: Given an object A (de�ned by a sequential speci�cation),
is there a wait-free implementation of A in ASMn,n−1[X]?

This question is answered by the consensus number notion [16]. The consensus number of a concurrent
object X is the maximum number n of processes (or +∞ if there is no such integer) for which one can solve
the consensus problem in ASMn,n−1[X] [16]. As an example, the consensus number of an atomic register
is 1, the consensus number of Test&Set is 2. etc., and the consensus number of Compare&Swap (or the pair
LL/SC) is +∞.

19

Concurrent objects actually de�ne an in�nite hierarchy of objects (called consensus hierarchy or wait-free
hierarchy) [16] such that the objects at level x are exactly those objects with consensus number x. Hence,
atomic register is at level 1 while Compare&Swap +∞ is at the highest level of the hierarchy.

This ranking of �synchronization objects� is a very powerful tool to understand the relative power of
these objects. It can help decide which synchronization primitive a multi-core architecture must support.

The notion of a universal construction An algorithm that constructs a wait-free implementation of
an object A in ASMn,n−1[X] where the consensus number of X is ≥ n, is called a universal construction

for a size n system. Several universal constructions have been designed (e.g.,[12, 16]).
The reader interested in consensus number and universal constructions will �nd in depth developments

on these notions in the following books [4, 19, 33, 43, 45].

On progress conditions Obstruction-freedom, non-blocking and wait-freedom are not the only progress
conditions proposed so far. Asymmetric progress conditions have recently been de�ned [25, 26]. The de�-
nition and investigation of new progress conditions have received a new impetus and are becoming a very
active research area. The interested reader can consult the very last results in [25, 26, 46, 47, 48].

References

[1] Afek Y., Weisberger E. and Weisman H., A Completeness Theorem for a Class of Synchronization Objects. Proc.
12th Int'l ACM Symposium on Principles of Distributed Computing (PODC'93), pp. 159-168, 1993.

[2] Afek Y., Attiya H., Dolev D., Gafni E., Merritt M. and Shavit N., Atomic Snapshots of Shared Memory. Journal
of the ACM, 40(4):873-890, 1993.

[3] Attiya H., Bar-Noy A., Dolev D., Peleg D. and Reischuk R., Renaming in an Asynchronous Environment.
Journal of the ACM, 37(3):524-548, 1990.

[4] Attiya H. and Welch J., Distributed Computing: Fundamentals, Simulations and Advanced Topics, (2d Edition),
Wiley-Interscience, 414 pages, 2004.

[5] Bernstein Ph.A., Hadzilacos V. and Goodman N., Concurrency Control and Recovery in Database Systems.
Addison Wesley Publishing Company, 370 pages, 1987.

[6] Castañeda A., Rajsbaum S. and Raynal M., The Renaming Problem in Shared Memory Systems: an Intro-
duction. Tech Report #1960, IRISA, Université de Rennes 1 (France), November 2010 (Submitted to Journal
Publication).

[7] Chandra T. and Toueg S., Unreliable Failure Detectors for Reliable Distributed Systems. Journal of the ACM,
43(2):225-267, 1996.

[8] Colvin R., Groves L., Luchangco V. and Moir M., Formal Veri�cation of a Lazy Concurrent List-based Set
Algorithm. Proc. 18th Int'l Conference on Computer Aided Veri�cation (CAV'06), Springer Verlag LNCS #4144,
pp. 475-488, 2006.

[9] Dijkstra E.W.D., Hierarchical Ordering of Sequential Processes. Acta Informatica, 1(1):115-138, 1971.

[10] Fischer M.J., Lynch N.A. and Paterson M.S., Impossibility of Distributed Consensus with One Faulty Process.
Journal of the ACM, 32(2):374-382, 1985.

[11] Guerraoui R., Kapalka M. and Kuznetsov P., The Weakest Failure Detectors to Boost Obstruction-freedom.
Distributed Computing, 20(6): 415-433, 2008.

[12] Guerraoui R. and Raynal M., A Universal Construction for Wait-free Objects. Proc. ARES 2007 Int'l Workshop
on Foundations of Fault-tolerant Distributed Computing (FOFDC 2007), IEEE Press, pp. 959-966, 2007

20

[13] Guerraoui R. and Raynal M., From Unreliable Objects to Reliable Objects: the Case of Atomic Registers and
Consensus. 9th Int'l Conference on Parallel Computing Technologies (PaCT'07), Springer Verlag LNCS #4671,
pp. 47-61, 2007.

[14] Harris T.L., Fraser K. and Pratt I.A., A Practical Multi-word Compare-and-Swap Operation. Proc. 16th Int'l
Symposium on Distributed Computing (DISC'02), Springer Verlag LNCS #2508, pp. 265-279, 2002.

[15] Heller S., Herlihy M.P., Luchangco V., Moir M., Scherer W.III and Shavit N., A Lazy Concurrent List-Based
Algorithm. Parallel Processing Letters, 17(4):411-424, 2007.

[16] Herlihy M.P., Wait-Free Synchronization. ACM Transactions on Programming Languages and Systems,
13(1):124-149, 1991.

[17] Herlihy M.P., Luchangco V., Marin P. and Moir M., Non-blocking Memory Management Support for for
Dynamic-size Data Structures. ACM Transactions on Computers Systems, 23(2):146-196, 2005.

[18] Herlihy M.P., Luchangco V. and Moir M., Obstruction-free Synchronization: Double-ended Queues as an Ex-
ample. Proc. 23th Int'l IEEE Conference on Distributed Computing Systems (ICDCS'03), pp. 522-529, 2003.

[19] Herlihy M.P. and Shavit N., Herlihy M.P. and Shavit N., The Art of Multiprocessor Programming, Morgan
Kaufman Pub., San Francisco (CA), 508 pages, 2008.

[20] Herlihy M.P. and Wing J.M., Linearizability: a Correctness Condition for Concurrent Objects. ACM Transac-
tions on Programming Languages and Systems, 12(3):463-492, 1990.

[21] Hewitt C.E. and Atkinson R.R., Speci�cation and Proof Techniques for Serializers. IEEE Transactions on
Software Engineering, SE5(1):1-21, 1979.

[22] Hoare C.A.R., Monitors: an Operating System Structuring Concept. Communications of the ACM, 17(10):549-
557, 1974.

[23] Horning J.J. and Randell B., Process Structuring. ACM Computing Surveys, 5(1):5-30, 1973.

[24] Imbs D. and Raynal M., A Note on Atomicity: Boosting Test&Set to Solve Consensus. Information Processing
Letters, 109(12):589-591, 2009.

[25] Imbs D. and Raynal M., The x-Wait-freedom Progress Condition. (Distinguished paper). Proc. 16th Int'l Euro-
pean Parallel Computing Conference (EUROPAR'10), Springer-Verlag LNCS #6271, pp. 584-595, 2010.

[26] Imbs D., Raynal M. and Taubenfeld G., On Asymmetric Progress Conditions. 29th ACM Symposium on Prin-
ciples of Distributed Computing (PODC'10), ACM Press, pp. 55-64, July 2010.

[27] Imbs D. and Raynal M., A Simple Snapshot Algorithm for Multicore Systems. Proc. 5th IEEE Latin-American
Symposium on Dependable Computing (LADC'11), IEEE Computer Press, Sao Paulo, March 2011.

[28] Lamport L., How to Make a Multiprocessor Computer that Correctly Executes Multiprocess Programs. IEEE
Transactions on Computers, C28(9):690-691, 1979.

[29] Lamport. L., On Interprocess Communication, Part 1: Models, Part 2: Algorithms. Distributed Computing,
1(2):77-101, 1986.

[30] Lamport L., A Fast Mutual Exclusion Algorithm. ACM Transactions on Computer Systems, 5(1):1-11, 1987.

[31] Ladam-Mozes E. and Shavit N., An Optimistic Approach to Lock-free FIFO queues. Proc. 18th Int'l Symposium
on Distributed Computing (DISC'04), Springer Verlag LNCS #3274, pp. 117-131, 2004.

[32] Loui M. and Abu-Amara H., Memory Requirements for for agreement among Unreliable Asynchronous processes.
Advances in Computing Research, 4:163-183, JAI Press Inc., 1987.

[33] Lynch N.A., Distributed Algorithms. Morgan Kaufman Pub., San Francisco (CA), 872 pages, 1996.

21

[34] Michael M.M. and Scott M.L., Simple, Fast and Practical Blocking and Non-Blocking Concurrent Queue Al-
gorithms. Proc. 15th Int'l ACM Symposium on Principles of Distributed Computing (PODC'96), pp. 267-275,
1996.

[35] Moir M., Practical Implementation of Non-Blocking Synchronization Primitives. Proc. 16th ACM Symposium
on Principles of Distributed Computing (PODC'97), ACM Press, pp. 219-228, 1997.

[36] Moir M., Nussbaum D., Shalev 0. and Shavit N., Using Elimination to to Implement Scalable and Lock-free
FIFO Queues. Proc. 17th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA'05), ACM
Press, pp. 253-262, 2005.

[37] Moir M. and Anderson J., Wait-Free Algorithms for Fast, Long-Lived Renaming. Science of Computer Program-
ming, 25(1):1-39, 1995.

[38] Raynal M., Algorithms for Mutual Exclusion. The MIT Press, ISBN 0-262-18119-3, 107 pages, 1986.

[39] Raynal M., Synchronization is Coming Back, But is it the Same? (Keynote Speech). IEEE 22nd Int'l Conference
on Advanced Information Networking and Applications (AINA'08), pp. 1-10, Okinawa (Japan), 2008.

[40] Raynal M., Locks Considered Harmful: a Look at Non-traditional Synchronization. Proc. 6th Int'l Workshop
on Software Technologies for Future Embedded and Ubiquitous Computing Systems (SEUS'08), Springer Verlag
LNCS #5287, pp. 369-380, 2008.

[41] Raynal M., Failure Detectors for Asynchronous Distributed Systems: an Introduction. Wiley Encyclopdia of
Computer Science and Engineering, Vol. 2, pp. 1181-1191, 2009 (ISBN 978-0-471-38393-2).

[42] Raynal M., Shared Memory Synchronization in Presence of Failures: an Exercise-based Introduction. IEEE Int'l
Conference on Complex, Intelligent and Software Intensive Systems (CISIS'09), IEEE Computer Society Press,
pp. 9-18, Fukuoka (Japan), 2009.

[43] Raynal M., Communication and Agreement Abstractions for Fault-Tolerant Asynchronous Distributed Systems.
Morgan & Claypool Publishers, 251 pages, 2010 (ISBN 978-1-60845-293-4).

[44] Sha�ei N., Non-blocking Array-based Algorithms for Stacks and Queues. Proc. th Int'l Conference on Distributed
Computing and Networking (ICDCV'09), Springer Verlag LNCS #5408, pp. 55-66, 2009.

[45] Taubenfeld G., Synchronization Algorithms and Concurrent Programming. Pearson Prentice-Hall, ISBN 0-131-
97259-6, 423 pages, 2006.

[46] Taubenfeld G., Contention-Sensitive Data Structure and Algorithms. Proc. 23th Int'l Symposium on Distributed
Computing (DISC'09), Springer Verlag LNCS #5805, pp. 157-171, 2009.

[47] Taubenfeld G., On the Computational Power of Shared Objects. Proc. 13th Int'l Conference On Principle Of
Distributed Systems (OPODIS 2009), Springer Verlag LNCS #5923, pp. 270-284, 2009.

[48] Taubenfeld G., The Computational Structure of Progress Conditions. Proc. 24th Int'l Symposium on Distributed
Computing (DISC'10), Springer Verlag LNCS #6343, pp. 221-235, 2010.

[49] Tsigas Ph. and Zhang Y., A Simple, Fast and Scalable Non-blocking Concurrent FIFO Queue for Shared Memory
Multiprocessor Systems. Proc. 13th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA'01),
ACM Press, pp. 134-143, 2001.

[50] Valois J.D., Implementing Lock-free Queues. Proc. 7th Int'l Conference on Parallel and Distributed Computing
Systems (PDCS'94), pp. 64-69, 1994.

22

