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Abstract

We study a class of functions, called Weakly Self Affine functions,
which are a generalization of Fractal Interpolation Functions where
the contraction ratios are allowed to evolve in scale. We show how to
compute the multifractal spectrum of such functions, and mention an
application to the multifractal segmentation of signals

1 Introduction

Fractal Interpolation Functions (FIF, [1, 3]) or Self-Similar functions ([5])
possess a strong multiplicative structure that allows to compute many re-
lated fractal and multifractal quantities of interest. FIF are constructed in
a recursive way: Each scale is deduced from the preceding one by applying a
finite number of contractive functions. These contractive functions are fixed
once and for all. Specially for applications in Signal Processing, a strict
multiplicative structure is often too restrictive a requirement to impose. We
consider in this paper a generalization of FIF, called Weakly Self Affine func-
tions (WSA), where the contractive functions are allowed to vary at each
scale. This added flexibility permits to model and process a much larger
class of signals, keeping at the same time the computation of the associated
multifractal features reasonably straightforward.



This paper is organized as follows. Section 2 recalls the definition and
multifractal properties of FIF. We introduce WSA functions in section 3.
Section 4 is devoted to the computation of their multifractal spectrum. Fi-
nally, we explain in section 5 how WSA functions may be used to perform the
segmentation of a signal into parts which are “multifractally homogeneous”,
i.e. have a well defined multifractal spectrum.

2 Recalls on Fractal Interpolation Functions

To fix notations, we recall the following facts about self-similar functions
(see for instance [5] for proofs).

Definition 1 A function F : R™ — R is called self-similar of order k iff :

e There exists an open set Q and d contractive similitudes Sy, ..., Sq ( i.e.
compositions of isometries and homotheties © — p;x of ratios p; < 1)

such that:
Si(Q) CcQViedl,..d} (1)
Si(@)NS;(Q)=0 if i#j

e There exist d reals (Ai)izl,...,d and a compactly supported function g €
C* such that:

d
F(z) =) NF(S; ' (2)) +g(x). (2)
1=1

e F is not uniformly C* on a closed subset of €.

Condition (1) is usually called the “separation condition”. A formal solution
of (2) is:

o n
F(z) = > I Ai9(S; o085, Ha) (3)
n=0 (i1 ,...,in) j=1
where (i1, ...,1,) € {0,...,d — 1}".
For an example of a self-similar function, consider simply the Weierstrass
function:
o0
F(z) = Z 27 "sin(2n2"x)
n=0

where z € [0;1] and s €]0;1]. Indeed, letting

) sin(2rz)  ifz €[0;1]
9(z) = { 0 otherwise



we get:
F(z) =27°F(2z) + 27°F(2z — 1) + g(z).

Let us now recall a few facts about multifractal analysis. Multifractal
analysis is concerned with the study of the regularity structure of functions
or processes, both from a local and global point of view. More precisely, one
starts by measuring in some way the pointwise regularity, usually with some
kind of Hélder exponents. The second step is to give a global description
of this regularity. This can be done in a geometric fashion using Haus-
dorff dimensions, or in a statistical one through a large deviation analysis.
Formally, one defines the pointwise Holder exponent of F' at x as:

a(z) = lim inf 28056 €)
e—0 log(e)
where oscp(z,€) = sup; yep(q,) [£'(s) — F(s")| and B(z,€) denotes the ball
centered at z with radius e.
The Hausdorff multifractal spectrum describes the structure of the func-
tion z — «a(x) by evaluating the size of its level sets. More precisely, let:

E,={z:a(z)=a}
The Hausdorff multifractal spectrum is the function:
d(a) = dimg(Ey)

where dim g (E) denotes the Hausdorff dimension of the set E.

Other multifractal spectra are also defined, for instance the so-called
large deviation and Legendre multifractal spectra. We shall not consider
them here.

The multifractal spectrum of self-similar functions assumes a particularly
simple form. Define:

log | Al log | Ail
1 Omazr = S
i=1,....d log | ;]| i=1,...,d 10g |

Omin =
Let 7 the function defined implicitly by:
d
SN pm @ =
11 °
i=1

Then we have:



Theorem 1 Assume that k is larger than .. Suppose in addition that,
for all i, |N;| < 1. If apin > 0, then, for all a:

—0o0 ZfO[ ¢ [amin ;amaz]

d(e) =
inf — therwi
Inf (qe — 7(q)) otherwise

This theorem is a version of the so-called “multifractal formalism”, which,
when applicable, allows to obtain d(«) as the Legendre transform of a func-
tion which is easy to compute.

3 Weakly Self-Affine functions

As said in the introduction, WSA functions are defined as a generalization
of self-similar functions where the similarity ratios are allowed to vary at
each scale. Formally:

Definition 2 A function F :[0,1] — R is called WSA iff :
i) There exists an open set Q C [0,1] and contractive similitudes Sy, ..., Sq—1
such that :

e Si(Q) CQVie{0,..,d—1}
o Si(NS; Q) =0 if i#j

i1) There exists d positive sequences (Aé)jem*, ey (Azl—l)jeIN* satisfying 0 <

)\‘g < 1 for every i € {0,...,d — 1} and j € IN*, and there ezxists a compactly
supported continuous function g such that F verifies :

P@)=g@)+y % ( . Qj_pxz;) 9(57 0087 (x)
n=L (iy,....in)€{0,...,d—1}" \j=1 “~»=1"7
. . (4)
where, for each j > 1 and k € {0,...,d — 1}, we have : €, = +1.
If there exist d reals Xy, ..., A\q_1 such that
X =X, Vie{0,...d—1},¥j > 1and Vk € {0,..,d — 1},

then one recovers the classical self-similar functions. The weak self-affinity
of F' is apparent when one realizes that Definition 2 implies that F' can be



obtained as the limit of the sequence (Fj)j CIN>
J > 1, Fj is recursively computed as follows :

where Fy(z) = g(z) and, for

Ze])\]F “(2)) +g(z).

We establish now a condition that ensures the continuity of WSA func-
tions. Let:

Ig :{Ln = (il,iQ,...,in) :ij S {0,...,d—1}, j € {1,,TL}}

I = {v=(i1,ig,...) :4; €{0,...,d— 1}, j € N*}.

Proposition 1
Assume that:

N—oo (inyi2,- )EIL | p=n j=1

lim sup { i ﬁ |>\£]|} =0. (5)

Then F' is continuous.

Proof:
Write
F(z) = lim Fy(z)
N —o00
where

N n )
= Z Z H Agjg(S;nl ... oSizl(x)).

=0 (i1,...,in) J=1

Clearly, Fiy is continuous for all N € IN. We shall show that the sequence
(F'y) converges uniformly to F'. We have:

|F(z) - Fy(2)] = | Y Y ng’jg(si;lo...os;ll(x))

n=N+1 (i,.. 7in)j_1

IN

n=N+1 (lla aln)]_

Since g is compactly supported, there exists a constant C' > 1, such that,
for all n € IN* and for all z € [0; 1], we have:

card {Ln = (i1y.eyin) € I} : Si;l 0..0 Si_ll(x) € supp(g)} <C.



Thus, for all z:

|F(2) = Fy(z)| <C  sup {i ﬁ A }

(i17l27"')elgo n=N j=1

Using (5), this implies that (Fv) converges uniformly to F. m

Remark 1: Condition (5) is analogous to the one ensuring the continuity
of GIFS. GIFS are yet another generalization of FIF where not only the
contractive functions are allowed to change at each scale, but the number of
functions S; may also vary, and, in particular, tend to infinity with n (see
[3].

Remark 2: Condition (5) is obviously satisfied if there exist a and b
such that, for all i and j, 0 < a < |X/| <b < L.

Remark 3: The condition that g is compactly supported is unnecessary
for both the definition of WSA functions and the continuity criterion. It
just allows to simplify the analysis. A well localized function g would lead
to the same results.

4 Multifractal formalism for WSA functions

We compute in this section the multifractal spectrum d(«) of WSA func-
tions. It is a remarkable fact that, as is the case for self-similar functions,
a multifractal formalism holds for WSA functions. Thus, WSA modeling,
while allowing much greater generality than strict self-similarity, also leads
to a quite simple multifractal analysis.

To avoid technicalities, we shall restrict our attention from now on to

the case where 1

o= e = a1 = p=
and, for all < € {0,...,d — 1}:

More general forms can be treated in the same way at the expense of
various complications.

Our first task is to compute the pointwise Holder exponents. The fol-
lowing proposition describes the pointwise regularity of WSA functions:



Proposition 2

For all z, let I,(z) be the d-adic interval of size d~™ containing x. Denote
by I, (z) and I} (x) the two d-adic intervals of size d™™ neighbouring I,(x).
Let (i1,...,i) be the coefficients of the d-adic expansion of x up to rank
n, and (i],...,i;) (resp. (if,...,i})) be the the coefficients of the d-adic
expansion up to rank n of any t in I, (x) (resp.It (x)). Then:

n n n
2 logg [N X dogg |NE] 3 logg AL |
af(z) = lim inf min(— 2=t , —m=l , —m=l

n—o0 n n n

(6)

We shall denote in the sequel By, (z) the set { (i1, ...,i5), (i1 5y i )s (175 oy i)}
When g is a piecewise linear function that interpolates d + 1 equidistant
points that do not lie on a straight line, F' is an SGIFS as defined in [3],
and the proposition above is a simple consequence of proposition 10 in [3].
In the general case, the proof follows closely the one in [5] for self-similar
functions.

Let us now move to the multifractal spectrum of F. Define, for every
integer j > 1, the d-tuple (u},...,u’, ;) by:

(U%, ey ué—l) = (Ago’ e ng—l)’

where (i, ...,74_1) is a permutation of (0,...,d — 1) which yields:

Mo<. <N

10 td—1"

In other words, for each j, (u%, ...,uzl_l) is the d-tuple ()\‘6,...,)\‘;_1) rear-
ranged in increasing order.

Theorem 2 Suppose that there exists two reals a > 0 and b > 0 such that,
for every i € {0,...,d — 1} and j > 1 we have:

0<a< ’UfZ <bh<l1
Suppose also that :

card {j e{l,..,n}: uf <zVi=0,..d- 1}

n

(7)

(2o, s Ta—1) = liTan

exists for every (zg,...,Tq—1) € [a;b]d. Suppose finally that g is uniformly
more regular than F. Then the Hausdorff multifractal spectrum of F' is:



o d(a) = —o0 if a & [amin ; Amasz] where

logg(ul )+...+logg(u )
n

Qpmin = liﬁn —

log, (u(l))—l—...—l—logd (ug)
n

Qmaz = liTan —

o if & € [min ; Qmag]|, then

d(a) = qigIg(qa —7(q))

where

> logy () + o+ ()"
7(¢q) = lim inf — 2=

s n = limigfm(9)

To prove the theorem, we shall first make use of the following well-known

property (see for instance proposition 4.9 in [7]):

Proposition 3

Let H® be the s-dimensional Hausdorff measure. Let v be a probability mea-

sure on IR. Let E C IR and C' be a positive constant. Then:
v(F)

o if, forallz € F, limsupM < C, then H*(F) > =5*.

7-5
r—0

o if, for all z € F', limsup v(B@r) C, then H*(F) < %

7-5
r—0

Proof of theorem 2:
Let:

o0

Fy(z) = > Ll g(s, 008 =),
0 j=1

n= (ilz---:in) =

(8)

It is easy to see that the multifractal spectra of F' and F), coincide. ;From

proposition 2, we get:

_logd |uZ11| + ... +logg |uf |

g, () = lim inf inf
w =00 (1,...,in)€ By (z) n

Let now s > 0 and ¢ € IR. For all j > 1, let:
i\ i
t; = logg (Juf|" + ... +Ju)_,|")

8

(9)



and for all 7 € {0,...,d — 1},

Recall that 4 = . As a consequence: E P] =1, for all integer j > 1.
Consider the probablhty measure v deﬁned on K =[0;1] by:

V(i1yeeeyin) € {0,yd — 1}, 0(S;,...5;, (K)) = PL...P". (10)

(the existence of v follows from Kolmogorov consistency theorem). Let
z € K and r > 0 be such that:

d " <r<d D,

Then

(il,...,in)EBn(x)

1 n n—Tn(Q)—S q
~ Sup U/lluln/ll a
(31 5eeesin)EBn(x)

Let By = {7 : af(z) = o} and assume that s > ga — 7(g).

Case ¢ > 0:

There exists a > 0 which depends ounly on s et ¢ such that s > qa—7(q)+qa.
As a consequence, there exists ng € IN such that, for all n > ng, we have:

Tn (q) +s
q

—a > Q.

Let 9§, = T”(‘fl)+s and let v be a real number such that o < v < §,, — a for
all n > ng.
Then there exists a finite set IP C IN such that, for all n € P and n > ng we

have:
logdu + ... +loggui,

inf
(#1yeeryin)EBn(x) n
Thus:
logdu + ...+ loggu;,
sup
(i10-sin)EBn (7) n



This implies that, for n > ng in IP,

logg uj, + ... + logg ul!

sup 5y > a
(i1 y+--5in )€ Bp () n
or
1 n n=m@=s\7 agn
sup U, U [ a >d
(#1,e.-yin)EBn(x)
This entails that B
lim sup 2 8@ ) _

T rs
Case ¢ < 0:
There exists b > 0 depending only on s et ¢ such that s > ga — 7(q) — gb.
As a consequence, there exists ng € IN such that, for all n > ny we have:

L(q)—i_s-i-b<a
q

Let 6, = % and let v be a real such that o > vy > 0, + b for all n > ng.
Then there exist a set P and n; € IN such that, for all n € IP and n > n,

_ log, ul + ...+ loggul S

inf
(i1,0rmrin) € B (2) n
Thus
logg uf, + ... + loggul"
sup < —7.
(i1 )€ Bn () n

This implies that, for n > max(ng, n;):

log, uzll + ... +loggui

sup + 0, < —b
(i15-sin )€ Bn () n
Or: N
—Tnlq)—Ss
sup <ul11u?n,un q ) > d~bm
(81,e.-yin)EBn(x)

Thus B

lim sup M = +4-00.

r r

This entails that, for any given a € [min ; @maz), for all ¢ € IR and all
s > qa — 7(q), we have:
HP(Ey) = 0.

10



As a consequence,

d(a) > in

qeﬂg(qa - 7(q))-

The proof that s < ga — 7(¢) implies

v(B(z,r)) _0

lim sup
T

follows the same lines. Thus, to show that d(a) < igﬂf{(qa —17(q)), it suffices
q

to find ¢ and ¢ such that v(E,) > 0. ¢ and t are solutions of the following

system:
d—1 .
Pl =1Vj>1
i=0
n d—1 . . (11)
Z Z P! logy u!
lim - == =
n
Lemma 1

The system (11) has a solution iff:
Omin < & < Qmag

This lemma is proved below.
For j > 1, denote (Xj) a sequence of iid random variables that take the
value — log(u!) with probability P/. Let:

Sn=>_X;
7=1

With £(S,,) denoting the expectation of S,,, the strong law of large numbers

entails that: s _g(g
lim Sn = &(Sn) _ 0 v-almost surely
n

This implies that:

n d—1 . .

P’ log,u’

i log, u%l + ... + logg uf! ];1 z';() 1 08d Y
im —

n n n

11



for v-almost all v = (i1, ..., ip,...) € IF.
Using (11), we get
logguf, + ... + log g ul"

lim — =«
n n

for v-almost all v = (i1, ..., ip,...) € I,
Proposition 2 allows to conclude that

af, (¢) =«
for v-almost all z € E, and thus

v(E,) =1

Proof of lemma 1: To prove the lemma, we shall need to prove the following
slight generalization of a theorem of Hardy.

Proposition 4
Let (u™),,~, be sequence in [a;b]¢ C RY such that (7) is verified. Then:

i ) £+ (W)
n n

= [ t@dg() (12)
[a,0]?

for all continuous functions f : [a;b]? — IR.

Note that, since f is continuous and g is of bounded variations, the Stieltjes
integral in (12) does exist.

Proof:
Let Iy . 4-1 = Ip X ... x Ij—1 C [a,b] where I; = [a;;b;] for all j. Let

1y, 4, be the characteristic function of Iy 4 1. Then:
1 U .ul_ +...+1 UG s ooy U
liTan Io,..., 4—1( 05> %q 1) - Iy,..., d—l( 0y Uq 1) = g(by, ..., ba_1) — g(ao, ...

Thus (12) is true for any characteristic functions on [a, b]?. By linearity,
(12) is true for any step function, and, by continuity, it is true for continuous
functions on [a,b]?. =

12



Recall now that proving lemma 1 amounts to proving that the function

d—1
g .
n Z (ug) logdug
Z i=0

d—1

i—1 - q
I 2 (uf)
i=0
n

T(q) = lim —

exists and is continuous for all ¢ € IR.
Consider, for all ¢ € IR, the function f; defined on [a; b]d by:

d—1
E (i) logg x;
fq(x[], ...,xd_l) = z:Odil—
> (2i)?
i=0
Applying proposition 4 to each f;, allows to deduce that T'(q) is well defined
over IR. The continuity of 7'(¢) then stems from the fact that f,(z) is con-

tinuous in ¢ uniformly in z.

Finally, it is trivial to check that lim T'(q) = amin, and lim T'(q) =
q—+00 q——00
Umaz-

5 Application in Signal Processing

It is well known that certain natural signals display some kind of self-similar
behaviour (see [2] for examples). However, in most applications, even an
approximate self-similarity does not hold. The scope of FIF modeling is thus
quite restricted. Obviously, a much larger class of signals may be represented
with WSA functions, because this modeling imposes far less constraints on
the data. It allows in particular the small scale features to be different from
the large scale ones. The interest of developping a method that finds, for a
given signal, a WSA function that represents it is twofold. First, it permits
to give a compact description of the signal, even in the case where it does
not have definite fractal properties. Second, thanks to theorem 2, the WSA
representation allows to compute the multifractal spectrum of the signal.

13



In practice, and specially when one deals with strongly non stationnary
signals, a modeling with a single WSA function will still not be flexible
enough. A natural extension is to represent the data with a lumping of
WSA functions, thus taking into account the fact that several weak self-affine
mechanisms may come into play at different periods of time. Formally, the
problem may then be stated as follows: given a L? function F supported on
the interval [a, b], find a partition of [a, b] into p subintervals (I;);=1,.. , and
an associated set of p WSA functions (F});-1,.. p, each F} being supported
on I;, such that the lumping of the Fj is the best L? approximation of F.
This representation possesses the additional feature that it allows to segment
F into parts which are multifractally homogeneous: This means that, for all
J, the restriction of F' to any subinterval of positive measure of (/;) has the
same multifractal spectrum as F;. This new kind of stationarity may prove
important in certain applications such as TCP traffic analysis (see [6]).

In all generality, the problem above seems hard to solve. However, it is
possible to design a greedy algorithm that finds an acceptable sub-optimal
solution for many real-world signals. We cannot develop this method here,
and refer instead the interested reader to [4] for a complete description. We
just show an example of application of this technique to the segmentation of
a voice signal. The original signal is the word “welcome” uttered by a male
speaker, containing 2'® samples. The WSA modeling yields a representation
with seven functions F;. As can be seen on figure 1, the original signal and
the model are visually almost indistinguishable. More importantly, they
sound practically the same, as the interested reader may check by pointing
to http://www-rocq.inria.fr/fractales. In addition, the segmentation (see
the red crosses) is phonetically relevant, since the marks almost perfectly
coincide with the following sounds : silence, /w/, /el/, silence, /k/, /om/,
silence. The slight discrepancy between the position of the segmentation
marks and the exact location of the phonetic units is due to the fact that,
in the current implementation of the method, the marks are restricted to be
on dyadic points.
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Figure 1: The word “welcome” uttered by a male speaker (in blue) along
with its approximation (superimposed in green) and the segmentation marks
(red crosses).
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