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Weakly Self AÆne Fun
tions and Appli
ations inSignal Pro
essingJa
ques L�evy V�ehelProjet Fra
tales, INRIA Ro
quen
ourtB.P. 105 - 78153 Le Chesnay. Fran
eemail: Ja
ques.Levy-Vehel�inria.frAugust 14, 2001Dedi
ated to Pr. Luis SantaloAbstra
tWe study a 
lass of fun
tions, 
alled Weakly Self AÆne fun
tions,whi
h are a generalization of Fra
tal Interpolation Fun
tions wherethe 
ontra
tion ratios are allowed to evolve in s
ale. We show how to
ompute the multifra
tal spe
trum of su
h fun
tions, and mention anappli
ation to the multifra
tal segmentation of signals1 Introdu
tionFra
tal Interpolation Fun
tions (FIF, [1, 3℄) or Self-Similar fun
tions ([5℄)possess a strong multipli
ative stru
ture that allows to 
ompute many re-lated fra
tal and multifra
tal quantities of interest. FIF are 
onstru
ted ina re
ursive way: Ea
h s
ale is dedu
ed from the pre
eding one by applying a�nite number of 
ontra
tive fun
tions. These 
ontra
tive fun
tions are �xedon
e and for all. Spe
ially for appli
ations in Signal Pro
essing, a stri
tmultipli
ative stru
ture is often too restri
tive a requirement to impose. We
onsider in this paper a generalization of FIF, 
alledWeakly Self AÆne fun
-tions (WSA), where the 
ontra
tive fun
tions are allowed to vary at ea
hs
ale. This added 
exibility permits to model and pro
ess a mu
h larger
lass of signals, keeping at the same time the 
omputation of the asso
iatedmultifra
tal features reasonably straightforward.1



This paper is organized as follows. Se
tion 2 re
alls the de�nition andmultifra
tal properties of FIF. We introdu
e WSA fun
tions in se
tion 3.Se
tion 4 is devoted to the 
omputation of their multifra
tal spe
trum. Fi-nally, we explain in se
tion 5 howWSA fun
tions may be used to perform thesegmentation of a signal into parts whi
h are \multifra
tally homogeneous",i.e. have a well de�ned multifra
tal spe
trum.2 Re
alls on Fra
tal Interpolation Fun
tionsTo �x notations, we re
all the following fa
ts about self-similar fun
tions(see for instan
e [5℄ for proofs).De�nition 1 A fun
tion F : IRm ! IR is 
alled self-similar of order k i� :� There exists an open set 
 and d 
ontra
tive similitudes S1; :::; Sd ( i.e.
ompositions of isometries and homotheties x! �ix of ratios �i < 1)su
h that: Si(
) � 
 8i 2 f1; :::; dgSi(
) \ Sj(
) = ; if i 6= j (1)� There exist d reals (�i)i=1;:::;d and a 
ompa
tly supported fun
tion g 2Ck su
h that: F (x) = dXi=1 �iF (S�1i (x)) + g(x): (2)� F is not uniformly Ck on a 
losed subset of 
.Condition (1) is usually 
alled the \separation 
ondition". A formal solutionof (2) is: F (x) = 1Xn=0 X(i1;:::;in) nYj=1�ijg(S�1in Æ ::: Æ S�1i1 (x)) (3)where (i1; :::; in) 2 f0; :::; d � 1gn.For an example of a self-similar fun
tion, 
onsider simply the Weierstrassfun
tion: F (x) = 1Xn=0 2�nssin(2�2nx)where x 2 [0 ; 1℄ and s 2℄0 ; 1℄. Indeed, lettingg(x) = ( sin(2�x) if x 2 [0 ; 1℄0 otherwise2



we get: F (x) = 2�sF (2x) + 2�sF (2x� 1) + g(x):Let us now re
all a few fa
ts about multifra
tal analysis. Multifra
talanalysis is 
on
erned with the study of the regularity stru
ture of fun
tionsor pro
esses, both from a lo
al and global point of view. More pre
isely, onestarts by measuring in some way the pointwise regularity, usually with somekind of H�older exponents. The se
ond step is to give a global des
riptionof this regularity. This 
an be done in a geometri
 fashion using Haus-dor� dimensions, or in a statisti
al one through a large deviation analysis.Formally, one de�nes the pointwise H�older exponent of F at x as:�(x) := lim inf�!0 log(os
F (x; �))log(�)where os
F (x; �) = sups;s02B(x;�) jF (s) � F (s0)j and B(x; �) denotes the ball
entered at x with radius �.The Hausdor� multifra
tal spe
trum des
ribes the stru
ture of the fun
-tion x! �(x) by evaluating the size of its level sets. More pre
isely, let:E� = fx : �(x) = �gThe Hausdor� multifra
tal spe
trum is the fun
tion:d(�) = dimH(E�)where dimH(E) denotes the Hausdor� dimension of the set E.Other multifra
tal spe
tra are also de�ned, for instan
e the so-
alledlarge deviation and Legendre multifra
tal spe
tra. We shall not 
onsiderthem here.The multifra
tal spe
trum of self-similar fun
tions assumes a parti
ularlysimple form. De�ne:�min = infi=1;:::;d log j�ijlog j�ij �max = supi=1;:::;d log j�ijlog j�ijLet � the fun
tion de�ned impli
itly by:dXi=1 �qi���(q)i = 1:Then we have: 3



Theorem 1 Assume that k is larger than �max. Suppose in addition that,for all i, j�ij < 1. If �min > 0, then, for all �:d(�) = 8><>: �1 if � =2 [�min ;�max℄infq2IR (q�� �(q)) otherwiseThis theorem is a version of the so-
alled \multifra
tal formalism", whi
h,when appli
able, allows to obtain d(�) as the Legendre transform of a fun
-tion whi
h is easy to 
ompute.3 Weakly Self-AÆne fun
tionsAs said in the introdu
tion, WSA fun
tions are de�ned as a generalizationof self-similar fun
tions where the similarity ratios are allowed to vary atea
h s
ale. Formally:De�nition 2 A fun
tion F : [0; 1℄! IR is 
alled WSA i� :i) There exists an open set 
 � [0; 1℄ and 
ontra
tive similitudes S0; :::; Sd�1su
h that :� Si(
) � 
 8i 2 f0; :::; d � 1g� Si(
) \ Sj(
) = ; if i 6= jii) There exists d positive sequen
es (�j0)j2IN� ; :::; (�jd�1)j2IN� satisfying 0 <�ji < 1 for every i 2 f0; :::; d � 1g and j 2 IN�, and there exists a 
ompa
tlysupported 
ontinuous fun
tion g su
h that F veri�es :F (x) = g(x)+ 1Xn=1 X(i1;:::;in)2f0;:::;d�1gn0� nYj=1 �jPjp=1 ip2j�p�jij1A g(S�1in Æ:::ÆS�1i1 (x))(4)where, for ea
h j � 1 and k 2 f0; :::; dj � 1g, we have : �jk = �1.If there exist d reals �0; :::; �d�1 su
h that�jk�ji = �i; 8i 2 f0; :::; d � 1g;8j � 1 and 8k 2 f0; :::; dj � 1g;then one re
overs the 
lassi
al self-similar fun
tions. The weak self-aÆnityof F is apparent when one realizes that De�nition 2 implies that F 
an be4



obtained as the limit of the sequen
e (Fj)j2IN, where F0(x) = g(x) and, forj � 1, Fj is re
ursively 
omputed as follows :Fj(x) = d�1Xi=0 �ji�jiFj�1(S�1i (x)) + g(x):We establish now a 
ondition that ensures the 
ontinuity of WSA fun
-tions. Let:Ind = f�n = (i1; i2; : : : ; in) : ij 2 f0; : : : ; d� 1g; j 2 f1; :::; ngg :I1d = f� = (i1; i2; : : :) : ij 2 f0; : : : ; d� 1g; j 2 IN�g :Proposition 1Assume that: limN!1 sup(i1;i2;:::)2I1d 8<: 1Xn=N nYj=1 j�jij j9=; = 0: (5)Then F is 
ontinuous.Proof :Write F (x) = limN!1FN (x)where FN (x) = NXn=0 X(i1;:::;in) nYj=1�jijg(S�1in Æ ::: Æ S�1i1 (x)):Clearly, FN is 
ontinuous for all N 2 IN. We shall show that the sequen
e(FN ) 
onverges uniformly to F . We have:jF (x)� FN (x)j = ������ 1Xn=N+1 X(i1;:::;in) nYj=1�jijg(S�1in Æ ::: Æ S�1i1 (x))������� 1Xn=N+1 X(i1;:::;in) nYj=1 ����jij ��� ���g(S�1in Æ ::: Æ S�1i1 (x))���Sin
e g is 
ompa
tly supported, there exists a 
onstant C � 1, su
h that,for all n 2 IN� and for all x 2 [0 ; 1℄, we have:
ard n�n = (i1; :::; in) 2 Ind : S�1in Æ ::: Æ S�1i1 (x) 2 supp(g)o � C:5



Thus, for all x:jF (x)� FN (x)j � C sup(i1;i2;:::)2I1d 8<: 1Xn=N nYj=1 j�jij j9=; :Using (5), this implies that (FN ) 
onverges uniformly to F .Remark 1: Condition (5) is analogous to the one ensuring the 
ontinuityof GIFS. GIFS are yet another generalization of FIF where not only the
ontra
tive fun
tions are allowed to 
hange at ea
h s
ale, but the number offun
tions Si may also vary, and, in parti
ular, tend to in�nity with n (see[3℄.Remark 2: Condition (5) is obviously satis�ed if there exist a and bsu
h that, for all i and j, 0 < a < j�ji j < b < 1.Remark 3: The 
ondition that g is 
ompa
tly supported is unne
essaryfor both the de�nition of WSA fun
tions and the 
ontinuity 
riterion. Itjust allows to simplify the analysis. A well lo
alized fun
tion g would leadto the same results.4 Multifra
tal formalism for WSA fun
tionsWe 
ompute in this se
tion the multifra
tal spe
trum d(�) of WSA fun
-tions. It is a remarkable fa
t that, as is the 
ase for self-similar fun
tions,a multifra
tal formalism holds for WSA fun
tions. Thus, WSA modeling,while allowing mu
h greater generality than stri
t self-similarity, also leadsto a quite simple multifra
tal analysis.To avoid te
hni
alities, we shall restri
t our attention from now on tothe 
ase where �0 = ::: = �d�1 = � = 1dand, for all i 2 f0; :::; d � 1g: Si(x) = x+ idMore general forms 
an be treated in the same way at the expense ofvarious 
ompli
ations.Our �rst task is to 
ompute the pointwise H�older exponents. The fol-lowing proposition des
ribes the pointwise regularity of WSA fun
tions:6



Proposition 2For all x, let In(x) be the d-adi
 interval of size d�n 
ontaining x. Denoteby I�n (x) and I+n (x) the two d-adi
 intervals of size d�n neighbouring In(x).Let (i1; :::; in) be the 
oeÆ
ients of the d-adi
 expansion of x up to rankn, and (i�1 ; :::; i�n ) (resp. (i+1 ; :::; i+n )) be the the 
oeÆ
ients of the d-adi
expansion up to rank n of any t in I�n (x) (resp.I+n (x)). Then:�f (x) = lim infn!1 min(� nPm=1 logd j�mim jn ;� nPm=1 logd j�mi�m jn ;� nPm=1 logd j�mi+m jn )(6)We shall denote in the sequelBn(x) the set f(i1; :::; in); (i�1 ; :::; i�n ); (i+1 ; :::; i+n )g.When g is a pie
ewise linear fun
tion that interpolates d + 1 equidistantpoints that do not lie on a straight line, F is an SGIFS as de�ned in [3℄,and the proposition above is a simple 
onsequen
e of proposition 10 in [3℄.In the general 
ase, the proof follows 
losely the one in [5℄ for self-similarfun
tions.Let us now move to the multifra
tal spe
trum of F . De�ne, for everyinteger j � 1, the d-tuple (uj0; :::; ujd�1) by:(uj0; :::; ujd�1) = (�ji0 ; :::; �jid�1);where (i0; :::; id�1) is a permutation of (0; :::; d � 1) whi
h yields :�ji0 � ::: � �jid�1 :In other words, for ea
h j, (uj0; :::; ujd�1) is the d-tuple (�j0; :::; �jd�1) rear-ranged in in
reasing order.Theorem 2 Suppose that there exists two reals a > 0 and b > 0 su
h that,for every i 2 f0; :::; d � 1g and j � 1 we have :0 < a � uji � b < 1Suppose also that :p(x0; :::; xd�1) = limn 
ardnj 2 f1; :::; ng : uji � xi8i = 0; :::; d� 1on (7)exists for every (x0; :::; xd�1) 2 [a ; b℄d. Suppose �nally that g is uniformlymore regular than F . Then the Hausdor� multifra
tal spe
trum of F is:7



� d(�) = �1 if � =2 [�min ;�max℄ where8>>><>>>: �min = limn � logd(u1d�1)+:::+logd(und�1)n�max = limn � logd(u10)+:::+logd(un0 )n� if � 2 [�min ;�max℄, thend(�) = infq2IR(q�� �(q))where�(q) = lim infn!1 � nPj=1 logd �(�j0)q + :::+ (�jd�1)q�n =: lim infn!1 �n(q)To prove the theorem, we shall �rst make use of the following well-knownproperty (see for instan
e proposition 4.9 in [7℄):Proposition 3Let Hs be the s-dimensional Hausdor� measure. Let � be a probability mea-sure on IR. Let E � IR and C be a positive 
onstant. Then:� if, for all x 2 F , lim supr!0 �(B(x;r))rs < C, then Hs(F ) � �(F )C :� if, for all x 2 F , lim supr!0 �(B(x;r))rs > C, then Hs(F ) � 2sC :Proof of theorem 2 :Let: Fu(x) = 1Xn=0 X(i1;:::;in) nYj=1ujijg(S�1in Æ ::: Æ S�1i1 (x)): (8)It is easy to see that the multifra
tal spe
tra of F and Fu 
oin
ide. >Fromproposition 2, we get:�fu(x) = lim infn!1 inf(i1;:::;in)2Bn(x)� logd ju1i1 j+ :::+ logd junin jn : (9)Let now s > 0 and q 2 IR. For all j � 1, let:tj = logd �juj0jq + :::+ jujd�1jq�8



and for all i 2 f0; :::; d � 1g, P ji = (uji )q�tj :Re
all that � = 1d . As a 
onsequen
e: d�1Pi=0 P ji = 1, for all integer j � 1.Consider the probability measure � de�ned on K = [0 ; 1℄ by:8(i1; :::; in) 2 f0; :::; d � 1gn ; �(Si1 :::Sin(K)) = P 1i1 :::P nin : (10)(the existen
e of � follows from Kolmogorov 
onsisten
y theorem). Letx 2 K and r > 0 be su
h that:d�n � r < d�(n�1):Then �(B(x; r))rs � X(i1;:::;in)2Bn(x) P 1i1 :::P ninrs� X(i1;:::;in)2Bn(x) (u1i1 :::unin)q�t1+:::+tn�ns� sup(i1;:::;in)2Bn(x)�u1i1 :::unin�n��n(q)�sq �qLet E� = fx : �f (x) = �g and assume that s > q�� �(q).Case q > 0 :There exists a > 0 whi
h depends only on s et q su
h that s > q���(q)+qa.As a 
onsequen
e, there exists n0 2 IN su
h that, for all n > n0, we have:�n(q) + sq � a > �:Let Æn = �n(q)+sq and let 
 be a real number su
h that � < 
 < Æn � a forall n > n0.Then there exists a �nite set IP � IN su
h that, for all n 2 IP and n > n0 wehave: inf(i1;:::;in)2Bn(x)� logd u1i1 + :::+ logd uninn < 
Thus: sup(i1;:::;in)2Bn(x) logd u1i1 + :::+ logd uninn > �
:9



This implies that, for n > n0 in IP,sup(i1;:::;in)2Bn(x) logd u1i1 + :::+ logd uninn + Æn > aor sup(i1;:::;in)2Bn(x)�u1i1 :::unin�n��n(q)�sq �q > daqnThis entails that lim supr �(B(x; r))rs = +1Case q < 0 :There exists b > 0 depending only on s et q su
h that s > q� � �(q) � qb.As a 
onsequen
e, there exists n0 2 IN su
h that, for all n > n0 we have:�n(q) + sq + b < �:Let Æn = �n(q)+sq and let 
 be a real su
h that � > 
 > Æn+ b for all n > n0.Then there exist a set IP and n1 2 IN su
h that, for all n 2 IP and n > n1,inf(i1;:::;in)2Bn(x)� logd u1i1 + :::+ logd uninn > 
Thus sup(i1;:::;in)2Bn(x) logd u1i1 + :::+ logd uninn < �
:This implies that, for n > max(n0; n1):sup(i1;:::;in)2Bn(x) logd u1i1 + :::+ logd uninn + Æn < �bOr: sup(i1;:::;in)2Bn(x)�u1i1 :::unin�n��n(q)�sq �q > d�bqnThus lim supr �(B(x; r))rs = +1:This entails that, for any given � 2 [�min ;�max℄, for all q 2 IR and alls > q�� �(q), we have: Hs(E�) = 0:10



As a 
onsequen
e, d(�) � infq2IR(q�� �(q)):
The proof that s < q�� �(q) implieslim supr �(B(x; r))rs = 0follows the same lines. Thus, to show that d(�) � infq2IR(q�� �(q)), it suÆ
esto �nd q and t su
h that �(E�) > 0. q and t are solutions of the followingsystem: 8>>>>>><>>>>>>: d�1Pi=0 P ji = 1 8j � 1limn � nPj=1 d�1Pi=0 P ji logd ujin = � (11)Lemma 1The system (11) has a solution i�:�min < � < �maxThis lemma is proved below.For j � 1, denote (Xj) a sequen
e of iid random variables that take thevalue � log(uji ) with probability P ji . Let:Sn = nXj=1XjWith E(Sn) denoting the expe
tation of Sn, the strong law of large numbersentails that: limn Sn � E(Sn)n = 0 �-almost surelyThis implies that:limn logd u1i1 + :::+ logd uninn � nPj=1 d�1Pi=0 P ji logd ujin = 011



for �-almost all � = (i1; :::; in; :::) 2 I1d .Using (11), we get limn � logd u1i1 + :::+ logd uninn = �for �-almost all � = (i1; :::; in; :::) 2 I1d .Proposition 2 allows to 
on
lude that�fu(x) = �for �-almost all x 2 E� and thus�(E�) = 1Proof of lemma 1 : To prove the lemma, we shall need to prove the followingslight generalization of a theorem of Hardy.Proposition 4Let (un)n�1 be sequen
e in [a ; b℄d � IRd su
h that (7) is veri�ed. Then:limn f(u1) + :::+ f(un)n = Z[a;b℄d f(x)dg(x) (12)for all 
ontinuous fun
tions f : [a ; b℄d ! IR.Note that, sin
e f is 
ontinuous and g is of bounded variations, the Stieltjesintegral in (12) does exist.Proof :Let I0;:::;d�1 = I0 � ::: � Id�1 � [a; b℄d where Ij = [ai ; bi℄ for all j. Let1I0;:::;d�1 be the 
hara
teristi
 fun
tion of I0;:::;d�1. Then:limn 1I0;:::;d�1(u10; :::; u1d�1) + :::+ 1I0;:::;d�1(un0 ; :::; und�1)n = g(b0; :::; bd�1)� g(a0; :::; ad�1)= Z[a;b℄d 1I0;:::;d�1dg(x)Thus (12) is true for any 
hara
teristi
 fun
tions on [a; b℄d. By linearity,(12) is true for any step fun
tion, and, by 
ontinuity, it is true for 
ontinuousfun
tions on [a; b℄d. 12



Re
all now that proving lemma 1 amounts to proving that the fun
tion
T (q) = limn � nPj=1 d�1Pi=0 (uji )q logd ujid�1Pi=0 (uji )qnexists and is 
ontinuous for all q 2 IR.Consider, for all q 2 IR, the fun
tion fq de�ned on [a ; b℄d by:fq(x0; :::; xd�1) = d�1Pi=0 (xi)q logd xid�1Pi=0 (xi)qApplying proposition 4 to ea
h fq allows to dedu
e that T (q) is well de�nedover IR. The 
ontinuity of T (q) then stems from the fa
t that fq(x) is 
on-tinuous in q uniformly in x.Finally, it is trivial to 
he
k that limq!+1T (q) = �min and limq!�1T (q) =�max.

5 Appli
ation in Signal Pro
essingIt is well known that 
ertain natural signals display some kind of self-similarbehaviour (see [2℄ for examples). However, in most appli
ations, even anapproximate self-similarity does not hold. The s
ope of FIF modeling is thusquite restri
ted. Obviously, a mu
h larger 
lass of signals may be representedwith WSA fun
tions, be
ause this modeling imposes far less 
onstraints onthe data. It allows in parti
ular the small s
ale features to be di�erent fromthe large s
ale ones. The interest of developping a method that �nds, for agiven signal, a WSA fun
tion that represents it is twofold. First, it permitsto give a 
ompa
t des
ription of the signal, even in the 
ase where it doesnot have de�nite fra
tal properties. Se
ond, thanks to theorem 2, the WSArepresentation allows to 
ompute the multifra
tal spe
trum of the signal.13



In pra
ti
e, and spe
ially when one deals with strongly non stationnarysignals, a modeling with a single WSA fun
tion will still not be 
exibleenough. A natural extension is to represent the data with a lumping ofWSA fun
tions, thus taking into a

ount the fa
t that several weak self-aÆneme
hanisms may 
ome into play at di�erent periods of time. Formally, theproblem may then be stated as follows: given a L2 fun
tion F supported onthe interval [a; b℄, �nd a partition of [a; b℄ into p subintervals (Ij)j=1;:::;p andan asso
iated set of p WSA fun
tions (Fj)j=1;:::;p, ea
h Fj being supportedon Ij, su
h that the lumping of the Fj is the best L2 approximation of F .This representation possesses the additional feature that it allows to segmentF into parts whi
h are multifra
tally homogeneous: This means that, for allj, the restri
tion of F to any subinterval of positive measure of (Ij) has thesame multifra
tal spe
trum as Fj . This new kind of stationarity may proveimportant in 
ertain appli
ations su
h as TCP traÆ
 analysis (see [6℄).In all generality, the problem above seems hard to solve. However, it ispossible to design a greedy algorithm that �nds an a

eptable sub-optimalsolution for many real-world signals. We 
annot develop this method here,and refer instead the interested reader to [4℄ for a 
omplete des
ription. Wejust show an example of appli
ation of this te
hnique to the segmentation ofa voi
e signal. The original signal is the word \wel
ome" uttered by a malespeaker, 
ontaining 215 samples. The WSA modeling yields a representationwith seven fun
tions Fj . As 
an be seen on �gure 1, the original signal andthe model are visually almost indistinguishable. More importantly, theysound pra
ti
ally the same, as the interested reader may 
he
k by pointingto http://www-ro
q.inria.fr/fra
tales. In addition, the segmentation (seethe red 
rosses) is phoneti
ally relevant, sin
e the marks almost perfe
tly
oin
ide with the following sounds : silen
e, /w/, /�l/, silen
e, /k/, /lm/,silen
e. The slight dis
repan
y between the position of the segmentationmarks and the exa
t lo
ation of the phoneti
 units is due to the fa
t that,in the 
urrent implementation of the method, the marks are restri
ted to beon dyadi
 points.Referen
es[1℄ M.F. Barnsley. Fra
tals Everywhere. AK Peters, 1993.[2℄ J. Beran. Statisti
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Figure 1: The word \wel
ome" uttered by a male speaker (in blue) alongwith its approximation (superimposed in green) and the segmentation marks(red 
rosses).
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