Generalized Multifractional Brownian Motion: Definition and Preliminary Results

Abstract : The Multifractional Brownian Motion (MBM) is a generalization of the well known Fractional Brownian Motion. One of the main reasons that makes the MBM interesting for modelization, is that one can prescribe its regularity: given any Hölder function H(t), with values in ]0,1[, one can construct an MBM admitting at any t0, a Hölder exponent equal to H(t0). However, the continuity of the function H(t) is sometimes undesirable, since it restricts the field of application. In this work we define a gaussian process, called the Generalized Multifractional Brownian Motion (GMBM) that extends the MBM. This process will also depend on a functional parameter H(t) that belongs to a set , but will be much more larger than the space of Hölder functions.
Type de document :
Chapitre d'ouvrage
M. Dekking, J. Lévy Véhel, E. Lutton and C. Tricot. Fractals - Theory and Applications in Engineering, Springer, 1999
Liste complète des métadonnées

https://hal.inria.fr/inria-00578657
Contributeur : Lisandro Fermin <>
Soumis le : lundi 21 mars 2011 - 18:19:32
Dernière modification le : mardi 17 avril 2018 - 11:26:35
Document(s) archivé(s) le : mercredi 22 juin 2011 - 10:04:52

Fichier

Generalized_Multifractional_Br...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00578657, version 1

Collections

Citation

Antoine Ayache, Jacques Lévy Véhel. Generalized Multifractional Brownian Motion: Definition and Preliminary Results. M. Dekking, J. Lévy Véhel, E. Lutton and C. Tricot. Fractals - Theory and Applications in Engineering, Springer, 1999. 〈inria-00578657〉

Partager

Métriques

Consultations de la notice

212

Téléchargements de fichiers

296