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Une nouvelle famille de conditions aux limites
absorbantes pour I’équation des ondes
acoustiques -Partie 11 : Etudes mathématique et
numérique d’une formulation simplifiée

Résumé : Nous nous intéressons aux propriétés mathématiques et numériques
d’une formulation simplifiée d’une nouvelle famille de conditions aux limites
absorbantes (CLAs) pour ’équation des ondes acoustiques introduite dans la
premiére partie de ce travail. En considérant une condition de surface libre sur
le bord de l'obstacle, on montre que le probléme aux limites correspondant est
bien posé et que la solution décroit exponentiellement. On réalise aussi une
analyse numérique. On propose d’utiliser une méthode de Galerkine discon-
tinue pour la discrétisation en espace et en définissant une énergie discréte, on
montre la stabilité du schéma numérique. Des résultats numériques confirment
les propriétés théoriques obtenues et illustrent les performances des nouvelles
CLAs.

Mots-clés : Conditions aux limites absorbantes, équation des ondes acous-
tiques, probléme bien posé, décroissance exponentielle, méthode de Galerkine
discontinue



A new family of second-order ABCs for the acoustic wave equation - Part I 3

1 Introduction

This work follows a previous one in which we have constructed a new family
of ABCs depending on a parameter. These conditions are obtained from the
micro-diagonalization of the acoustic wave equation, following the principle of
factorization described in [I5] and formerly used by Engquist and Majda [9]
for the construction of ABCs for flat surfaces. We have obtained second-order
conditions which can be applied on arbitrarily shaped surfaces and in [6], we
have shown that the corresponding boundary value problem is well-posed. Now,
regarding the numerical properties of the conditions, we have shown that these
conditions can be included variationaly only if we consider a high-order func-
tional that is obtained after deriving the wave equation. Nevertheless, this might
lead to create spurious solutions because we have shown that the correspond-
ing system admits stationnary solutions that are non physical. An alternative
consists in introducing an auxiliary unknown. By this way, the new conditions
can be included variationaly. The aim of this paper is to study the boundary
value problem that is obtained by introducing an auxiliary unknown. We prove
that the problem is well-posed and we show that the solution is exponentially
decreasing. The ABCs that we have constructed in [6] are given by

&@W+&m:(gfﬂaw—(g+ﬁ&um2. (1.1)

They are second-order conditions depending on a parameter v. When v = 0,
we recover the condition

Ot (Onu + Opu) = Z&nu — Z&tu on X
and we have shown that this condition is equivalent to the curvature condition
3nu+8tu+gu200n >,

Regarding numerical implementation, we have, at least formally

/5‘t2ug0dx+/ Vu~V<pdx:/8nug0dU.
Q Q b

Hence the new condition can be included variationaly if it reads as 0,u = Bu
on Y where B is a boundary operator. If B is differential, the sparsity of the
discretization matrices is preserved. Now, including directly, B is pseudo-
differential. Hence the condition generates a high computational cost. That
is why we propose to define an auxiliary unknown to obtain an ABC easier to
introduce in the formulation. The ABC is rewritten as follows :

ad
4
and we define v as the surface field satisfying

-1
Opu = —0u — g <8t — +’}/) Owu on X

(8t—g+7)w:8tuon2.

Then the solution u satisfies
mu+@u+g¢=oong

which can be easily included into the variational formulation.

RR n°® 7575



A new family of second-order ABCs for the acoustic wave equation - Part II 4

2 Mathematical analysis

We consider the more general mixed problem: find (u, d;u, ) solution to

02w —Au=0 in Q x (0, +00);

u(0,2) = up(x), Ou(0,2) = ur(x) in O

¥(0,z) = vo(z) on X;

u=0 on I' x (0,+00); (2.1)
8nu+8tu+g¢20 on ¥ x (0,+00);
(@—Z—F’y)z/):atu on 3 x (0,+00).

The function k is the curvature of ¥ and ~ is a regular parameter defined on .
The domain €2 is a bounded domain and its boundary 02 = I' U ¥ is assumed
to be regular, with I N Y = & (see Figll).

In the following, we will assume that the parameter function v checks the fol-

Obstacle

2
Figure 1: Studied domain

lowing condtion

~v(z) > @,VI €. (2.2)

We propose to study the problem (2.1) by using the theory of Hille-Yosida. We
first transform (2.1) in a first order system in time. We introduce an auxiliary
unknown v defined by v = d;u. The vector U = (u, v, 1) is thus solution to

0 Id 0
au
— =AU, A= A 0 0 (2.3)
dt
0 1 Z-v
with the boundary conditions
u=0onT x (0,+00) (2.4)
and .
Onpu + Opu + §¢ =0on X x (0,400). (2.5)

RR n°® 7575



A new family of second-order ABCs for the acoustic wave equation - Part II 5

In the following, we will concentrate on the problem (2.3) and we will interest
ourselves on its solution in suitable Hilbert spaces.
Let us first introduce H as the product space defined by

H = HE(Q) x L*(Q) x L*(%)

where
HE(Q) ={hy € H*(Q), hy =0 on T}.

We equip H with the Hilbertian graph norm
2 2 2 2 /2
| (h1, ho, hs) ||a = <||h1||L2(Q) +IVRhal|72 ) + [1h2llz2) + ||h3||L2(z)> :
Let V be the product space defined by
V ={(v1,v2,¢) € H, A(v1,v2,¢) € H,Opv1 + v2 + gcp =0on X}.

The space V corresponds to the domain of A. By enforcing A(vi,ve,¢) € H,
we improve the regularity of each component of the unknown. Indeed, we then
have vy € H{(Q) and Avy € L*(Q). Then vy € H(Q) implies that vy is
defined in H'/%(X) and Av; € L?(€2) implies that d,v1 ), € H'/%(X), knowing
that v; € H*(Q2). Moreover, the relation 0,,v; + v + 5@ = 0 on X improves the
regularity of d,v1), since v2 + §¢ € L?(X¥). Hence, as a résumé, we have

V= {(1}1,1}2,@) € H, Avy € LQ(Q), Vg € H%(Q), 8n111|2 S LQ(Z),
Opv1 + g + gcp =0on X}.

First of all we recall the Green formula we will use: for all (u,v) € HY(Q)xH(Q)
such that Au € L?(f2), we have

/ Auvdr = 7/ Vu - Vodz+ < 0pu, v >g-1/2(00),11/2(09) - (2.6)
Q Q

Lemma 2.1. Let k be given in L*°(X) and such that melgn(m) =ro > 0. Then,
xz
for all h € H, the quantity

1/2
Al = (/ (Viaf? + ol o+ [ “|h3|2da)
Q s 2

is a norm on H equivalent to the norm ||h| m.

Proof. 1t is well-known that ||V - |[z2(q) defines a norm on H}(Q) which is
equivalent to the standard nom in H'(f2), as a consequence of the Poincaré
inequality. Hence, since the curvature x is supposed to be in L°°(X) with

mig|/<;(x)\ > 0, it is straightforward that ||| - ||| defines a norm on H equivalent
BAS
to the conventional norm || - || g. O

In the following, we denote by (, ) the scalar product derived from the norm

RR n°® 7575



A new family of second-order ABCs for the acoustic wave equation - Part II 6

Lemma 2.2. Let k and 7y be given such that is checked. Then, for all
v €V, we have
(Av,v) <0.

Proof. Let v = (v1,v2, ) in V. By definition of A, Av = (vg, Avy, v + (% — fy) <p).
Then, we have

K

K
(A’U,’U):/gzvvg'vvld$+AAU1U2dx+L§('U2+(4 V)W)L,Odd.

Using the Green formula (2.6), we get

(Av,v) = /sz-Vvl dx —/V02~Vvl dx +/ 8nv1112d0+/ Evggpda
Q Q b 5 2

K (K
+ < Oyv1, V2 >H*1/2(F),H1/2(F) +/ 5 (Z - ’Y) ‘(,0|2d0'.
b))
Moreover, in V, we have vijp = V2 =0 and on ¥, d,v1 = —v2 — 5¢. Hence,

(Av,v):—/ \vzlgda—/ gcpvzda+/ gcpvzdcw/g(Z—v) o dor
> b b b

Now, since 4 (2 —~) < 0 on %, we get that for all vin V

K (K
(Av,v):—/2|vg\2da—|—/25(z—7) lp|* do <0,

which completes the proof of Lemma [2.2] O
Lemma 2.3. The operator A, with domain V, is mazimal.

Proof. Given f = (f1, fa, f3) in H, we consider the following mixed problem:
find v € V such that (A —1I)v = f.
We thus seek v = (v1, v, ¢) € V such that

vy — v = f1 in Q;
A’Ulf’vgifg in Q,
vat+ (8—7-1)¢p=fzon; (2.7)

v; =0 on I}

Opvr +v2+ 59 =0o0n .

First of all, we assume that the problem ([2.7) has a solution in V. Then, by
removing ve thanks to the equation

’U2:f1+1}1 in €,

and ¢ thanks to the third equation

_fs—fi—un
@-*ﬁ_’y_l. (2.8)

RR n°® 7575



A new family of second-order ABCs for the acoustic wave equation - Part II 7

we obtain that v; is solution to the boundary-value problem
— Avy+ 1 :finQ;
vy =0 on I' (2.9)

Onv1 + vy = gon X,

with ~
f==(f2+ f1) in L*(Q),
-~ K K . 2
g = <1+2(1+’V—Z)>f1+2(1+7—2)f3mL(2)’
and o
a:1+m>0.

It is obvious that, since k € L*°(X) and « > 0 by hypothesis, the functional

1/2
. (vn%p(m - [ adea)

defines a norm in H'(£2) which is equivalent to the standard norm || || g1 (). Let
T (£2) be the space of test functions defined by

T(@)={6cD(@). o =0)

It is dense in H} (Q) and if we assume that the problem (2.9) has a solution, we
have

|v

Vo € T(ﬁ) , —/ Avi¢pdr —|—/ vipdr = / fod.
Q Q Q
By using the Green formula (2.6)), we get
VoeT (Q), / VuiVodz— < 0pv1, ¢ >p-1/2(00),01/2(60) +/ vi¢de = / fodx.
Q Q Q

Moreover, ¢, = 0. Therefore,

V¢ET(§),/QVU1V¢da:—/28nv1¢da+/v1¢d$= [ Jods.

Q

Then by using that 0,v1 = § — av; on 3, we obtain

Vo € T(ﬁ) , / Vu Vo dx Jr/ av1¢do+/ v dr = / fgbd:z: +/ godo.
Q b Q Q by
(2.10)
Let a(-,-) the bilinear form defined by

a(vy, @) = / Vui Vo dx +/ owl(bdaJr/ vipdx.
Q b Q
It is obvious that a(-,-) is continuous on HE(2) x HE(Q) and HE(Q)-coercive,

since a(v1, @) corresponds exactly to the scalar product defined from the norm
|- 1,0 Let I(-) be the linear form defined by

I(p) = f¢dx+/§¢da.
Q b

RR n°® 7575



A new family of second-order ABCs for the acoustic wave equation - Part II 8

Since the pair (f,§) belongs to L?(Q) x L2(2), I(-) is continuous in HE().
Then, according to the fact that 7 (2) is dense in H{(£2), the formulation (2.10)
can be extended to Hf(€):

V¢ € Hi (), a(vi, ¢) = I(¢)

and, according to Lax-Milgram theorem, the problem

Vo € Hi(Q),a(vi, ¢) = U(9)
has a unique solution v; in HE(Q). In particular,
Vo € D(Q) C HE(Q), / VoV dr +/ v de = / fodu.
Q Q Q

We then deduce that
Vo € D(), < vy — Avy — f, ¢ >=0,

which means that ~
v; — Avyp = fin D'(Q).

This identity allows us to give a sense to Av; in L?(2). Therefore, 8"””89 €
H~1/2(99) and we also have
Vo e T (ﬁ) , / Vch/)das—i—/ avi¢do —|—/ vigpdr = / f(bdx —|—/ godo.
Q b Q Q b

Using the Green formula , we get Vo € T (ﬁ) ,

/ Avi¢pdr+ < Opvr, @ > H-1/2(00),H1/2(9Q) —|—/ av1¢d0—|—/ vi¢dr =
Q b Q

/Qfasdwjzgasda,

Vo e T (Q), + < 0nv1, ¢ >p-1/2(00), 11/2(59) +/ avipdo = / go do.
b)) b))

i.e.

Now, we have ¢|. = 0 which implies that

K
< Opv1 + 1+7H V1 —G,0 >g-1/2(sy. mq/2oy =0,
and we then have
Opv1 + | 1+ n vy =gon %
nV1 T |1 = .
2(1+y-%)

The existence of vy solution to (2.9) is thus proved.
Since v; and f; are in H'(f2), we deduce the existence of vy = f; + v; in
H'(2). Moreover since vy, and f3 are in L*(%), we deduce the existence of

RR n°® 7575



A new family of second-order ABCs for the acoustic wave equation - Part II 9

p= 7f‘i_ h-u in L?(%).
-1

To complete the proof, we have to check that actually (v1,ve,¢) € V, which is

obvious from
vg = f1 + vy in O

ap = fg—vyon X
and f; € H%(Q), fs € L2<Z) O
As a conclusion,

Theorem 2.4. Let (ug,u1, o) in V. The problem admits a unique solu-
tion u such that

(u, Oyu, ) € C*([0,400[; V) N CO([0, +oc[; H). (2.11)

Proof. The two previous lemmas show that the operator A is a maximal dis-
sipative operator in its domain V. According to the Hille-Yosida theorem [12]
the problem ([2.1) has one and only one solution U = (u, v, ¥) such that

(u, v, ¥) € C([0, +00[; V) N CO(]0, 4-00[; H). (2.12)

A is thus the infinitesimal generator of a semi-group of contraction Z(t) and we
can define the finite energy solution of (2.1) with initial data (ug,u1,%0) in V
in such a way that

(u, v, ¥) = Z(t)(uo, u1, o) € C*([0,+00[; V) N C*([0, +00; H);

which ends the proof of the theorem. O

3 Long time behavior

The results of Section [2] can be enriched by introducing the functional defined
on H by

1 1 K
Eltshache) = 5 [ (ThiP + ko) dot 5 [ Sjhald
Q b

If k(z) > 0 for all z € X, £ defines an energy on H and £'/2 is obviously a norm
in H equivalent to the norm |||, according to Lemma Then, &(u, dyu, 1)
defines an energy on H.

Moreover,

Lemma 3.1. For all (ug,u1,v0) € V, t — E(u, dyu, ) is differentiable and is
decreasing under the condition :

~v(z) > %x),Vac €.

RR n°® 7575



A new family of second-order ABCs for the acoustic wave equation - Part I110

Proof. In the previous section, we have seen that if the initial conditions (ug, u1, %)
are in V, &(u, dyu, ) € C(]0, +0o0[). Moreover,

iﬁ(u,atu,zb) z/V(atu)-Vudx—F/ 8tu6t2udx—|—/ Ewﬁtd)da. (3.1)

Using the Green formula (2.6) and the relation 6?u = Aw in €, we obtain

ié‘(u,atu,w) = —/ OuNudr+
Q

B udyu do+ / Suludr+ / R v do.

o0

Since 8tu‘r =0 and 9,u = —0u — 57 on %,

ic‘)(u, Opu, ) = —/ |8tu|2do'—/ E?/J(?tudo*.

At last, since 0y = Oyu — (7 — %) ¥, we get

%S(u, Oyu, ) = — {/E g (’Y — g) || do + /E |Opu? da] .

which implies that

d
%g(uﬁ 8tu7 1/’) S 07
and completes the proof of Lemma (3.1 O

In the following, we will assume that ¥y = 0 on X. This is a necessary
condition for (2.1)) to be equivalent to the initial problem

O*u— Au=0in Q x (0,4+00);
w(0, ) = up(2), (0, 7) = ur () in O;

u=0or dyu=0o0nT x (0,400);

O (Opu + Opu) = (g - 'y) Op b — (g + 'y) Oru on X x (0,+00).
Theorem 3.2. Under , for all (ugp,u1,0) €V,

tginooé'(u, Opu, ) = 0.

Proof. We have already seen that A is the generator of a continuous contraction
semi-group Z(t). As it is sufficient to prove the theorem on a dense subspace of
V = D(A), we consider the initial data (ug,u1,0) in D(A?), where

D(A?) = {(v1,v2,¢) € V, A(v1,v2,¢) € V}
is equipped with the norm graph

H(U17U2aw)HD(A2) = ||(U1,’U27’¢}>||V + ||A(017U2a¢)||v + HA2<v17U2aw)||V-

RR n°® 7575



A new family of second-order ABCs for the acoustic wave equation - Part II11

For any solution to (2.1)), we have
[ (u, Opu, )| p(azy = [1Z(¢)(uo, u1,0)[| p(az)
= 1Z(t)(uo, w1, 0)llv + [ A(Z(t)(uo, u1,0)) v
+A%(Z () (uo, 11, 0)) v
As A, A? and Z(t) are commuting on D(A?%),

[(w, By, )| peazy = 11Z(t)(uo,u1, 0)|lv + [1Z(t) Auo, ur, 0) ||y + | Z(t) A* (uo, w1, 0) v

Since Z(t) is continuous in V, we deduce easily that there exists a positive
constant C' such that

[l (w, Oy, ) | pazy < Cll(uo, ur,0)||p(az).-

We thus have a bounded sequence of solutions in D(A?) which implies that we
can extract a subsequence denoted by Z(tx)(ug,u1,0) which weakly converges
t0 (Uoo, Voo, ¥oo) in D(A?). Now, let us denote by (u(ty),v(tx)) the sequence
that is converging to (U, Voo ). By definition of D(A?), (u(tx),v(tx)) is bounded
in H3/2(Q) x H3?(Q) and Au(ty,) is bounded in H'(2). Indeed, any (u,v) in
D(A?) satisfies

ue H'(Q), Aue HY(Q), u=0onT, dyu, € L*(%)
ve H'(Q), Ave HY(Q),v=0o0nT, d,v, € L*(X).

We can thus deduce that (u(ty), v(tx)) strongly converges t0 (oo, Voo ) in H*(£2) x
H(Q). Moreover, since Au(ty) strongly converges in L?(Q2) and Awu(ty) con-
verges to Aty in D’( ), Au(ty) strongly converges to Aus, in L?(9) since the
limit is unique.

We then have that y,u(ty),, strongly converges to d,ucc|,, in H~'/2(%) and that
v(t)),, strongly converges to vy, in H'/2(X). This implies that ¢(t;) strongly
converges to ¢oo in H~/2(X). Nevertheless, this result of convergence is not
sufficient to have that (u(tx),v(tx), ¢(tr)) strongly converges to (oo, Voo, Poo)
in V. That is why we consider the equation that defines ¢(t) to show that in
fact, ¢(t)) strongly converges in L?(X). By construction, ¢ is solution to:

O + (v—%)qﬁzﬁtu on X x (0,400)
#(0,2) =0 on X

and according to the Duhamel formula, we have
t
o(t,x) = / e (s, z)ds.
0
We know that v is bounded in H'/2(¥). Hence we have: for any ¢ € H~/2(%),
t
< @, & >pgt/2 g-r/2 =< / “tuds y € >/ CH-1/2
0

t
:/ et < v, & >H1/2 g-1/2 ds
RR n° 7575 0



A new family of second-order ABCs for the acoustic wave equation - Part 1112

according to the fact that v(s) is uniformly bounded with respect to s. Thus
we obtain
[ <é.¢ ZHL/2, H=1/2 | < HUHHl/?(E)H£||H*1/2(E)(1 —e™)
which implies
16/l /25y < (1= e |vl| grasz(sy-

We thus have proved that ¢(t) is uniformly bounded in H'/?(¥) and we can
then deduce that ¢(t;) strongly converges to ¢, in L%(X), as a consequence of
the compact injection from H'/2(X) into L?*(X).

As a conclusion, (u(tr),v(tr), ¢(tr)) strongly converges to (Uoo, Voos Poo) inn V.
Since t — &(u, Oyu) is continuous, we thus have

lim &(u,du,vp) = lim E(Z(t)(ug,u1,0))

t——+oo t——+oo
= lim &(Z(tx)(uo,u1,0))
tr—+o0
= g(uoov Voo, woo)
We also have, for all s positive,

lim E(Z(t+s)(uo,u1,0)) = lim E(Z(s)Z(tx)(uo,u1,0)) = E(Z(S)(Uoos Voos Yeo))-

t——+oo tr—+o0

Then if (w, 0w, v) = Z(t)(Uso, Voo, Poo) denotes the solution to problem (2.1)),
with initial data (tee, Voo, ¥eo) in D(A), we have

E(w, dyw), ¢ = E(Uoo, Voo, Yoo ) Tor all ¢ positive.

Hence, according to the proof of Lemma [3.1] since

d B K K 9 )
€, 0w, ) = [/22 (w—4)|¢| da+/2|8tw| do],

we necessarily have d;w = 0 on ¥ and ¢ = 0 on X. We then deduce that w is
solution to the following problem

OPw — Aw =0 in Q x [0, +00[
w(z,0) = Uso, Opw(x,0) =vs in Q

w=0 on I' x [0, 4+o00]

Ohw =10 on ¥ x (0,+00)
and z := O;w is solution to

02z —Nz=0 in  x [0, 400[
2(2,0) = Voo, O2(x,0) = Ao in Q2

z2=0 on I' x [0, 400

Opz=2=0 on ¥ x (0,+00).

RR n°® 7575



A new family of second-order ABCs for the acoustic wave equation - Part I113

Since 9,z = z = 0 on X, we deduce that z = 0 in Q x [0, +00[, as a consequence
of the Holmgren theorem (see Lions [14]). Therefore, w is solution to

Aw=0 in 2 x [0, 400
w(z,0) = U in N

w=0 on I' x [0, +oo]

Opw =0 on X x (0,+00)

which implies that w = 0 in Q X [0, +o00[ since €2 is connected.The pair (teo, Voo)
is thus equal to zero. Consequently, we also get that 1, is also equal to zero
and a fortiori, we have &(tso, Voo, Yoo) = 0. O

We are now willing to propose

Theorem 3.3. Let (ug,u1,0) in V. Then the solution u to satisfies

. ligl (u, Oru, 1) = (0,0,0) in H.

Proof. If the pair (ug,us,0) is in V, we know that (cf. Theorem

t_l}+moo€(u, Opu, ) =0

and that £ is a norm on H, equivalent to || |.
Therefore,
lim (u,Oyu,) =(0,0,0) in H.

t——+oo

4 Exponential Decay

The aim of this section is to study the exponential energy decay of the solution
of the problem when the obstacle is a sound-soft scatterer (v = 0 on T').
We want to prove that there exists two positive constant C' and 3 such that for
all initial data,

E(u, Opu, ) < Ce‘ﬁté'(u,atu, V)|._o

where

1 1
E(u, dyu, ) = 5/ (|0wul® + [Vul?) dm+§/ g\w\Qda. (4.1)
Q 2

To obtain such an inequality, we will use the Gronwall’s lemma and it is thus
sufficient to prove that there exists a positive constant C' such that

T
/ (o1, Dy, )t < CE (u, Dyu, ), (4.2)
S

with 0 < S < T < +o0.
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4.1 Preliminary results
Lemma 4.1. Let (ug,u1,%g) € V. Then,

E(T) — £(S) :—/ST/Z|8tu|2dadt+/ST/E; (5 —9) lwPdodr, — (43)

with
E(t) = E(u, Opu, ) ().

Proof. We have proved that £ is differentiable and

d& B 9 K (K 9
E(U,atuﬂ/’) = 7/2 |0 ul d0+/z§ (Z *’Y) [v]“do.

Then after integrating on [S,T], we get

£(T) — £(S) :—/ST/E|8tu|2dadt+/ST/Eg(Z—v) (o Pdordt.

In the following, we assume that
~v(z) > @, Ve eXx
and that X is strictly convex so that
k(z) >0, Vz € X.

Lemma 4.2. We have

T
/ /|8tu|2dadt§5(5)
S >
/ST/E " (- 5) P dodr < ()

and if aupin = glelg (’y — %), we have

T
1
/5 /ngdadtga _&(8)

Proof. We know that

E(T) — £(8) = —/ST/E@uzdadt—f—/ST/Z;(Z —7) |2 dodt

which is equivalent to

S(S):/ST/E8tu2dadt+/ST/E;<7—Z) (o Pdodt + £(T).
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Since each term is positive we get

T
/ /|8tu|2d0'dt§5(5);
s Js
/5sz g (7 - Z) [¥? do dt < £(S).

T
From / / il (7 _ E) |2 do dt < E(S), we obviously get
s Jx 2 4

T

K, 9 1

— <
/S/EQM dodt < ——&(5)

which ends the proof of Lemma [.6] O

Lemma 4.3. There exists a constant C' > 0 such that, for any t < 5 <0,

/Z lu(t, z)|>do < CE(S). (4.8)

Proof. The trace map from H'(Q) into H'/?(X) is continuous and we have
lullZe(s) < Cllull sy < Cllullt -

Moreover, u satisfies the Poincaré inequality which is
There exists a positive constant C' such that

llull 22y < ClIVullL2(q)- (4.9)

This implies that
[ullZasy < CE®).

We conclude easily since t — £(t) is decreasing. O
Let m(z) be a function in C'(Q)3.

Lemma 4.4. We have

{/ A (m - Vu) dz] - = / / (m - n)|0ul*do dt + = / / div m|dyu|?dx dt-+
Q s 2Js Joa 2Js Ja

T T
/ /Vu~V(m~Vu)d:vdtf/ Onpu (m - Vu)do dt = 0.
s Ja s Joq
(4.10)

Proof. This identity has been used in several papers. We refer for instance to
[13]. Nevertheless, we recall its construction.
Since w is the solution of the wave equation, we know that

T
/ / (07w — Au) (m - Vu)dzdt =0
s Ja
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that is to say that

T T T
{/ atu(m~Vu)dx] 7/ /6‘tu(m~V8tu) da:dt+/ /Vu~V(m~Vu) dx dt
Q s Js Ja s Ja

T
—/ Opu(m-Vu) dodt =0
s Joq

Moreover, we can check that in €

1
Oyu (m - Vo) = Zm V|0ul?

so that
1
/ O (m-Vou) = f/ m - V|0pu|? dx
Q 2 Ja

1 1
= 7/ m-n\@tu\QdU—f‘/ div m|0sul* dz
2 Joa 2 Ja

Therefore, we get

[ Oyu (m - Vu) dm] - - / / (m - n)|Oul*do dt + = / / div m|0pu|?dx dt+
Q s 2Js Joa 2J)s Ja

T T
/ /Vu~V(m-Vu)da:dt—/ Opu (m - Vu)dodt =0,
s Ja s Joa

which ends the proof of the lemma. O

4.2 Proof of the exponential energy decay

In this section, we set m(x) = z — o where o € RY (N = 2,3 denotes the
space dimension). We suppose that xq is chosen such that

I'={z € 9Q,m.n <0} (4.11)

and
Y ={z € 0Q,m.n > 0}. (4.12)

This hypothesis is satisfied if €2 is star-shaped with respect to x.
In that case, we know that div m = N. For the sake of simplicity, we suppose
that N = 3 but there is no difficulty to obtain the same result for V = 2.

To prove that there exists a positive constant C' that satisfies (4.2]), we only
have to find an upper bound of

1 (T
f/ / (|0wul® + [Vul?) dzdt
2J)s Ja

since we already know from Lemma [£.2] that

T K 1
/S /E§|z/)|2dodt§ —g(s).
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Lemma 4.5. Let (ug,u1,%0) € V. Then, we have

;/ST/Q(|atu|2+|vu|2) da dt = — {/Q@tu((m-Vu)+u)dx}

T T
1/ (m-n) [|3tu|2 — |Vu\2] do dt +/ Onuu do dt (4.13)
oN

s Joa
T
+/ / Onu (m - Vu) do dt.
s Joa
Proof. From Lemma 4] we know that

{/ Ou (m - Vu) dz] 77/ (m - n) |Opu|®do dt + = / /dlv m|Oyu|*dx dt+
o0

/ /Vu V (m - Vu)dxdt — / Opu (m - Vu)do dt = 0.
s Joq

T

S

Moreover, we can check that
0; (m-Vu) = (m-V)dju+ Vu-9;mfor j =1,2,3;
and since m(x) = x — xg, we get
V(im-Vu)=(m-V)Vu+ Vu.

Consequently, we have

/ST/QVU'V(m«Vu)dzdt /T/|Vu|2dxdt+/T/((m~V)Vu)~Vudxdt
/ /|VU|2dedt+ / /m V|Vul? dz dt
/ /|VU|2dxdt+ / / (m - n) |Vul|* do dt
—5/5 /Qdiv m|Vul? dx dt

Therefore, we obtain using that div m = 3,

{/ Opu (m - Vu) dx} —7/ (m - n)|Oul*do dt + = / /\@u\ dx dt
o
77/ /\Vu|2dxdt+f/ / (m - n) |Vul*do dt
2Js Ja 2Js Joaa
T
—/ / Opu(m-Vu)dodt =0
s Joa
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that is to say
3 (7 e
f/ /\@u\zdxdt—f/ /|Vu|2da:dt=
2)s Ja
[/ Oru (m - Vu) dac] / (m - n) |0pul*do dt (4.14)
a0

—f/ (m-n) |Vu|2dadt—|—/ Onu (m - Vu) do dt.
o9 s Joa

Moreover we know that

T
/ /(afu—Au)u:O
5 Jo
which is equivalent to

T T T T
[/ 8tuudz] 7/ / |0u|? d dtJr/ / |Vul|? dxdtf/ / Opuudo dt = 0.
Q S S Q S Q S o0

(4.15)
Then, adding (4.14)) and ( - we obtain

T T
|:/ &guudx:l + - / / |0su|? da dt + = / / |Vu|? d dt — / Opuudo dt =
Q S JoQ

[/ Opu (m - Vu) dz] / (m - n) |0yul*do dt
o0

—= / (m - n) |Vul*do dt +/ Opu (m - Vu) do dt.
2J)s Joa s Joa

Finally, we get

T

;LTA(|8tu|2+|Vu|2) d dt = — Ugatu«m-wnu)dxk

1 /7 T
f/ (m - n) [|9pu)® — |Vul?] dodt —|—/ Opuu do dt
S JoQ

S JoQ
T
+/ / Opu (m - Vu) do dt,
s Joa

which completes the proof of Lemma [£.5] O

In the following we will denote equally by C all the constants.

Lemma 4.6. We have the following inequality

T T T
1/ / (m - n) [|0u]® — [Vul?] dcrdtJr/ /anuudadtJr/ /8nu (m - Vu) dodt <0.
2J)s Jr s Jr s Jr
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Proof. We know that u =0 on I so that Vru = 0 and 0;u = 0 on I'. Moreover,
since Vu = Vru+ (Vu-n)n, Vu= (Vu-n)n on I'. Then we get

1 /7 T T
f/ /(mn) [0l — |Vul?] dadt—i—/ /8nuudadt+/ /anu(m-Vu) do dt
2Js Jr s Jr s Jr

1 /7 T
:—f/ /(mn) |0 dadt—I—/ /(mn) |0nul? do dt

2Js Jr s Jr

1 /7
= f/ / (m - n) |Opul|* do dt.
2J)s Jr

By hypothesis, we have that m - n is negative on I'. Therefore, we obtain

1 /7T T T
f/ / (m - n) [|0wu]® — [Vul?] dodt+/ /8nuudodt—|—/ /&lu (m-Vu) dodt <0.
2J)s Jr s Jr s Jr

O

Lemma 4.7. We have

T T
/ / Onu (m - Vu) dodt—l/ / (m - n) |Vul?*do dt < CE(S).
s Js 2J)s Js

Proof. Since m -n > 0 on ¥ by hypothesis, we have

Onpu

Opu(m - Vu) =+vm-n(m-Vu)

Therefore, if we denote by R = ma§|m(x)|, we get
re

Bou| Vmon
|0 (m - V) | gm%”;’%w
n

R2
10nul? + 2 |2
-n

<
- 4

< Clo,uf + 7 Val?

From this inequality, we deduce that

T 1 /7T 1 /7
/ /Onu(m-Vu) dadt—f/ /(mn) |Vu|? do dt §—f/ /(m~n)|Vu|2dadt
s Js 2Js Js 4Js Js
T
—|—C/ /|6nu\2dadt
S JX
T
§C’/ /|3nu|2dadt.
s Js

To end the proof of the lemma, we have to check that
T
/ / Opul2 do dt < CE(S).
s Jx
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We know that .
Opu = —0yu — 5«@ on X.

Since k > 0 on ¥ according to (4.5), we get
2 Koo 2 2
ol < (5162 + 2ol )
2 K

Then, if we denote by kpax the maximum of x on X, we get

T T
/ /|8nu|2dadt§ @5(5)”/ /|8tu|2dadt.
s Jx Q'min s Jz

From Lemma [4.2] we know that

T
/ /\@u\ZdadthE(S)
S 3

which proves that
T
/ / |0 ul? do dt < CE(S)
5 Jx

and therefore that

T T
/ / Onpu (m - Vu) do’dt—l/ / (m -n) |Vul|? dodt < CE(S).
s Js 2Js Js

O
Lemma 4.8. We have
1 (T
f/ /(m-n) Oul2 do dt < CE(S).
2Js Js
Proof. By definition of R, we have |m - n| < R. Therefore, we obtain
17 R [T
7/ / (m - n) |0pu|? do dt < —/ / |0yu|? do dt
2Js Js 2 Js Js
and (|4.6)) implies that
1 (T
f/ /(m-n)\&tu\QdodtSCé’(S)
2Js Js
[

Lemma 4.9. We have

T
/ / Opuudo dt < CE(S).
s Jx
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Proof. We recall that on ¥, 0,u = —0yu — §v. Therefore,

/ST/ZanuUdUdt :/ST/ (_@tu—ﬁw)udadt;

*% {/ |u2d0} / / ~epudo dt;
_;/Z|U(T)|2d0+2/Z|U(S)|2dg—/ST/Z;1/Judadt;
R N T

Since the trace operator is continuous, we know that

IN

/E W(S)[? do < Cllu(S)|2.

From the Poincaré inequality (4.9)), we get that there exists a positive constant
denoted by C such that

2 2
[[u(S) 17 SC/Q|Vu(S)| dz.

Finally we obtain

/ /8 wudo dt < CE(S / / —pudo dt.

T
K
Now, we interest ourselves in the control of — / / 51/)1; do dt. We know that
s Jx

o = 6tu+<1—’y)z/)on2

which is equivalent to

Then we get

—/;/Z;pudodt - // E_

RIS
[ [
A6 e [ 36 e
/g 7—7 1[¢u]§d<f

~y (O¢yp — Oyu) udo dit

)
7) 8t1/)udadt+/ / - —fy) Oruu do dt
)

K (K -1 T
v)  Opudodt + = 5 /E 3 (Z —7) [[ul]§ do
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First, we know that

5 [5G WPlidr =5 [ 5(5-) mmirde—g [

and since y

%

Therefore,

5[5 G- WPlsdr == [5(v=5) [uPTs do
——3 [50-5) wra g [5(-5) P
Since —(v—g)_l <0,
5[5 WPl <5 [ 5(=5) ms)ar
< :;m Z|u(5)|2da

According to Lemma [£:3] we get

1 K (KR -1 21T Rmax
2/25(1—7) [ulP)§ do < 2 ().

Qmin

Moreover, we know that

/ST/Z;(Z—7>_1@/JBtudodt < CE&(S)

using Lemma [£.2]
Finally,

We have

and
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Therefore,

-3 G -n) "l o< o [ (GO SO + O + S5 e

We already know that

[ Gl@P + 510S)F) dor < @) +£(5))
b
and according to Lemma [4.3]

[ Grump + 51u(s)?) do < 0 (1) + £5)),

o \2 2
Thus, since t — £(t) is decreasing, we get
—1
- [5(5-) Wulf o < ces)

Finally, we have shown that

T rk
—/ / K pude dt < CE(S)
s Jo2
which proves that

T
/ / Opuudo dt < CE(S)
s Jx

Lemma 4.10. We have
T

- Uﬂ dyu ((m - Vu) + u) de < CE(S).

Proof. We know that

[/ Ou((m-Vu) 4+ u dx} /@u m- Vu Y /@uu‘t ,dz

du(m-Vu),  dr+ [ duuj,_dz.
Q Q

Moreover, we have

—/ du(m-Vu),_ de<C (/ |Opuy,_y [? dx—i—/ |VutT2dm>
Q = Q Q
/ du(m-Vu),_ de<C (/ Opuy,_ | dz +/ |Vuts|2dx)

Q = Q Q

—/ Opuu),_, dx<C</ |8tu‘t:T|2dx+/ |utT|2dx>
Q Q Q
/atuuh:s dx <C (/ |Opuy,_o | dm—i—/ |u|ts|2dx)
Q Q Q
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Using the Poincaré inequality (4.9) and that £ decreases, we obviously get

T

_ {/ﬂ Ayu ((m - Vu) + u) da ) < CE(9),

which ends the proof. O

Theorem 4.11. There exists a positive constant C such that for all 0 < S <
T < 400,

/ (. Oyu )t < CE(S), (4.16)
S

Proof. From Lemma [.5] to Lemma [£.10} we get
1 /7
5/ / (|0wul® + [Vul?) dzdt < CE(S). (4.17)
s Ja
Combining ({.17) with the result of Lemma [1.2]
T
/ / P2 dodt < CE(S). (4.18)
s Ju 2
We then obtain
1" ) ) SR AT
= (|0l + |Vul?) dadt + = —[|? do dt < CE(S) (4.19)
2Js Ja 2)s Js2

and the proof of Theorem [4.11]is completed. O

Theorem 4.12. There exists a positive constant C' such that for all initial data
mV,

E(u, 0pu,vp) < eV CE (u, Dyu, ) (4.20)

[t=0"

Proof. In Theorem we have shown that there exists a positive constant C
such that for all 0 < S < T < 400,

T
/ g(uvatuv'(/))dt S Cg(“ﬂatuvw)\tzs'
S

When T goes to +o00, we get

+oo
/ E(u, Opu,1p)dt < CE(u, Opu, )|, _g, (4.21)
s

which implies that

d Foo
— <€S/C/ E(u, Oy, 1/1)dt) <0.
ds S

+oo
The map S — /¢ / E(u, Oyu, )dt is thus decreasing and, using the Gron-
s

wall’s lemma, we get
+oo +oo
£S/C / £ (u, Dy, )it < / € (u, Dy, ).
s 0
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Besides, when we apply (4.21)) for S = 0, we get

“+o0
/ S(U, 815“’ ¢)dt S CS(”) atua ¢)|t=0'
0

Therefore,
+oo
¢S/C / € (u, By, )t < CE (u, Dyu, ). (4.22)
s
Moreover, since £ is positive
400 S+C
/ g(ua atuv 1/))dt 2 / g(ua atua w)dtv
s s
and since £ decreases
s+C s+c
/ E(u, Oyu, )dt > / E(u, Opu, )|, g, = CE(S+C). (4.23)
s s
Consequently, by plugging (4.22) into (4.23), we obtain
eS/Ce(u,atu,w)hzsw < E(u, Opu, )|,y
which implies that for all t > 0
g(u7 atu7 w) S e_(t_C)/Cg(u> 8tua 1/1)|t:0'
O

5 Numerical analysis

In this section, we recall the IPDG method that we use for our numerical sim-
ulations to test the performance of the ABCs we are considering in this work.
Next, we introduce a discrete energy that is decreasing and corresponds to the
functional £. We only present the case of a Dirichlet boundary condition on T'.

5.1 General setting of the IPDG method

The IPDG method has been introduced in [4] for general elliptic problems. It is
a discontinuous Galerkin approximation method in which a penalization term is
introduced to impose the weak continuity of the solution through each element
of the mesh. As a discontinuous Galerkin method, the IPDG method is a finite
element method which allows to handle triangular meshes in 2D and tetrahedral
meshes in 3D. This property is very important in our case because we deal with
arbitrarily-shaped domains that is to say that the domains we have to mesh have
complex geometries. Moreover, when using discontinuous Galerkin methods, we
get a quasi-explicit representation of the solution because the mass matrix we
have to invert is block-diagonal by construction. Furthermore, since the basis
functions are discontinuous, we can easily consider heterogeneous media and the
hp-adaptivity is straightforward.

We consider a partition 75 of Q2 composed of triangles K, we denote by 2 the
set of triangles, by .15 the set of the edges on the absorbing boundary ¥, by
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¥p the set of the edges on I" and by ¥; the set of the edges in the domain such
that 3 N (Zp U Xaps) = 0. For each o € 3, we have to distinguish the two
triangles that share o: we note them arbitrarily K+ and K~ . We introduce
notations to define the jump and the average over each edge:

[v] =vTvt 4o v~  and o} := 7_7

where v and v~ respectively refers to the restriction of v in K+ and K~ and
* stands for the unit outward normal vector to K*.

The IPDG formulation of the wave equation with standard boundary conditions

has been introduced by [T}, 10].

First, we recall that the ABC we have constructed reads as

Opu = —0yu — gdz on X,

with
(at—g—l—’y)w:atuon >,

We seek an approximation of the solution w in the finite element space th
defined as follows

Vi ={ve L’ (Vv € PE,VK € T} k€N
and of ¢ in the finite element space W} defined by
Wy ={W e L*(2);w,, € P},,Yo € T} ,k €N

where PE (respectively PE,) is the set of polynomials of degree at most k on K
(respectively on o).
The discrete problem is given by

Find uy, € Vi¥ x (0,+00) and 1 € W} x (0, +00) such that,

Z/@uhvh+auh,vh Z / 6tuh—|— 1/1h vy = Z/fvh, VthVh

KeT, €Y bs KeT,
8t - = = Orupwy, Yw wk
JGXE;bs/ +ry wh@h UGEabs/ " " "
(5.1)
with
alu, / Vave= 3 [ ({9uh b1+ (9o} [ ol 1)
o€

and « a penalisation coefficient [IJ.
We already know that, to determine wy, (respectively ) on a given triangle
(respectively on an edge) we need C}, , degrees of freedom (respectively 1+ k)

where Cf,, = (kkT;, Since we consider a DG method we will have

N := number of triangles x C,’jﬁ
degrees of freedom in the whole domain to interpolate u; and

M = number of edgeson™ x (1 + k)
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degrees of freedom on X to interpolate .
Let us consider {v;, 1 <i < N} a basis of V,f and {w;, 1 <i < M} a basis of
W,’f . We can rewrite uy as

and vy, as
M
Un (2,t) = > W () w; (x).
=1

The algebraic form of this problem is given by

2
&Y | Y + B,¥ + KU =F,
di2 dt
AW dU 52
OE + C,.;"»y\Il - DE

where U and ¥ are the vectors of unknowns and

M= (K;&/Kvivj)

B‘(Z/”i%‘) an_<Z/;wiU">

€T abs © 7 1<i,j<N 0E€Dabs © 7

C’z( Z /wiwj> ,CH,7:< Z /(V_Z)win) ,
1<i,j<M 1<i

TES s V7 < T€Tabs © 7 i, <M
D= E /inj‘
€T ans V7 1<is N
1<j<M
(5.3)

As for the time discretization, we use a finite difference scheme of order two
with a time step At and we obtain

AP (F" — KU™) 4 2MU™ s Aty AR
MXn+l — X" 4 9 9 r X”_l,
0 -D C - AtC,
(5.4)
where )
At At
M+ —B —B,
M = + 2 2
-D C+ AtC,, 4
and .
X' =
‘I,i
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Remark (a) We can remark that M is easily invertible because it is composed
of four blocks of block-diagonal matrices.

(b) In practice, when we consider interior triangles (that is to say triangles which
have no edges on ¥), we solve

MU = A¢? (F" — KU") +2MU" — MU %,
We solve the system (5.4) only when we consider exterior triangles (that is to

say triangles that have an edge on X).

5.2 A discrete energy

In this section, we study the stability of the fully discretized scheme which reads
as

Un+1 —2Uun + Unfl Un+1 _ Unfl \I,n+1 + ‘I,nfl
M B B, KU" =0,
INE * oAt > N 0
‘I,n+1 + \I,n—l \I,n+1 + \I,n—l Un+1 _ Un—l
= = - D —_
¢ 2At G 2 2At 0
(5.5)
For n € N, we set
Un+1 —_yn Un+1 _y»
En+1/2 M , + (KUn+1,Un)
At At (5.6)
1 .
+§ [(C‘Iln+1,l,€\:[ln+l) 4 (O‘I’n,lﬁ\]?n)]

with

I, = (5ijﬂi)1§i,j§nbriar
where nbr_ar denotes the number of edges on the absorbing boundary, d;; the
Kronecker symbol and k; the value of the curvature on the edge i supposed to

be constant.
Let A\pnaz be the maximum of the eigenvalues of the matrix M 1 K.

Proposition 5.1. Under the Courant-Friedrichs-Levy condition (CFL)

: (5.7)

E™t1/2 defines a discrete energy.

Proof. To show that E™'/2 defines a discrete energy, we only have to prove
that E"t1/2 is positive.
We have

En—‘rl/Q M- —"K

4 At ’ At 2 ’

1
+5 [(CL®™ L, 9" 4 (CLe", o))
. . +1/2 . oy . At2 oy
It is obvious that E™ is positive if M — TK’ K and CI, are positive. We
know that K and C1, are positive definite matrices by construction. Moreover
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since M is a symmetric positive definite matrix, the positivity of the first matrix
2

At
is equivalent to the positivity of I — TM “1K. Hence, if Amqp denotes the

At?
largest eigenvalue of M 1K, I — TM*IK is positive if

4

)\mar S @ .

O

Proposition 5.2. When the space step h is small enough, the CFL condition

is equivalent to
2

VALF

where app is a constant depending on the mesh and on the space discretisation
method.

At <

h, (5.8)

Proof. The eigenvalue A\, depends on the space discretisation and satisfies
Amaz = 4, with apr a constant. Therefore the CFL condition (5.7) can be
written as

2

At <
VOLF

h.

O

Remark The CFL condition only depends on the matrices M and K and not
on the boundary matrices. This proves that the ABCs do not penalize the CFL.

Proposition 5.3. Under the CFL condition (@, the energy E"1/2 s de-
creasing.

n+1l _ Unfl
Proof. To prove this result, we multiply the first equation of 1) by SA7 ,
\I,7L+1 ‘I,n—l
the second equation of 1} by IK+ and we sum them.
We get
n+1 _ 2u” n—1 n+1l _ yin—1 n+l _ gn—1 n+1l _ gn—1
MU U"+U 7 U U n BU U 7 U U
At? 2At 2At 2At
\I,nJrl + ‘I,nfl Un+1 _ Unfl Un+1 _ Unfl
B KUu", ——M
* ( " 2 ’ 2At ) + ( ’ 2At >
\I,n—&-l + lIl”_l \I,n+1 + \I,n—l \I;n-i-l + \I,n—l \IﬂH-l + \I,n—l
II{ K 7II€
e S RGO )
Un+l _ Un—l \I,n-&-l + \I,n—l
— (D I =0
( 2A¢t ’ 2 )
But

n+l _ n n—1 n+l _ pin—1 n+l _ 11N n+l _ TN n _ yin—1
(MU 2U" + U™! U U )_(MU ur (U - U) + (U" - U

At2? ’ 2At At? ’ 2At
MUn —_ynr-1 (Un+1 _ Un) 4 (Un _ Unfl)
B A2 2At :
RR n° 7575
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Therefore, since M is symmetric, we have

Un+1 _oyn Unfl Un+1 _ Unfl 1 Un+1 _y» Un+1 _y»
(v : ) =z (v )

At? ’ 2At 2At At ’ At
u” — Un—l u” — Un—l
— | M .
( At ’ At )]

In the same way, since K and C are both symmetric matrices, we obtain

n Un+1 _Unil _ 1 n+1 n n n—1
(KU LT )mt[(KU U - (KU, U]
and
‘I,n+1+\1,n71 ‘I,n+1+‘11n71 1 " " . e
(O AT i 5 ) = 1A [(Ce™ ! [, g™t — (Ce" ' [, g" 1],

Moreover, by definition, we have (DIH)T = B, which implies

\I,nJrl \I,nfl Un+1 _ Unfl Un+1 _ Unfl \I,nJrl \I,nfl
BK i ) - -D ,I;{ + - 0
2 2At 2At 2

Consequently, (5.2)) is equivalent to

1 Un+1 _y» Un+1 _y» u” — Unfl u” — Unfl
(v )= )]+

Un—i—l - Un—l Un-i_1 — Un_1 1 n+1 n n n—1
(B 2At 2AL >+2At[(KU ,U™) — (KU™, U™ )]

1 n n n— n— \I;n—i-l + \I,n—l \I;n+1 + \Il"_l
+E [(C‘II —H’I"“II +1) - (C\I’ laIm‘I’ 1)] + (Cmv 2 Ak 2 ) =0.

To get the expresion of E"11/2 in the previous equation, we artificially add

1 n ny _ n n

We have shown that
1 Un+1 _ Unfl Un+1 _ Unfl
E’n+1/2 o Enfl/Q) — _ B
2At ( 2At ’ 2At

\I;n-l-l + \I,n—l lII”+1 + ‘I’n_l
- (C/{,A/ 2 7In 9 ) .

Since B and C\, - are positive definite matrices and I,; is a diagonal matrix with
a positive diagonal, we get

1

Entl/2 _ En—l/2)
AL ( <0,

which ends the proof of the proposition. O
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6 Numerical results

In this section, we first study numerically the behavior of the discrete energy to
emphasize the validity of Theorem (4.12) before investigating the performances

of the ABC ([1.1).

6.1 Behavior of the discrete energy

In this part, we look at the behavior of the numerical energy to check
numerically the theoretical results of Section 4.

We consider the following configuration denoted by Configuration 1: the two-
dimensional domain ; (see Fig. is delimited by an exterior boundary ¥;

Figure 2: Computational domain - Configuration 1

and by an interior boundary I'y. ¥; is a circle of radius Rext = 3m centered in
the origin and I'; is the boundary of a circular obstacle of radius 1m centered
in the origin. The point source is set at (Om, 1.3m) and is defined as a second-
derivative of a Gaussian with a dominant frequency of 1Hz,

f =02 (At —t0)” = 1) M,

with 2o = (0m, 1.3m), A = 72 f2, fo = 1 and to = 1/ fo.

We first want to check that the discrete energy is actually decreasing when
the source is switched off. In a second part, we illustrate the fact that the
condition v > % is an optimal condition to get a well-posed problem. In the last
part, we check that we can control the discrete energy thanks to an exponential
decreasing function.

6.1.1 Energy decay

We first want to check that the discrete energy defined in is decreasing in
time. In Fig. [3] we represent the evolution of the discrete energy along the time
when v = k. We see that the energy first increases, which is due to the fact
that Theorem is only valid when the source is switched off. Once f(t) =0,
we remark that the energy is constant as long as the wave has not reached the
boundary of the domain. Finally, the energy starts decreasing as predicted by
Theorem
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S0

L L L
o 10 20 30 40 50 B0 70 80
Number of iterations

Figure 3: Energy vs time for v = &

6.1.2 Stability of the ABC

We have seen in Section 3 that v has to be greater than % to get a well-posed
problem. To illustrate this property, we compare the evolution of the discrete
energy for v = 0.249 x k and v = 0.25 x k. In Fig. (resp. in Fig. , we
represent the evolution of the discrete energy during 1 000 000 iterations when
v = 0.249% (resp. when v = 0.25x). If we just look at these figures, it seems
that both scheme are stable even when v < 4. But if we look at Fig. |§| (resp.
Fig. |7) where we have magnified the y-scale by a factor 10%, for v = 0.249«
(resp. when v = 0.25x), we see that the scheme is not stable when v < 4. The
numerical tests confirm that 7 is a critical value for +.

Figure 4: Energy for v = 0.249% Figure 5: Energy for v = 0.25x

6.1.3 Exponential decay of the discrete energy

From Section 4, we know that the continuous energy can be controlled by an
exponential decreasing function. In Fig. we compare the evolution of the
discrete energy obtain with v = & (black curve) with the following exponential
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(] ET) ) )

[ i 2000 T

o o a0 ET £ oo =) o

Figure 6: Energy for v = 0.249% - zoom  Figure 7: Energy for v = 0.25« - zoom

function (blue dashed curve)

g(x) = 10 2exp(—0.1  (x — 11)), (6.1)

the y scale is magnified by 100 in the second picture and by 108 in the third one.
It is clear that g is always greater than the discrete energy which illustrates
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Figure 8: Exponential decay of the energy

the exponential decay of the energy.
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6.2 Accuracy of the ABC

Now, we want to analyse the performances of the ABC compared to the
C-ABC for different values of v. To this aim, we will consider once again Con-
figuration 1 and a second configuration denoted Configuration 2 (see Fig. E[):
Qs is a two-dimensional domain delimited by an exterior boundary ¥, and by
an interior boundary I';. 35 is an ellipse of semi-major axis Gext = 6m and
semi-minor axis beyy = 3m centered in the origin. I's is the boundary of an el-
lipsical obstacle of semi-major axis a =2m and semi-minor axis b =1m centered

st B
N

Figure 9: Computational domain -Configuration 2

in the origin.

To compare the efficiency of the ABC for different values of v, we first
compute the relative L2-error in time at a given receiver set near the exterior
boundary. To evaluate this relative error, we have to compute the exact solution
at each receiver. We did not actually compute the exact solution, but we com-
puted an approximated solution in much larger domain than £, and €. Indeed,
we multiplied the dimensions of ¥; and X5 by 3. The relative L?‘T’y) ([0,T7) error
at point (z,y) is defined by

(fOT(Uapp(t, (2,9)) — ez (t, (z, y)))gdt) 1/2
(fOT(uew(t7 (z, y)))gdt) 1/2

where 4y, is the numerical solution and u., is the exact solution. The error is
given after 6000 iterations (with a time step equal to 3.673s).

We consider three receivers set near the boundary with coordinates (0, 2.85m),
(0.7m, 2.75m) and (1.4m, 2.45m) for Configuration 1 and four receivers whose
coordinates are (6m, 2.05m), (5m, 2.3m), (6m, —2.05m) and (5m, —2.3m) for
Configuration 2. The results are given in Tab. [I] for Configuration 1 and Tab.
for Configuration 2. From this results, we deduce that the relative L?-error
is quite the same for all the values of v and is similar to the errors obtained
with the C-ABC. We also see that the error increases when = is greater than k.
Actually, for high values of « the error is increasing at all the receivers.

In the following, we will arbitrarily consider v = k.

Now, we interest ourselves on the evolution of those errors when we move the
absorbing boundary, to find out where the boundary should be to obtain suitable
results without high computational burdens. We first consider Configuration 1.
We have tested six different radius Reyi: 1.5m, 2m, 3m, 4m, 5m and 6m in order
to find the critical value of the radius of the exterior circle we should take to

; (6.2)
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(0, 2.85m) | (0.7m, 2.75m) | (1.4m, 2.45m)
curvature 4.92 13.11 13.3
Y=1% 4.92 13.11 13.30
Y=3 4.92 13.10 13.31
Y=k 4.89 13.19 13.37
v =3k 4.92 13.42 13.83
v = 10k 5.33 14.04 14.22

Table 1: Relative L? error (in % ) - Source in (1.5,1) - Configuration 1

(6m, 2.05m) | (5m, 2.3m) | (6m, —2.05m) | (5m, —2.3m)
curvature 2.49 3.65 6.77 11.53
y=% 2.49 3.65 6.77 11.53
y=3 2.49 3.65 6.79 11.56
Y=k 2.50 3.66 6.93 11.75
v =3k 2.52 3.67 7.35 12.31
~v =10k 2.60 3.74 7.89 13.10

Table 2: Relative L? error (in % ) - Source in (1.5,1) - Configuration 2

obtain accurate results.

First, we set three receivers of coordinates (1.025m, 1.025m), (1.256m, 0.725m)
and (1.4m, 0.375m) near the obstacle and we evaluate the relative L?-error in
time defined in (6.2)). The results we have obtained are presented in Tab. [3] We

(1.025m, 1.025m) | (1.256m, 0.725m) | (1.4m, 0.375m)
Rext = 1.5m 29.87 35.08 41.75
Rexs = 2m 6.49 10.84 18.17
Rext = 3m 1.46 2.46 452
Reoxy = 4m 0.96 1.42 2.03
Rext = bm 0.4 1.33 1.11
Rexs = 6m 0.03 0.87 1.07

Table 3: Relative L? error (in % ) - Source in (1.3,0) - Configuration 1

see that when the artificial boundary is set near the boundary of the obstacle,
the relative errors are very important because there are many reflections coming
from the exterior boundary. When the radius of the artificial boundary is greater
than 3m, we obtain small relative errors. However, when we take the exterior
radius equal to 5m or 6m, the relative errors obtained are quite the same as for
an exterior radius of 3m or 4m but the computation is much more expensive.
Therefore when the obstacle is a circle we recommend to take for the artificial
boundary a circle whose radius is equal to three times the radius of the obstacle.
Now, we perform the same kind of analysis but looking at the global error in
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space and in time, i.e. we evaluate the relative L2([0,¢] x )-error defined by

t
| ttamnls.) = e (s,)Pnas
0 Q

7
//|uew(s,x)\2dxds
0o Jo

The results we have obtained are presented in Fig. For external radius
smaller than 3m there are a lot of reflections coming from the external boundary
and so the computed relative errors are between 3 and 25%. When the external
radius is greater than 3m, we obtain small relative errors and the differences
between the relative errors are small. Hence, choosing an external radius of 3m
when the interior radius is equal to 1m seems to be the best choice to obtain good
approximations of the solution of the wave equation without high computation
burdens.

1/2

P 1M

—a— R mem
—e—PRig=8m
——Rg=tm
R,=5m

Rigyg=6m

3
&

i
Time {in s)

Figure 10: Relative error for different distances to the obstacle - Configuration
1

Now, we want to check if this conclusion is the same when dealing with
elliptic obstacle. Here again, we consider six different domains. In each con-
figuration, the interior boundary is the same as in Configuration 2 that is to
say that the obstacle is an ellipse centered in the origin whose semi-major axis
a is equal to 2m and whose semi-minor axis b is equal to 1m. The exterior
boundary is an ellipse centered in the origin of semi-major axis deyy and semi-
minor axis bext. Gexy and bexy are respectively obtained by multiplying a and
b by 1.5, 2, 3, 4, 5 and 6. We have set three receivers near the obstacle of co-
ordinates (0.75m, 1.4m), (2.51m, 0.725m) and (2.8m, 0.375m) and we evaluate
the relative L2-error in time defined in . The results we have obtained are
presented in Tab. @l We can see that in this case, we obtain really good results
when deyt > 4a and beyr > 4b. If we take aexy = 6m and beyy = 3m we obtain
suitable results but the difference with the case when aexi = 8m and bex; = 4m
is important. Now, we want to check if we obtain similar results when we com-
pute the relative L?([0,t] x Q)-error. The results are depicted in Fig. We
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(0.75m, 1.4m) | (2.51m, 0.725m) | (2.8m, 0.375m)
toxt = 3, b = 1.5m 35.03 61.61 69.34
Gext = 4M, bexy = 2m 4.27 22.69 30.77
Gext = 6M, beyy = 3m 4.1 8.75 10.52
Gext = 8M, bexy = 4m 3.72 2.48 3.27
Gext = 10m, bexy, = dSm 0.59 1.15 1.77
Gext = 12m, beyt = 6m 0.44 0.55 1.38

Table 4: Relative L? error (in % ) - Source in (1.3,0) - Configuration 2

deduce that in such a configuration, we should take aexy = 3a and beyy = 3b to
obtain small relative errors as in the case of a circular scatterer.

%)

Relative Le-art

3
Time {in s)

Figure 11: Relative error for different distances to the obstacle - Configuration
2

7 Conclusion

In this work, we have studied a simplified formulation of the ABCs constructed
in [6]. We proposed to introduce an auxiliary unknown so that the new condition
can be easily included into a variational formulation. We have proved that
the corresponding boundary value problem is well-posed and that the solution
is exponentially decreasing. We have also shown that the new ABC can be
included into an IPDG formulation without hampering the CFL condition of
the scheme. Finally, we have performed numerical experiments to emphasize
the validity of the theoretical results and to investigate the performances of the
ABC. We have observed numerically that the parameter -y, on which the ABCs
depend, does not affect the accuracy of the solution, provided + is small enough.
Finally, we have carried out a numerical study to determine the optimal distance
between the boundary and the obstacle.
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