On the marginal instability of linear switched systems

Yacine Chitour 1 Paolo Mason 1 Mario Sigalotti 2, 3, 4
2 EDP - Equations aux dérivées partielles
IECL - Institut Élie Cartan de Lorraine
4 CORIDA - Robust control of infinite dimensional systems and applications
IECN - Institut Élie Cartan de Nancy, LMAM - Laboratoire de Mathématiques et Applications de Metz, Inria Nancy - Grand Est
Abstract : Stability properties for continuous-time linear switched systems are at first determined by the (largest) Lyapunov exponent associated with the system, which is the analogous of the joint spectral radius for the discrete-time case. The purpose of this paper is to provide a characterization of marginally unstable systems, i.e., systems for which the Lyapunov exponent is equal to zero and there exists an unbounded trajectory, and to analyze the asymptotic behavior of their trajectories. Our main contribution consists in pointing out a resonance phenomenon associated with marginal instability. In the course of our study, we derive an upper bound of the state at time $t$, which is polynomial in $t$ and whose degree is computed from the resonance structure of the system. We also derive analogous results for discrete-time linear switched systems.
Type de document :
Article dans une revue
Systems and Control Letters, Elsevier, 2012, 61, pp.247-257
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

Contributeur : Mario Sigalotti <>
Soumis le : lundi 23 mai 2011 - 11:02:17
Dernière modification le : jeudi 5 avril 2018 - 12:30:05
Document(s) archivé(s) le : mercredi 24 août 2011 - 02:23:47


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00578133, version 4



Yacine Chitour, Paolo Mason, Mario Sigalotti. On the marginal instability of linear switched systems. Systems and Control Letters, Elsevier, 2012, 61, pp.247-257. 〈inria-00578133v4〉



Consultations de la notice


Téléchargements de fichiers