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Abstract

We introduce the class of Rigid Tree Automata (RTA), an extension of stan-
dard bottom-up automata on ranked trees with distinguished states called rigid.
Rigid states define a restriction on the computation of RTA on trees: RTA can
test for equality in subtrees reaching the same rigid state. RTA are able to per-
form local and global tests of equality between subtrees, non-linear tree pattern
matching, and some inequality and disequality tests as well. Properties like de-
terminism, pumping lemma, Boolean closure, and several decision problems are
studied in detail. In particular, the emptiness problem is shown decidable in lin-
ear time for RTA whereas membership of a given tree to the language of a given
RTA is NP-complete. Our main result is the decidability of whether a given
tree belongs to the rewrite closure of an RTA language under a restricted family
of term rewriting systems, whereas this closure is not an RTA language. This
result, one of the first on rewrite closure of languages of tree automata with con-
straints, is enabling the extension of model checking procedures based on finite
tree automata techniques, in particular for the verification of communicating
processes with several local non rewritable memories, like security protocols.
Finally, a comparison of RTA with several classes of tree automata with local
and global equality tests, with dag automata and Horn clause formalisms is also
provided.

Keywords: Tree Automata, Symbol Constraints, Term Rewriting, Verification

Introduction

Tree automata (TA) are finite representations of infinite sets of terms. In
automated theorem proving, they allow to cut infinite computation branches
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by reduction to TA decision problems. In system and software verification, TA
can be used to represent infinite sets of states of a system or a program (in
the latter case, a term can represent the program itself), messages exchanged
in a communication protocol, XML documents... In these settings, the closure
properties of TA languages permit incremental constructions and verification
problems can be reduced to TA problems decidable in polynomial time like
emptiness (is the language recognized by a given TA empty) and membership
(is a given term t recognized by a given TA).

Despite these nice properties, a big limitation of TA is their inability to test
equalities between subterms during their computation: TA are able to detect
linear patterns like fst(pair(z1,22)) but not a pattern like pair(z,z). Several
extensions of TA have been proposed to overcome this problem, by addition of
equality and disequality tests in TA transition rules (the classes [1, 2] have a
decidable emptiness problem), or an auxiliary memory containing a tree and
memory comparison [3]. Pushdown tree automata [4, 5] also permit such tests.
However, they are all limited to local tests, at a bounded distance from the
current position.

In this paper, we define the rigid tree automata (RTA) by the distinction
of some states as rigid, and the condition that the subterms recognized in one
rigid state during a computation are all equal. With such a formalism, it is
possible to check local and global equality tests between subterms, and also
the subterm relation or restricted disequalities. In Sections 2 to 6 we study
issues like pattern matching, pumping lemmas, compare expressiveness with
related classes of automata, determinism, closure of recognized languages under
Boolean operations, and decision problems for RTA. RTA are a particular case
of the more general class Tree Automata with General Equality and Disequality
constraints (TAGED [6], see Section 3.1). The study of the class RTA alone
is motivated by the complexity results and specific applications to verification
mentioned below. But our most original contribution is the study of the rewrite
closure of RTA languages in Section 7.

Term rewriting systems (TRS) is a general formalism for the symbolic eval-
uation of terms by replacement of some patterns by others, following rewrite
rules. Combining tree automata and term rewriting techniques has been very
successful in verification, see e.g. [7, 8]. In this context, term rewriting systems
(TRS) can describe the transitions of a system, the evaluation of a program [7],
the specification of operators used to build protocol messages [9] or also trans-
formation of documents. If a TA A is used to finitely represent an infinite set
L(A) of states of a system, the rewrite closure R*(L(A)) of the language L(.A)
using R represents the set of states reachable from states described by A. When
R* (L(.A)) is again a TA language, the verification of a safety property amounts
to checking for the existence of an error state in R*(L(A)) (either a given term
t or a term in a given regular language). This technique, sometimes referred as
regular tree model checking, has driven a lot of attention to the rewrite closure
of tree automata languages. However, there has been very few studies of this
issue for constrained TA (see e.g. [10]). The reason is the difficulty to capture



the behaviour of constraints after the application of rewrite rules.

In Section 7, we show that it is decidable whether a given term ¢ belongs to
the rewrite closure of a given RTA language for a restricted class of linear TRS
called invisibly pushdown, whereas this closure is generally not an RTA lan-
guage. Linear and invisibly pushdown TRS can typically specify cryptographic
operators like decrypt(crypt(z, pk(A)),sk(A)) — «.

Using RTA instead of TA in a regular tree model checking procedure permits
to handle processes with local and global memories taking their values in infinite
domains and which can be written only once. We illustrate this idea in Section 8
with the description of a potential application of RTA to the verification of
security protocols.

1. Preliminaries

A signature ¥ is a finite set of function symbols with arity. We write %,
for the subset of function symbols of ¥ of arity m. Given an infinite set X of
variables, the set of terms built over ¥ and X is denoted T (X, X'), and the subset
of ground terms (terms without variables) is denoted 7 (X). The set of variables
occurring in a term ¢ € 7(X,X) is denoted wvars(t). A term ¢ € T(X,X) is
called linear if every variable of vars(t) occurs at most once in t. A substitution
o is a mapping from a finite subset of X into 7(X,X). The application of a
substitution o to a term ¢ is the homomorphic extension of o to T (%, X).

A term t can be seen as a function from its set of positions Pos(t) into
function symbols or variables of ¥ U X'. The positions of Pos(t) are sequences
of positive integers (e, the empty sequence, is the root position). Positions are
compared wrt the prefix ordering: p; < po iff there exists p # e such that
p2 = p1 - p (where py - p denotes the concatenation of p; and p). In this case,
p is denoted p2 — p1. The subterm of ¢ at position p is denoted t|,, and the
replacement in ¢ of the subterm at position p by w is denoted t[u],. The depth
d(t) of t is the length of its longest position. A n-context is a linear term
of T(3,{x1,...,2,}). The application of a n-context C to n terms t1,...,t,,
denoted by C[t1,...,t,], is defined as the application to C of the substitution
{$1 =l Ty — ﬁn}.

1.0.1. Term Rewriting.

A term rewrite system (TRS) over a signature ¥ is a finite set of rewrite
rules £ — r, where ¢ € T(X,X) (it is called the left-hand side (Ihs) of the rule)
and r € T(X,vars(€)) (it is called right-hand-side (rhs)). A term ¢ € T (X, X)
rewrites to s € T(X, &) by a TRS R (denoted ¢ —= s ) if there is a rewrite
rule £ — r € R, a position p € Pos(t) and a substitution o such that ¢, = o(¢)
and s = t[o(r)]p. In this case, t is called reducible. An irreducible term is also
called an R-normal-form. The transitive and reflexive closure of —— is denoted
—. Given L C T(%, X), we denote R*(L) = {t | 3s € L,s > t}. ATRS R
is called linear if all the terms in its rules are linear and collapsing if every rhs
of rules of R is a variable.



1.0.2. Tree automata.

Following definitions and notations of [11], we consider tree automata which
compute bottom-up (from leaves to root) on (finite) ground terms in 7(X). At
each stage of computation on a tree ¢, a tree automaton reads the function
symbol f at the current position p in ¢ and updates its current state, according
to f and the respective states reached at the positions immediately under p in t.

Definition 1. A tree automaton (TA) A on a signature ¥ is a tuple (@, F, A)
where () is a finite set of nullary state symbols, disjoint from X, F' C @ is the sub-
set of final states and A is a set of transition rules of the form: f(q1,...,q.) = ¢
where n >0, f € X,, and q1,...,qn,q € Q.

A run of the TA A on a term ¢ € T(X) is a relabelling of ¢ with states of Q
compatible with A. More formally, it is a function r : Pos(t) — @ such that for
all p € Pos(t) with t(p) = f € £, (n >0), f(r(p.1),...,r(p.n)) = r(p) € A. A
run r is called successful if r(e) € F. We will sometimes use term-like notation
for runs. For instance, a run {e — ¢, 1+ ¢1,2 +— g2} will be denoted ¢(q1, ¢2).

The language L(A,q) of a TA A in state ¢ is the set of ground terms for
which there exists a run r of A such that r(¢) = ¢. The language L(A) of A is
qu »L(A, q), and a set of ground terms is called regular if it is the language of
a TA. The size of A, denoted |A|, is the number of symbols in A.

A TA A =(Q,F,A) on X is deterministic (DTA), resp. complete, if for
every f € X, and every qi,...,q, € @, there exists at most, resp. at least, one
rule f(q1,...,9n) = ¢ € A. In the deterministic (resp. complete) cases, given a
tree t, there is at most (resp. at least) one run r of A on t.

2. RTA: Definition and Examples

We now introduce the class of rigid tree automata studied in this paper and
show their expressiveness with some examples and first properties.

2.1. Definition and First Examples

Definition 2. A rigid tree automaton (RTA) A on a signature ¥ is a tuple
(Q, R, F,A) where (Q, F, A) is a tree automaton denoted ta(A) and R C Q is
the subset of rigid states.

A run of the RTA A on a term t € T(X) is a run r of the underlying TA ta(A)
on t with the additional condition (called rigidity condition) stating that: for
all positions p1,ps € Pos(t), if r(p1) = r(p2) € R then t[p, = t[p,.

The languages L(A,¢q) and L(A) of RTA are defined the same way as for
TA. Note that with these definitions, every regular language is an RTA lan-
guage. We shall sometimes write below TA and RTA for the classes of TA and
RTA languages. The size of an RTA A, denoted |A|, is the size |ta(A)| of its
underlying TA.



Example 1. Let ¥ = {a:0,b:0, f:2}. The set {f(¢,¢) | t € T(X)} is recognized
by the following RTA on X

A={¢ @ @} e} A}, {a = dlar, b= dlar, [(a:9) = dlar, flar, ar) = a}),

where a — ¢|g, is an abbreviation for a = ¢, a — ¢;.
An example of successful run of A on f(f(a,b), f(a,b)) is ¢ (¢ (¢, 9), 4-(¢,9)).©

Note that the above RTA language is not regular; this can be shown using a
classical pumping argument.

2.2. Pattern Matching

TA are able to characterize languages of terms which embed a given pattern.
However, they are limited to linear patterns for this purpose. For instance, as
recalled above, the set of terms embedding the pattern f(x,x) is not a regular
term language. The RTA permit to generalize this pattern matching ability to
arbitrary patterns.

Example 2. Let us extend the RTA of Example 1 with the transitions rules
f(q,q¢) = ar, f(agr,q) — gr ensuring the propagation of the final state ¢f up to
the root. The RTA obtained recognizes the set of terms of 7(3) containing the
pattern f(x,x). <&

The principle of the construction of Examples 1 and 2 can be generalized into
the following result.

Proposition 1. For all terms t € T(X,X), there exists an RTA of size linear
in the size of t and constructed in linear time which recognizes the terms of T(X)
having a ground instance of t as a subterm.

Proor. The proposition is obvious when ¢ is a variable. Let us assume that
t is not a variable and let us associate one state qs to every strict subterm
s of t (including variables). The RTA for Proposition 1 has for set of states
Q@ = {gs | s strict subterm of t} U {q, g¢}, the subset R of rigid states is the set
of states of @ of the form ¢, such that x is a variable occurring at least twice
in ¢, the subset of final states is F' = {¢f}, and its transition set is

A = {flg--r,q9) = q| fE€Xu,n >0}

U {flg,.-,q) > @ | f€Zn,n>0,2 € vars(t)}

U {f(@s1r--+58sn) = Qfsr,isn) | [ € By f(51,...8,) strict subterm of ¢}
U {f(QSU---aqsn)%qf|f(517'-'5n):t}

U {f(

{flar, qn) = ar | f € En, 3 <y g5 = e}

The transitions in the first four lines ensure the recognition of the pattern ¢ into
the final state gr and the transitions in the last line ensure the propagation of
gs. The choice of rigid states ensure that the non linearities in ¢ are respected.d



2.3. Other Examples: Disequalities, Inequalities, Global Equalities

In the above examples, the equalities tested by the RTA’s are local, relatively
to a position (e.g. the RTA tests that the subterms at the left and right child
of some position p are equal). However, it is also possible to test equalities
between subterms at arbitrary positions in a term.

Example 3. Let X = {a:0,g:1, f:2}. The set of terms ¢ € T(X) such that s; =
s9 for every two subterms g(s1), g(s2) of t is recognizable by the following RTA:

A={s e} Aet v et {a = a,9(d) = ¢, f(dd) = al d €{q,a}}). ©

RTA are not limited to testing equalities. Using rigid states also permits to test
some disequality and inequality as well, like the subterm relation.

Example 4. Let ¥ = {a:0,b:0, f:2,<:2}. The set of terms <(s,t) such that
s,t € T(X\ {<}) and s is a strict subterm of ¢ is recognized by the following
RTA on 3, ({g, ¢r, ', as}, {ar}, {as}, A), with

a — qlgr, b — dqlgr,
A=< fle9) — deo, floe) — d, flarq) — ¢,
fla,d) — 4, fld,q) — ¢, <(gr.qd") —

For instance, a successful run on < (a, f(a, b)) is gf (qr, q (qr, q)) The idea is that
in a successful run, the rigid state g, identifies (by a non-deterministic choice)
the subterm s on the left side of <, and, on the right side ¢ of <, the state ¢’ is
reached immediately above ¢, and propagated up to the root, in order to ensure
that ¢ is a strict superterm of s. &

The RTA can also test disequalities between subterms built only with unary
and constant symbols.

Example 5. Let ¥ = {c:0,a:1,b:1,%#:2}. The set of terms of 7(X) of the
form #(s,t), where s,t € T(2\ {#}) and s is distinct from ¢ is recognized by
the following RTA on ¥, ({¢, ¢r, @, @, ¢}, {ar}, {ar}, A), with

A = {C — Q|qra a(Q) — Q|QTa b(q) — qlq’l‘? a(QT) — Qa, b(QT) — Qb}
u %a(qz) = e, b(qe) = @ | 42 € {Ga, B} }
) #(q1,02) = ar | 01,92 € {Ga> Wr @r }y 1 # (J2}-

A successful run on #(a(a(c)), b(a(c))) is ¢ (¢a(9r(q)), @ (gr(q))). The rigid state
qr will be placed at the position of the largest common postfix of s and ¢ and ¢,
or ¢, are used to memorize the letters immediately above this position, in order
to check that s and ¢ differ when reaching the top symbol # in #(s,t). &

The construction of Example 4 cannot be generalized to the characterization
of a maximal subterm amongst some subterms. This is shown in the following
counter example, using a pumping argument.

Example 6. Let ¥ = {0:0,g:1,h: 2}, and let Ly,.x be the set of terms of
the form H[gm(()), g™ (0),...,g™ (0)] where k is an arbitrary positive integer,
m > ni,...,Nnk, H is an k + l-context made of the symbol A only, and g"
represents n nested symbols g.



Fact 1. L.y is not an RTA language.

PRrROOF. Assume that L. is recognized by an RTA A with n states and d
rigid states. We can assume wlog that d < n. Let t € Lyax be of the form
Hlto, ..., tq11] where for each 0 < i < d +1, t; = gl¢+2=9(+1)(0). Let r be a
run of A on t. We show, by a pumping argument, that for one i > 1, we can
increase as much as we want the number of ¢’s in ¢;, while keeping the term
recognized by A (a contradiction).

First, note that the ¢;’s are pairwise distinct. It follows that there are no
rigid states in r at the positions of the symbols h in ¢, except rigid states which
occur only once in r (such rigid states are not affected by a modification of some
t;). Second, a rigid state of A cannot occur twice in some t;. By a pigeonhole
principle, it follows that there exists some ¢ > 0 such that the n + 1 smaller
(wrt prefix ordering) positions of ¢; are not labelled by a rigid state in r. Hence,
there exists one non-rigid state of A labelling two of these n + 1 positions. Let
k be the distance between these two positions. For all j > 0, we can build from
7 a successful run of A on t); := Hlto, ... tio1, 7% (i), tiv1, - . -, tar1]. But for a
j sufficiently large, ¢ ¢ Liax, a contradiction. O &

2.4. Pumping Lemma

Following some ideas developed in the proof of Fact 1 above, we propose a weak
form, adapted to RTA, of the pumping (or iteration) lemma for TA. Pumping on
runs of RTA is not as easy as for standard TA. Indeed, we must take care of the
position of rigid states in order to preserve recognizability. For this reason, the
transformation of a subterm must be performed in several branches in parallel
(instead of one single branch for TA) in order to preserve the rigidity condition.
Moreover, we cannot repeat a term containing a rigid state, because the same
rigid state cannot label two different positions on the same branch.

Lemma 1. For all RTA A = (Q, R, F,A), for all terms t € L(A) such that
d(t) > (|Q| + 1)|R|, there exist a context C, two 1-contexts C' and D, with D
non-trivial (non-variable), and a term u such that t = C[C'[D[u]], ..., C’[D[u]]]
and for alln >0, C[C'[D"[u]],...,C'[D"[u]]] € L(A).

PROOF. Let t € L(.A) be such that d(¢) > (|Q|+1)|R|, let r be a successful run
of A on t, and let p be a position in Pos(t) of length at least (|Q| + 1)|R|.

With the rigidity condition in the definition of successful runs, a rigid state
can occur at most once on a path of r. Hence, there exist two positions pg <
o < p such that [py] — |po| > |@Q| and no rigid state occurs between py and
py in r. By a pigeon-hole principle, there exist two positions p1,ps with py <
p1 < p2 < p; labeled with the same state of @ \ R in r. We let u := t|,, and
D = (t|p,)[x1]p,—p,- This situation is depicted in Figure 1.

In order to preserve the property of being a run while iterating D, we need
to take care of rigid states above pg in r (rigid states below pj and below D are
not affected by iteration of D). Let m; be the maximal position of a rigid state
in r smaller than py wrt the prefix ordering. Let ¢, = r(71) and let 7o, ..., 7y
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Figure 1: Pumping lemma

be the other positions of ¢, in r. Note that by definition of r being a run, the
positions 71, ..., T, are pairwise incomparable wrt the prefix ordering. We let
C =t[z1]r, - [Tk]r, and C" = (t|ry)[®1]p1—my (%1, .., Tk are distinct variables).
Since 7(p1) = r(p2) and there are no rigid states between p; and ps, we can
construct a run on every C'[D"[u]]. Moreover, t|,, = t|, for all i,j € {1..k},
hence we may assume wlog that the subruns r|,, are equal for all i € {1..k}. It
follows that we can perform the same operation as in C'[D"[u]] under each 7|, ,
and that C[C'[D"[u]],...,C'[D"[u]]] € L(A). O

As usual, such a lemma can be used to show that a language is not in RTA.

Example 7. As a consequence of the above pumping lemma, we can show that
the set B of balanced binary trees built over the signature {a : 0, f : 2} is
not an RTA language. Assume indeed that it is recognized by an RTA A =
(Q, R, F,A) and let t € L(A) such that d(t) > (|Q|+1)|R| and C,C’, D, u be as
in Lemma 1. By hypothesis, C'[D]u]] is balanced, but for any n > 1, C'[D™[u]]
is not balanced since C’ and D are not trivial. It contradicts the fact that
c[C'[D"u]),...,C'[D™[u]]] € L(A) by Lemma 1. &

3. Related Classes of Tree Automata

We shall present below some other classes of automata strictly more ex-
pressive than the standard TA, and compare their expressiveness to RTA. The
decidability and complexity results presented in Section 6 and summarized in
Table 1 also offer a base of comparison.

8.1. TAGED

Tree Automata with General Equality and Disequality constraints [6] were
introduced in the context of spatial logics for XML querying [12]. They are
defined, like RTA, by an underlying TA, but instead of having simply a set of



rigid state for testing equality, they have two binary relations on states: R—
for testing equalities and R for disequalities. More precisely, a run r of a
TAGED on a term ¢ is a run of the underlying TA on ¢ with the additional
condition that for all p1, ps € Pos(t), if (r(p1),r(p2)) € R= then t|,, =t|,, and
if (r(p1),7(p2)) € Ry then t|,, 7 tp,.

TAGED are strictly more general than RTA. The emptiness problem has
been shown decidable for the class of negative TAGED (such that R— = (}) [6],
and a subclass of TAGED where the number of disequalities tested on every
path is bounded [12]. More recently, emptiness was shown decidable for a class
of TA with constraints strictly larger than TAGED [13].

The fragment of positive TAGED (with R = (), denoted TAGED+) has
the same expressiveness as RTA. This is shown in [6] where a construction is
proposed for transforming any TAGED+ into an RTA (i.e. a TAGED with a
reflexive relation R_) recognizing the same language, at the price of an expo-
nential blowup. The transformation of [6] was originally proposed in order to
show the decidability of emptiness for TAGED+. This result is reused in the
proof of Theorem 1 below.

Proposition 2 ([6]). For all TAGED+ A, there exists an RTA A’ of size
exponential in the size of A, constructed in exponential time, and such that

L(A") = L(A).

The emptiness problem is EXPTIME-complete for TAGED+, and PTIME
for RTA (see Section 6). To our knowledge, the rewrite closure of TAGED has
not been studied so far.

8.2. TA with Equality Constraints

TA with equality constraints (TAC) are TA whose transitions can perform
local equality and disequality tests on the subterms of the term in input (see
e.g. [1, 2]). More precisely, a TAC (Q, F, A) is defined by a finite set of states @, a
subset of final states F and a set A of transitions of the form f(q1,...,qn) — q
where f € X, q1,-..,qn,q € @, and ¢ is a conjunction of constraints of the
form 7 = 7’ or m # @’ where 7 and 7’ are positions (sequences of positive
integers). A run of a TAC on a term ¢ is a function r : Pos(t) — @ such
that for all p € Pos(t) with t(p) = f € 3, (n > 0), there exists a transition
f(r(p-1),...,7(p-n)) = r(p) € A such that for all constraints 7 = 7’ (resp.
m#7')in ¢, we have p-m,p- 7' € Pos(t) and t|p.r = t|p.n (resp. tlpx 7 tlpn)-
A TAC is called positive if all its transitions contain only equalities. The class
of positive TAC is called TAC+. Note that the RTA language of Examples 1
and 2 are recognizable by TAC+:

A= {a,a}, o} {a = 4.0 = ¢, f(g,9) = ¢, f(g,9) =2 g¢})

for Example 1, and the same extended with the transitions f(q,q¢r) — gs,
f(gs, q) — gr for Example 2.

The emptiness problem is undecidable in general [14] for TAC+. Two de-
cidable subclasses of TAC have been identified: tree automata with equality



and disequality tests between brother positions [1] (BTTA) and Reduction Au-
tomata [2] (RA); the complexity of emptiness is at least EXPTIME for these
subclasses.

The equality tests of TAC are performed locally, but can involve an un-
bounded number of subterms (yielding undecidability of emptiness). In con-
trast, the equality tests of RTA can be global, but can involve only a bounded
number of subterms (the bound is the number of rigid states). Hence it is not
surprising that the languages of these two classes of automata are incomparable.

Proposition 3. The classes of languages of TAC+ and RTA are orthogonal.

Proor. The RTA languages of Examples 3 and 4 are not recognizable by a
TAC. The language B of Example 7 is not recognizable by an RTA but it is
recognizable by the TAC+: A = ({q},{q},{a — ¢, f(¢,9) =2, a}). O

3.3. DAG Automata

DAG automata (DA) [15] are defined as TA computing on the representation
of terms as directed acyclic graphs (DAG) with maximal sharing. In some sense,
RTA are the dual of DA. Indeed, in the runs of DA, a unique state is associated to
equal subtrees (which are rooted by the same node in the DAG representations)
whereas for RTA, a unique subtree is associated to every occurrence of the same
rigid state. However, for DA, the state condition for equal subtrees must be
enforced for every state (since DAG-representation with maximal sharing are
considered), whereas the ”dual” rigidity condition of RTA must only be enforced
for rigid states. Consequently, the languages defined are incomparable.

Proposition 4. The classes of languages of DA and RTA are orthogonal.

PROOF. On the one hand, one can observe that the language of the DAG rep-
resentations of the terms of the RTA language of Example 1, L = {f(¢,t) | t €
T(2)}, is not recognizable by a DA. Assume by contradiction that it is recog-
nized by a DA A with n states and let ¢ be a term of depth strictly greater
than n. By hypothesis, there exists a run r of A on the DAG representation
of the term f(¢,t). Since there is a path in ¢ of length strictly greater than n,
there exists two different nodes v; and vy in the DAG representation of ¢ that
are labelled with the same state ¢ in the run r. Let t; and ¢5 be the subterms
of t whose DAG representations are the subgraph rooted respectively in v; and
vy, and let ¢ be the term obtained form ¢ by replacement of every occurrence
of t1 by t2. Since both DAG representations of t; and ty are recognized by A
in the same state ¢, any term containing some occurrences of t; recognized by
A, is still recognized by A if you replace any number of occurrences of t1 by 5.
Then, the DAG representation of f(¢,t’) is recognized by A. Since ¢ # t’, this
is a contradiction and we conclude that there does not exist a DA recognizing
the language of DAG representations of the terms of the RTA language L.

On the other hand, the language of DAG-representations of the terms of
Lax of Example 6 (which is not recognizable by an RTA), is recognized by the
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following DA (we admit that for the terms ¢t = H[to, ..., t,] of Lynax, the context
H can be empty. In this case, t is reduced to tg):

A={q,q},{d},{0 = q,s(q) = qld’s h(q,9) = ¢, k(¢ ,q) = ¢'})

With this DA, a term ¢ = H[to, ..., t,] is accepted in ¢’ iff ¢¢ is accepted in ¢’
and every t;, for ¢ > 0 is accepted in q. Moreover, since t is put in DAG form
with maximal sharing for the computation of A, and ¢’ can only be reached
through ¢, every t;, for i > 0 is a strict subterm of ¢y, meaning that ¢ € Ly ax.0

Note also that the emptiness problem is PTIME for RTA and NP-complete for
DA [15]. Moreover, deterministic DA coincide with DTA, and, as we show in
Section 5.1, it is not the case for DRTA. Actually, DA and RTA are defined for
different purposes: DA are proposed for computing on compressed trees, and
not for checking equalities like RTA.

3.4. TAIM

Like pushdown tree automata [4], TA with one memory (TAIM) [3, 16] are
TA extended in order to carry an unbounded amount of information along the
states in computations. But instead of a stack, a TA1M stores this information
in a memory with a tree structure. More precisely, this memory contains a
ground term over a memory signature I'. The memory is updated during the
bottom-up computations. The general form of the transitions of TA1M is

flaa(ma), ... gn(mn)) — q(m)

where f € ¥, q1,--.,qn,q are states with an argument carrying the memories
mi,...,Mp,m € T(T,X). The new current memory m is built from the memo-
ries my, ..., m, which have been reached at the positions immediately below the
current position of computation. For instance, in the following push transition,
the new current memory m is built by pushing a symbol h € T'), at the top of
memories myq, ..., my (which are variables z1,...,z, in this case):

f(ql(zl), . ,qn(zn)) — q(h(zl, . ,zn)) (push)

In a pop transition, the new current memory is a subterm of one of the memories
reached so far:

fla(@a), - ai(h(yr, - k), - - an(@n)) = q(y;) (pop)

The top symbol h of m; is also read in the above pop transition.
In an internal transition, the new current memory is one of the memories
reached:

f((h (x1),..., Qn(xn)) — q(x;) (internal)

with 1 <i <n.
Moreover, TAIM can perform equality tests on the memory contents, with
transitions like

flar(z), ..o qn(zn)) 255 (o) (internal_)
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where 1 <1, 7, k < n. This ability makes possible the simulation of some tests of
the TA with constraints (by storing some subterms in memory and comparing
them), with a limitation to local tests (like for TAC).

Proposition 5. The classes of languages of TAIM and RTA are orthogonal.
PROOF. Let ¥ ={a:0,9:1, f:2}. The language

L={f(g"(f(s,1)), f(s,9"(f(s5,1)))) | 5,t € T(X),n = 1}

is recognized by the following RTA

a — qlgs, 9(q) = qlgs, f(q,q) — qlgs,
A= ({0,001, 00,9}, {0, ¢} {as}, § flas, ) = a1, 9(1) = a1lgr,
(s, ar) = a2, f(ar,q2) — qr

The language L cannot be recognized by a TAIM. The reason is that, in order to
recognize a term of the language, the automata needs to test equalities between
i) the two subterms ¢"(f(s,t)) and ii) the two subterms s in the right side of
every term of L. For ¢, it would need to store g"(f(s,t)) in its memory but for
11, it would also need to have s stored at the same time, which is not possible,
since the memory can only store one term at a time.

Let us now counsider ¥ = {a:0,g:1,h: 1, f:2} and the language L' =
{f(g™(a),h™(a)) | n > 0}. This language is recognized by the TAIM with the
following 4 push transitions and 1 test transition (gf is the only final state):

a — qg(a)lgn(a), 9(qe(1)) = qg(9(x1)), hgn(z1)) = qn(g(21)),
flag(@1), an(w2)) =" ge(z1)
Note that the above transitions can only push the symbol g, whenever g or h is
read. The states ¢, and g, permit to differentiate between ¢g"(a) and h"(a).
As a consequence of the pumping Lemma 1, the language L' is not recognized
by an RTA. O

8.5. Automatic Clauses with Rigid Variables

In this section, we show that the languages of rigid tree automata can alter-
natively be defined as finite set of Horn clauses with rigid variables [17]. This
formalism was used in several related works [18, 19]. These papers do not men-
tion the name of tree automata, but they are targeted at the same application
as the one presented in Section 8: the static analysis of security protocols.

Following [20], it is a common approach to represent tree automata by Horn
clause sets. A tree automata transition f(q1,...,qn) — ¢ can indeed be encoded
into the following first order Horn clause (variables are implicitly universally
quantified)

(1), an(yn) = a(fy1s-- - un)) (reg)

where y1, ..., y, are distinct variables and ¢1, ..., ¢., ¢ are unary predicate sym-
bols. Let us call reqular clauses the Horn clauses of the above form. Given a
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finite set C of regular clauses (an automaton in these settings) and a predi-
cate ¢ (a state), the language of C in ¢, denoted by L(C, q), is the set of terms
t € T(X) such that ¢(t) is a logical consequence of C (g(t) is in the smallest
Herbrand model of C). This definition corresponds exactly to the language of
the TA whose transitions are encoded by the clauses of C.

One advantage of this presentation of tree automata by Horn clause sets is
that it permits to use classical first-order theorem proving techniques in order
to decide TA problems. For instance, if C is a finite set of regular clauses and
t € T(X), it holds that ¢ € L(C, q) iff CU{q(¢) =} is inconsistent, and L(C, q) # 0
iff C U {¢(x) =} is inconsistent. These sets can be finitely saturated by a
resolution calculus with appropriate strategies [21], hence, the above decision
problems can be solved using first order theorem provers.

This approach can also be suitable for studying RTA, by distinguishing, in
regular clauses, some variables as so called rigid variables [17]. We use below
uppercase letters X, Y... for rigid variables and lowercase x,y... for other vari-
ables, called flexible variables. Recently, in [18, 19], some models of Horn clauses
with rigid variables (including regular clauses) have been studied in the context
of the verification of security protocols. We recall the definitions and results
of [19] in order to establish connections with RTA.

A set C of clauses with rigid variables Xi,..., X, and flexible variables
Y1, - .-, Ym 1S satisfiable if there exists a Y-algebra 2 such that for all valuation
o:{X1,...,X,} = 2, there exists a model S with domain 2[ such that S,0 =
Yy1,...,ym C. It is equivalent to say that for all valuation o : {X1,..., X} —
T (%), there exists an Herbrand model £ such that £ = Vyi,...,ym o(C).

This semantics permits to redefine the languages of RTA in term of models
of regular clauses with rigid variables. Let us consider an RTA A = (Q, R, F, A)
and let us associate a rigid variable X, to each ¢ € R. We associate to A the
set C of regular clauses with rigid variables

ql(al),...,qn(an)éq(f(ozl,...,an)) (reg’)

such that f(q1,...,¢n) > g€ Aandforalli <n, oy = X, if ¢; € R and o; is

a flexible variable y; otherwise. Then, we have (X = {X, | ¢ € R})
U L(c(C).q) = L(A q).
o X—=T (%)

In [19], a translation of clauses with rigid variables into first order clauses
(without rigid variables) preserving satisfiability is proposed. In the case of the
above regular clause with rigid variables (reg’), the translation returns

(T, al), ..., (T, ) = q(f,f(o/l, e ,04;1))

where T = (24)qer i a sequence of |R| flexible variables, one variable z, for
each rigid state ¢ € R (hence one for each rigid variable X;). Every variable o,
i < n, is either zq, if a; is the rigid variable X,, (i.e. if ¢; € R) and o is the
(flexible) variable o; = y; otherwise. Such clauses can alternatively be seen as
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transitions of tree automata extended with |R| auxiliary registers storing terms
of T(X). For such an automaton, the values are stored in the registers once and
for all at the beginning of the computation (in the variables of Z) and during the
application of a transition, the current subterm can be compared to the content
of one register (in the case where o = y;).

It is shown in [19] that binary resolution with an appropriate ordered strategy
terminates on clauses of the above form as long as there is only one unary
predicate; [19] consider also other kinds of clauses; some of them can be seen as
a generalisation of RTA to two way and alternating rigid tree automata.

Hence, in the result of [19], termination is limited to automata with one state.
The resolution strategy of [19] does not terminate on automata with more than
one state and a terminating resolution strategy for this case is not known. Some
progress in this direction would enable the application of first order theorem
proving techniques to decision problem for RTA. This could permit in particular
to consider extensions of RTA with e.g. equational tests or language modulo
equational theories, like what was done in [10] for standard tree automata using
a Horn clauses approach and a paramodulation calculus. In particular, the latter
extension (modulo equational theories) is related to the problem of Section 7.3,
and in this context, first order theorem proving tools could provide an efficient
alternative to the complicated decision algorithm described in Section 7.3.

4. Boolean Closure

We show below that the class of RTA languages is closed under union and
intersection but not under complement.

4.1. Union and Intersection

Theorem 1. Given two RTA A; and As, there exist two RTA of respective
sizes O(|A1|+|Az]) and O(2A11A21)  constructed respectively in polynomial and
exponential time, and recognizing respectively L(A1)UL(Asz) and L(A;)NL(Asz).

PRrROOF. Let A; = (Q;, R;, F;, A;) with ¢ = 1,2. For L(A;) U L(Az), we do a
classical disjoint union of automata. Let us assume wlog that the state sets @1,
Q2 of A; and Ay are disjoint. Like for the union of TA, the RTA A is obtained
by disjoint union of the state sets, rigid state sets, final state sets and transitions
sets.

For L(A;) N L(Az), it is easy to construct a TAGED+ A’ (see Section 3.1)
recognizing L(A;) N L(Az) by a Cartesian product operation like for standard
TA. The state set of A" is Q1 x @2, its final state set F; x F» and its set of
transition rules is

f(<Q11,QQ1>, cee <Q1m(J2n>) ={q1,92) | Gi1---Gin,q € Qi |
| f(qz'la'--vqin)%qz'GAZ-,’L':LQ

Moreover, the equality relation of A’ is

R: = §<<Q’ﬁvq?>a <qT1aq/2> | qry S R15q27QQ S QQ}
<<q1aq7“2>’ (¢1,9.)) | @1, 01 € Q1,0r, € R2}'

(-
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We can use Proposition 2 of [6] in order to transform this TAGED+ into
an RTA recognizing the same language, at the price of an exponential blowup.
Combining the two above steps results in an exponential construction for the
intersection of RTA. a

The following lemma shows that the exponential time complexity for the
construction of the intersection automaton in Theorem 1 is a lower bound, with
a reduction of the EXPTIME-complete problem of the non-emptiness of the
intersection of n TA.

Lemma 2. Givenn TA Ay,..., A, on X, we can compute in polynomial time
two RTA Ay and A,, both of size O(|A1| + ...+ |Ay|), and such that L(A1) N
o NL(A) =0 4f L(Ax) N L(A,) = 0.

PROOF. Let ¥4 =3 W {0:0,d:2}. Both the RTA constructed will compute on
Zd. Let

Ar = {a, ar, 0} {ar ), {as}- {0 = g, dlar, ar) = @ }O{f(q,- -, q) = dlar | f €2}).

It recognizes the set of right combs of the form d(¢, d(¢, . .. d(t,0))) with ¢t € T(X).
Let A; = (Qi, Ri, F;, A;) for all 1 < ¢ < n. We assume wlog that Q1,...,Qn
are disjoint and that for each ¢ < n, F; = {¢;}.

Let AX = <E’J?:1 Ql W {qoaqlla .. '7q;L})Lﬂ?:1 Ri) {qll}’AX>’ with

n—1

AX = E—J Ai ] {0 — qoad(QnaQO) — q;z} U Lﬂ d(ql’q;+1) - q;
i=1 =1

This RTA A, recognizes the set of right combs of the form d(¢1,...d(t,,0)))
with ¢; € L(A;) for all ¢ <n. Hence L(Ayx) N L(A,) is exactly the set of right
combs d(t1,...d(ts,0))) such that t;, € L(A;) for all i < n and t; = ... = t,.
Therefore, this intersection is empty iff L(A1)N...NL(A,) is empty as well. O

Note that the above construction also works (hence Lemma 2 also holds) for n
given RTA. With Lemma 2, we have a polynomial time reduction into the non-
emptiness of the intersection of two RTA of the problem of the intersection non-
emptiness for n TA (given n TA A, ..., A,, do we have L(A;)N...NL(A,) #
(7). The latter problem is known to be EXPTIME-complete [22]. Since by
Theorem 1, the intersection of two RTA is an RTA, and the emptiness of RTA
can be decided in linear time (Theorem 8 below), we conclude that EXPTIME
is a lower bound for the construction of an RTA for the intersection. Moreover,
in the above construction, Ay is a TA if every A; (1 < i < n) is a TA. Hence
the intersection of an RTA with a TA also leads to an exponential construction.

4.2. Complement

Theorem 2. The class of RTA languages is not closed under complement.
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PROOF. We have seen in Example 7 that the set B of balanced binary trees
over ¥ := {a: 0, f:2}is not an RTA language. We show that its complement
B in T(¥) is an RTA language. The idea is similar to the construction for
the subterm relation in Example 4: one rigid state g, is used to choose non-
deterministically a subterm, and it is checked that the sibling of ¢, contains g,
at depth more than one (such subterms are characterised by the state ¢’ below).
More precisely, the RTA for B is ({q, ¢, ¢, a4}, {a}, {ar}, A) with

a = qlqr, fle,e) — da.  fla.d) — 4,
Aod floe) = 4, flar,a) — 4, fld,a9) — 4,
flar,d') = g, fd ar) — g,
flas,a) = a, fa @) —
The last two transition rules ensure the propagation of the final state g up to
the root, like in Example 2. a

5. Deterministic and Visibly Rigid Tree Automata

Non-determinism is crucial for an RTA recognizing the terms of the form
f(t,t) like in Example 1. Indeed, in a bottom-up computation, such an au-
tomaton needs to guess both positions of the two occurrences of ¢ under the
symbol f, and put one rigid state at these positions.

Example 8. Let us come back to Example 1, where ¥ = {a:0, b:0, f:2} and the
RTA A with transition set {a = qlg-,b — qlar, f(¢,9) = dlar, f(ar,qr) — o}
recognizing {f(¢,t) |t € T(X)}. Applying a classical subset construction to the
transition set of A returns a deterministic set of transitions

{ a— {Qaqr}a b— {Q7QT}7 f({Q5qT}5 {Q7QT}) - {QaQTan}v }
fla @ o} Aas @ a}) = {a ar, a5} '

However, it is not possible to choose a subset of rigid states amongst the two
states obtained, in order to recognize the above language. <&

We show in this section that RTA can not be determinized in general, and
propose a subclass for which a determinization is possible, though it is still not
closed under complement.

5.1. Determinism and Completeness

Definition 3. A deterministic rigid tree automaton (DRTA) (resp. complete
RTA) on a signature X is an RTA A whose underlying TA ta(A) is deterministic
(resp. complete).

Like standard TA, every RTA can be completed into a complete RTA, by
the addition of a trash state.

Theorem 3. For every RTA A, a complete RTA A’ of size polynomial in |A|
and such that L(A") = L(A) can be constructed in PTIME from A.
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PrOOF. Let A = (Q, R, F,A). We use the same construction as for standard
TA, adding a state ¢, which is neither final nor rigid: A’ = (QU{q.}, R, F,A})
with
A=A
U{f(ql,...,qn)—>qL | feEZn g1, an €Q,Ye€Q, flqr,.-.,qn) > q ¢ A}
U{f(Qh---;Qn) — gL | f € En,Ql;---;Qn S QU{QL},HZ S n,q; :ql}
O

However, unlike standard TA, it is not true in general that for a complete
RTA A, for every term t there exists at least one run of A on t. Indeed, a run
of ta(A) on t might not be a run of A on t because of the rigidity condition.

Example 9. The RTA A = ({¢,¢.}.{a}, {a},{a = ¢,9(q) = @r.9(a+) = q})
is deterministic and complete. The term ¢ = g(g(g(a))) is in L(ta(A),q,), it is
accepted with a unique (TA) run r = ¢,(¢(¢-(¢))). However, r is not a run of
the RTA A, because the two subterms at the positions of ¢, are distinct. )

It is well-known that DTA are as expressive as TA, and that every TA can
effectively be determinized, at the price of an exponential blowup. We show
below that it is not the case for RTA: the class of DRTA languages is strictly
included in the class of RTA languages.

Theorem 4. DRTA & RTA.

PRrROOF. Let ¥ = {a:0, f:2}. The language L = {f(¢,t) | t € T(X)} is recognized
by the RTA of Example 1, without the transitions rules for symbol b.

We show now that L is not recognized by a DRTA. Assume that there is a
DRTA A = (Q, R, F, A) recognizing L. On any run r of A, on any tree, each
rigid state can only appear once on a path; otherwise it would not respect the
rigid condition. Hence there is at most |R| occurrences of rigid states on every
path. Let ¢ be a tree on which there exists a (unique) run r of A, and let
p € Pos(t) be a path from the root to a leaf which contains a maximal number
of rigid states in 7.

We build a tree ¢’ such that there exists a position p’ € Pos(t’), |p/| >
|Q| — |R| and t'|,» = t. Since f(¢',t’) is recognized by A, there exists a (unique)
run 7’ on t. Since A is deterministic, we know that 7’|, = r. Hence there
exists a path in 7’ from the position p’ to a leaf that contains the maximal
number of rigid states. So for each strict prefix pj of p’, r'(py) € Q \ R. Since
[p'| > |Q|—|R], there exists two strict prefixes p}, p) of p’, such that p] is a strict
prefix of pi and 7'(p}) = 7/ (p}). Let ¢’ be the tree ¢’ [t;,z]pfl. This construction
is illustrated in Figure 2.

Then 7 = r'[r}, ], is a valid run of A on #": no rigid states occur between
the root and p}, and between p} and p}, so a position p} of an occurrence of a
rigid state was either

e a position incomparable (wrt prefix ordering) with p}, which still exists
with the same subtree and the same rigid states in ¢,
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Figure 2: Proof that DRTA ¢ RTA

e a position p; - m, m € Pos(t'|,, ), and then the position pj - 7 in ¢ has the
same subtree and the same rigid state,

e a position p} - 7, ™ € Pos(t'|,; ), where 7 is not a suffix of p5, and in this
case, this occurrence of the rigid states disappears in ¢”.

Therefore, r” satisfies the rigid condition on every rigid state of R. Since r”(¢) =
r’(€), A recognizes the tree f(t”,t') which is not in L. a

Moreover, the class of regular tree languages is strictly included into the
class of DRTA languages.

Theorem 5. TA ¢ DRTA.

ProOF. The inclusion TA C DRTA is immediate since DTA = TA and DTA
are particular cases of DRTA.

Let ¥ = {a:0,g:1, f:2}. The language {f(g(t),9(t)) |t € T(X\ {g}} is
recognized by the DRTA

A={a¢ @ @} et {a} {a = ¢ fl@.0) = ¢.9(0) = @, f(ar ar) = G} })-

But this language if not regular. O

5.2. Visibly Rigid Tree Automata

We propose here a class of restricted RTA which can be determinized. The
definition of the restriction is inspired by the theory of visibly pushdown au-
tomata (VPA) [23]. VPA define a subset of context-free languages closed un-
der intersection and complement. They were generalized to tree recognizers
in [5, 16]. The idea in these works is that the signature ¥ is partitioned into
3 =Y. WX, WX, and the operation performed by the VPA on the stack depends
on the current symbol in the input: if it is a call symbol of ¥, the VPA can
only do a push, for a return symbol of ¥, it can do a pop and it must leave
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the stack untouched for a local symbol of ¥,. The transitions of a VPA follow
this discipline. There exists a determinization for this subclass of pushdown
automata, and it is closed under intersection and complement.

The RTA use no auxiliary stack but they permit the comparison between
subterms based on the rigid states. Hence, a natural way for defining a condition
similar to the one of visibly pushdown automata, and enabling determinization
for some RTA, is to restrict the rigid states that can be reached according to the
function symbol in the input. In that sense, the rigidity of the states is made
visible by the input signature.

Definition 4. A visibly rigid tree automaton (VRTA) is an RTA A =
(Q, R, F,A) on a signature ¥ such that there exists a partial function v from
Y to R such that for every transition f(q1,...,qn) = q¢ € A, ¢ = v(f) if v is
defined on f and ¢ € @ \ R otherwise.

Example 10. The RTA of Example 3 is visibly rigid, with a function v defined
only on g by v(g9) = g-. The DRTA in the above proof of Theorem 5 is also
visibly rigid, with the same function.

Conversely, the RTA of Example 1 (recognizing the terms f(¢,t) with ¢ €
’T({a :0,b:0, f: 2}) is not visibly rigid. Intuitively, some non-determinism is
needed for the bottom-up recognition of this language (because ¢t may contain
the symbol f), and it is not compatible with the visibly rigid condition. Indeed,
the above language is not regular, hence at least one rigid state is necessary for
the definition of a RTA recognizing it. Defining rigid states for v(a) and v(b), is
pointless (it can be simulated by standard tree automata). Hence,v(f) must be
defined in order to ensure the visibly rigid condition, but this would contradict
the recognition a term such as e.g. f(f(a,a), f(a,a)). &

With the visibly rigid condition, a determinization procedure can be applied to
VRTA.

Theorem 6. Given a VRTA A on X, a deterministic VRTA A’ on X of size
exponential in |A| and such that L(A") = L(A) can be constructed in exponential
time.

Proor. The RTA A’ is obtained by a classical subset construction. Let A =
(Q,R,F,A) and let A’ = (29,28 {SC Q| SNF #0},A’) with

A/: f(517;Sn)_>S|Sl,Sn7SgQ7
S:{QEQ|quESl,...,anGSn,f(ql,...,qn)%qu .

The RTA A’ is deterministic. Moreover, because of the visibly rigid condition
for A, every state of A’ occurring in A (i.e. every state of A" with a non empty
language) is either a subset of @ \ R (and it is not a rigid state of A") or is a
singleton subset of R (and it is a rigid state of A’). Hence, given a function v
associated to the VRTA A like in Definition 4, there exists a function v’ making
A" a VRTA, defined by v/(f) = {q-} if v(f) = ¢ € R.
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We can show by induction on ¢ € 7(X) that there exists a run r of A on ¢
iff there exists a run 7’ of A’ on ¢ such that for all p € Pos(t), r(p) € r'(p). The
part of the proof which is specific to (V)RTA concerns the rigidity condition,
and uses the above observation about the states of A’: all the rigid states in a
run 7’ of A’ are singleton subsets of R. Hence, for the if direction, given a run
r’ of A’ on t, every relabeling 7 : Pos(t) — @ extracted from ' (i.e. such that
r(p) € 7' (p), p € Pos(t)) satisfies the rigidity condition. Similarly, for the only
if direction, a relabeling 7’ : Pos(t) — 29 embedding a given run 7 of A on ¢
also satisfies the rigidity condition. It follows that ¢ € L(A) iff t € L(A"). O

Being able to determinize VRTA is not enough however to ensure the closure
of this subclass of RTA under complement. Intuitively, the reason is that for
the (unique) run r of a deterministic VRTA to be successful, a conjunction of
two conditions must be realized: the top state of r must be final and the rigidity
condition has to be enforced. In comparison, for a TA, only the first condition
is necessary, and in order to construct the complement of a deterministic and
complete TA, an inversion of final and non final states is sufficient. But in order
to characterize the complement of a VRTA language, the disjunction of the
negation of the two above conditions is necessary, and VRTA are not expressive
enough in order to characterize a term not satisfying a rigidity condition.

Theorem 7. The class of VRTA languages is not closed under complement.

PRrooOF. Let us consider the language L, of Example 3: the set of terms ¢ €
T(X), with ¥ = {a:0,¢:1, f:2}, such that s; = sy for every two subterms
g(s1), g(s2) of t. L, is recognized by the VRTA A given in Example 3 but its
complement is not a language of VRTA.

Assume that the complement 7(X) \ L, of L, is recognized by a VRTA A’
and let v/ be the function associated to A’ like in Definition 4. Since L, is
not regular, L(A’) is neither regular, and hence A’ has to contain at least one
rigid state g, such that L(A’,q.) # 0. Hence, there exists a function symbol
h € ¥ such that v(h) = ¢,. It cannot be g, otherwise A" would not be able to
recognize any term of the form f(g(t1), g(t2)) with ¢; # to (such a term is in the
complement of Ly). It cannot be f either, otherwise A’ would not be able to
recognize terms of the form f(g(t1), g(t2)) with t; = f(t3,¢4) and t1 # to (those
terms are also all is in the complement of L,). Hence h has to be a, but with
rigid states bound to constant symbols, VRTA do not have more expressive
power than standard TA. It follows that there does not exist any VRTA A’
recognizing 7 (X) \ L. O

It is not known whether or not, in general, the complement of a VRTA language
is an RTA language.

6. Decision problems

We study in this section several decision problems for RTA: emptiness, mem-
bership, intersection non-emptiness, universality, inclusion, equivalence, and
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|| TA RTA | TAGED+ DA
U PTIME PTIME PTIME PTIME
N PTIME EXPTIME EXPTIME not [24]
- EXPTIME not not not
emptiness linear-time linear-time EXPTIME-complete | NP-complete
membership PTIME NP-complete NP-complete NP-complete
N-emptiness || EXPTIME-complete | EXPTIME-complete | EXPTIME-complete
universality || EXPTIME-complete undecidable undecidable undecidable
inclusion EXPTIME-complete undecidable undecidable undecidable
finiteness PTIME PTIME EXPTIME
Table 1: Summary of closure and decision results
finiteness. Table 1 provides a summary of closure and decision results and a

comparison with other classes of extended TA mentioned in Section 3.

6.1. Emptiness

Emptiness is the problem of deciding, given an RTA A whether L(A) = 0.
We show below that deciding emptiness for an RTA amounts to decide emptiness
for the underlying TA.

Theorem 8. The emptiness problem is decidable in linear time for RTA.

PRrROOF. Let A = (3,Q, R, F,A) and let rigid(A) = (X,Q,Q, F, A) be a copy
of A where every state is rigid. We show that the emptiness of L(A) and
L(rigid(A)) and L(ta(A)) are equivalent. The latter problem (emptiness for
standard TA) is known to be decidable in linear-time (see e.g. [11]) with an
algorithm marking the inhabited states of ta(.A) and using an appropriate data
structure for the transitions rules. The idea of the proof is that if L(ta(A)) is
not empty, then the classical “state marking” algorithm builds a witness which
respects the rigidity condition for all states, and is therefore a witness for L(.A)
non-emptiness.

In order to establish the above equivalence, we use a similar algorithm for
A except that every inhabited state ¢ is marked by a witness (minimal) term
tq € L(rigid(A),q) and a run r, of rigid(A) on t,. At the beginning, each ¢,
and r,; are undefined. Then we iterate the following transformation until it is
applicable:

if ¢ € Q, t, is undefined, and there exists f(q1,...,qn) — ¢ e A
such that tq,,...,t,, are all defined, then let t; := f(tg,...,%q.)
and ¢ := q(rq,, ..., Tq.)-

The above step will be repeated at most |@| times, and using suitable data
structures (see [11]) for the representation of transition rules ensures that it
runs in linear time (note that the update of t; and 7, can be performed in
constant times at each step). For all ¢ € @, the following facts are equivalent:
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i. t4 is defined,

ii. L(rigid(A),q) # 0,
iii. L(A,q) # 0.
iv. L(ta(A),q) # 0.

i = i follows from the construction: if ¢; is defined then 7, is a run of
L(rigid(A)) on ty. This can be shown e.g. by induction on the number of
iteration steps before ¢, is defined.

1 = 46t and 9 = v are immediate, because by definition we have
L(rigid(A),q) € L(A,q) € L(ta(A), q).

1w = i can be shown by induction on the number of transition rules of A. This
procedure terminates and at the end, t, is defined iff L(rigid(A),q) # 0 iff
L(A,q) # 0 iff L(ta(A), q) # 0. o

6.2. Membership

Membership is the problem of deciding, given an RTA A and a term t €
T(X), whether ¢ € L(A). A similar proof of the following result (in the case of
TAGED) already appeared in [6].

Theorem 9. Membership is NP-complete for RTA (PTIME for DRTA).

PROOF. A non-deterministic algorithm for this problem consists in, given an
RTA A and a term ¢, guessing a labelling of the nodes of ¢ with states of A and
checking that this labelling is a successful run of A on ¢. The checking operation
can be performed in polynomial time.

In the deterministic case, there is at most one labelling of the term ¢ compatible
with the transition rules. It can be computed in PTIME and it can be checked in
PTIME that this labelling is a successful run. Hence the membership problem
is decidable in PTIME for DRTA.

In order to show NP-hardness for general RTA, we propose a reduction
of 3-SAT for a formula ¢ into the membership for an RTA A and a term ¢
representing ¢.

Let us consider an instance ¢ of 3-SAT with variables from a set V. It is
represented as a term ¢ over the signature ¥ = {0,1:0,-:1A:2,V:3}U{z:
2 | x € V}. Every variable z is represented by a subterm x(0,1), a 3 literal
clause ¢1 V €2 V 3 is encoded into V(t1, ta,t3) where t1, 2, t3 encode respectively
l1,02,¢3. Finally we encode a conjunction of disjunctions Dy A --- A D,, into
A(t1y ...y A(tp—1,tn)) where each t;, i < n, is the encoding of D;.

For instance, the tree encoding of the 3-SAT instance (zVyVz)A(-zVyV
t) A (—y, —t, z) is depicted in Figure 3.
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v//\\
/|\ / \
~, e

T Y z V \%
/ \ V2N /\
01 01 01 /y/ L\z
I I 1'5 /\
x x
I\ 01 0 1 I\ I\ 0 1
0 1 0 1 0 1

Figure 3: Membership NP-hardness: tree encoding of a 3 SAT instance.

We define an RTA A = (Q,R,F,A) on ¥ by R = {¢s,q-x | * € V},
Q={q,90} VR, F={q}, and

A {0 = ¢z|q-2,1 = Gz|q-z | T €V}

{x(%caqﬂz) — 4o, T (q—mm‘Iz) — q1 | T e V}

{V(QOaQOaQO —qo}

{V(q,q¢',q") = q1 | at least one of q,¢’,q"” is ¢1, and the others are ¢o}
{~(20) = a1, ~(q1) = qo}

{1, q1) = a1, N (q0, 1) — g0, Nq1,90) — qo, A(qo, q0) — qo}-

cccccl

Both the automata A and the tree ¢ are linear in size relatively to the size of
the 3-SAT instance ¢. The most important transitions of A are those of the two
above lines involving the rigid states g, and ¢q—,. The states gy and ¢; represent
the value associated to = (they are propagated bottom-up along ¢) and the
rigidity condition ensures that the same value is associated to all occurrences of
the variable z in ¢.

Let us show now in detail that A recognizes ¢ iff the corresponding 3-SAT
instance ¢ has a solution.

Assume that the given 3-SAT instance has a solution o : V' — {0,1} (map-
ping of propositional variables into truth values). We define a successful run r
of A in t as follows. For each variable 2 € V and for each position p € Pos(t)
such that ¢|, = z, we have by construction of ¢ that ¢|,1 = 0 and t|, 2 = 1. If
o(z) = 0, we define r(p.1) = ¢, and r(p.2) = g-,, and if o(z) = 1, we define
r(p.1) = g-, and r(p.2) = ¢q,. Both options are possible thanks to the rules
0 = g(-)z and 1 — q(-),, and since we do the same thing for all occurrence
of x in ¢, the rigid condition on ¢, and ¢-, are satisfied for . Only one rule
can be applied at position p: x(gs,q-z) = qo if o(z) = 0 and z(¢-z,¢z) = @1
if o(x) = 1. Therefore, for all z € V and p € Pos(t) such that t|, = =,
7(P) = Go(x)- It is obvious, considering the other rules of A that there is only
one state possible for each other position in r, and that r(¢) = g1 because o is
a solution. Hence t € L(A).

Conversely, let r be a successful run of A on t. The transition rules of A
ensure that t is a representation of the given 3-SAT instance. We show that the
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rigidity condition on r ensures that this instance is satisfiable. Let x € V' and
p1, p2 € Pos(t) such that t|,, = t|,, = z. By construction of ¢, t|p, 1 =|p,.1 =0
and t|p, 2 = t|p,.2 = 1. Only the two transition rules z(gs,¢-z) — ¢o and
2(q-z,9z) — q1 can be applied on p; and py. Assume that r(p;) = qo, then
r(p1.1) = ¢z I r(p2) = ¢1, then r(p2.2) = ¢, and since t|p,.1 # t[p,.2 it does
not respect the rigid condition. So the only possible values are r(p2.1) = ¢,
r(p2.2) = gz and 7(p2) = qo, which respect the rigid condition of both ¢, and
G- Following the same reasoning, if 7(p1) = ¢1 then r(p2) = ¢1. So, for all
x € V, there exists iy € {0,1} such that for all p € Pos(t) such that t|, = =,
r(p) = qi,. Hence, by the construction of ¢ and A, it is obvious that the mapping
o(x) =i, is a solution for the 3-SAT instance. |

6.3. Intersection non-Emptiness

Intersection non-emptiness is the problem of deciding, given a finite sequence
of RTA whether there exists a term recognized by each RTA of the sequence.

Theorem 10. Intersection non-emptiness is EXPTIME-complete for RTA.

PRrROOF. The upper-bound is a consequence of Lemma 2, Theorem 1 and The-
orem 8. The lower-bound follows from the EXPTIME-hardness of the problem
for TA [22]. ]

6.4. Universality

Universality is the problem of deciding, given an RTA A on ¥ whether
L(A) =T(2).

Theorem 11. Universality is undecidable for RTA.

PROOF. We reduce the non-existence of a solution of an instance P of the Post
Correspondence Problem to the universality of an RTA. This RTA recognizes
the set of terms which do not represent a solution of P. It is defined as a disjoint
union of RTA, one for each case. Some cases involve the construction of an RTA
testing disequalities between unary subterms like in Example 5.

Let T" be a finite alphabet and P = (u;,v;)1<i<n be an instance of PCP,
with u;,v; € I'*. A solution of P is a finite sequence i1, ...,i; (1 <i; <n for
all j < k) such that w;, ... u;, = v ... 04,

Let ¥ = {L:0,}U{a:1]aecTU{fi:3]1<4<n}. For the sake of
clarity, a term 