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Abstract

We present a new method for automatic implicit induction theorem proving, and
its application for the verification of a key distribution cryptographic protocol. The
method can handle axioms between constructor terms, a feature generally not sup-
ported by other induction procedure. We use such axioms in order to specify explicit
destructors representing cryptographic operators.

1 Introduction

Inductive theorem proving techniques and tools have been successfully applied
in last years to the verification of security protocols, both for proving security
properties and for identifying attacks on faulty protocols.

Paulson [9] proposes an inductive approach to verify cryptographic pro-
tocols which has been applied to several case studies during the past years.
In this method, protocols are formalized in typed higher-order logic and the
Isabelle/HOL interactive theorem prover is used to prove security proper-
ties. Paulson’s technique handles infinite state protocols and does not assume
any restriction on the number of protocol participants. However, it is not
automatic and requires interaction with the user even for simple protocols.
Moreover, if a proof fails with Isabelle, it is difficult to conclude whether the
proof attempt fails or the conjecture to be proved is not valid.

Bundy and Steel [4] derive attacks on faulty protocols specified in first-
order logic using a proof by consistency technique. Such technique is some-
times also called inductionless induction [7] since it does not construct an
induction proof following an induction schema but rather tries to automati-
cally derive an inconsistency using first-order theorem proving techniques.
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In this paper we present some ideas for the formal verification security
protocols with an extension of an implicit induction procedure [2]. The main
novelty of this procedure is that it handles axioms between constructors. Such
axioms are used in our settings in order to specify cryptographic operators like
decryption. This approach with explicit destructors is the base of a uniform
framework for the verification of security protocols in an insecure communi-
cation environment [1]. In contrast to the technique of [4], implicit induction
is a goal directed proof technique, and we believe that it is therefore quite
efficient for automatically finding attacks on faulty protocols. The use of tree
automata techniques in [2] permits in particular to focus on traces of events
in normal form, and consequently to minimize the set of traces to be checked.
Moreover, since our procedure is refutationally complete (under some condi-
tions for the specification) its application on any flawed protocol will return an
attack in finite (and typically very small) time and in a completely automatic
way. As shown by the example, it generates readable counter examples, from
which an attack can be effectively recovered. It also permits the validation of
authentication protocols.

2 Implicit Inductive Theorem Proving procedure

We briefly present in this section an adaptation of an inductive theorem prov-
ing procedure that we have proposed in [2] and that will be applied to the
protocol specifications. We assume given a many-sorted signature F = C ]D,
where C is a set of constructor symbols, and D is a set of defined symbols, and
a finite set L of predicate symbols with a recursive Boolean interpretation
in the domain of ground constructor terms T (C). Typically, L contains the
syntactic equality and disequality ≈ and 6≈ and membership x:L to a fixed
regular tree language L ⊆ T (C). A constraint is a Boolean combinations of
atoms of the form P (t1, . . . , tn) where P ∈ L and t1, . . . , tn are in T (C,X ),
the set of constructor terms with variables. A solution of a constraint c is a
(constructor) substitution σ grounding for all terms in c and such that cσ is
interpreted to true and the set of solutions of c is denoted by sol(c). We use
the notation t JcK for constrained terms.

A conditional constrained rewrite rule is a constrained equational Horn
clause of the form u1 = v1, . . . , un = vn ⇒ ` → r JcK (` → r is an oriented
equation). When n = 0, the clause is called a constrained rewrite rule. A set
R of conditional constrained, resp. constrained, rules is called a conditional
constrained (resp. constrained) rewrite system or CCTRS (resp. CTRS). A
term t JdK rewrites to s JdK by the above rule of R, denoted by t JdK −→R s JdK,
if t|p = lσ for some position p and substitution σ, s = t[rσ]p, the substitution
σ is such that d ∧ ¬cσ is unsatisfiable and uiσ ↓R viσ for all i ≤ n 4 .

Let R be a terminating constraint rewrite system. A constrained equation

4 uiσ ↓R viσ stands for ∃w, u −−→∗R w ←−−∗R v, −−→∗R is the reflexive transitive closure of −−→R .
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a = b JcK is a called an inductive theorem of R if for all substitution σ ∈ sol(c)
grounding for a = b, R |= aσ = bσ; it is a strong inductive theorem of R
(denoted by R |=sind a = b JcK) if for all σ and all R-normal forms na, nb

respectively of aσ, bσ, we have na ≡ nb. These notions are extended to
clauses as expected. The two notions coincide when R is ground confluent.
The definition of strong inductive theorems is motivated by the application
presented in Section 3.

Our inductive theorem proving method is a goal-directed proof technique
which handles constructor based conditional and constrained specifications
containing in particular constrained rewrite rules between constructors. This
feature, which is generally not supported in former inductive theorem proving
approaches, permits us to deal with explicit definition of cryptographic oper-
ators in Section 3. This procedure belongs to the family of implicit induction
(in the lines of [3]) and combines the power of two classical methods for auto-
matic induction: explicit induction and proof by consistency [7]. It is based on
constrained tree grammar, a tree generator whose production rules are con-
strained. The grammar is computed automatically from the given specification
and is used both as an explicit induction scheme, to trigger the induction steps,
and for deciding a deletion criteria, as summarized in the following descrip-
tion of the main steps of our procedure (see [2] for details). We start with a
conjecture (goal) C and a CCTRS R, with a subset RC of constrained rewrite
rules between constructor terms and such that all the rules of RD := R \RC
are conditional constrained rules of the form Γ ⇒ f(`1, . . . , `k) → r JcK with
f ∈ D, `1, . . . , `k, r ∈ T (C,X ).

(i) compute a constrained tree grammar GNF(RC) which generates the set of
ground constructor terms in normal form for RC,

(ii) for each goal (or subgoal) C, generate instances of C by using the pro-
duction rules of GNF(RC) (instead of a test set). We obtain C1, . . . , Cn.

(iii) for each Ci, do:
(a) if Ci is a tautology or Ci is a constructor clause and can be detected

as strongly inductively valid then delete it
(b) else reduce Ci into Di,1, . . . , Di,k, using the axioms 5 and ind. hyp.,

if possible,
(c) otherwise (if reduction is not possible) disproof

(iv) if (iii) did not fail with disproof then C becomes an induction
hypothesis and every Di,j becomes a new subgoal, go to (ii)

If every subgoal is deleted, then C is a strong inductive theorem of R. Ter-
mination of the process may be achieved if necessary by incorporating appro-
priate lemmas.

5 If R is not ground confluent, we consider all the (one step) reductions with R.
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Constrained tree grammars permit an exact representation of the set of
ground constructor terms irreducible by a given CTRS like RC. Under some
assumptions, like sufficient completeness of R and termination of RC, this
language is a set of representatives of the minimal Herbrand model of R.
For this reason, such formalisms have been studied in many works related to
inductive theorem proving, see e.g. [7]. Due to space limitation we shall not
give the formal definitions of these grammars, of the non-terminal replacement
performed at step (ii), and of the automatic construction of GNF(RC) at step (i)
(the reader may refer to [2]). An example of of GNF(RC) is given in the next
section. The simplifications at step (b) are simple application of the rewrite
rules or other rules for case analysis presented [2].

The test of strong validity at step (a) is based on a reduction to a con-
strained tree grammar non-emptiness problem (does there exist at least one
term generated by a given grammar), using GNF(RC). It requires that the
subgoal S is ground irreducible, a notion often central in proof by consistency
procedures [7] and which can be decided by similar reductions, as in [6]. This
method can be effective for some classes of grammars presented e.g. in [5]
(see [2] for details).

Like in [2], this procedure is sound and refutationally complete when the
given CCTRS is sufficiently complete and the constructor subsystem RC is
terminating. Without the above hypotheses, it still remains sound and refu-
tationally complete for conjectures whose variables are constrained to belong
to constructorRC-normal form languages defined by non terminals of GNF(RC)
(we shall proceed this way in the next section).

3 Verification of a Key Distribution Protocol

We describe in this section how to apply the above implicit induction proce-
dure to the verification of a security protocols, where a security property is
expressed as a strong inductive conjecture. Following [9], we perform induc-
tion on protocol execution traces which are recursively defined by a CCTRSR.
Since R is generally not ground confluent, we need to consider all the traces
for the verification of a property, hence the restriction to strong inductive
theorem proving (instead of classical inductive theorem proving).

We consider a simplification (without certificates and timestamps) of a
key distribution protocol of Denning & Sacco [8] for a symmetric key ex-
change in an asymmetric cryptosystem. Assume some sorts Nat, Bool,
Name, Key, Msg, MsgList, with the subsort relations: Name ⊆ Msg
and Key ⊆ Msg. The messages exchanged during the protocol execu-
tion are abstracted by well sorted constructor terms build with symbols
pair : Msg × Msg → Msg and projections fst, snd : Msg → Msg following
the rules fst(pair(x1, x2))→ x1 and snd(pair(x1, x2))→ x2, decryption in sym-
metric key cryptography: dec

(
enc(x, y), y

)
→ x (the variables x and y corre-

spond respectively to the encrypted plaintext and the encryption key), decryp-
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tion in public (asymmetric) key cryptography: adec
(
aenc(x, y), inv(y)

)
→ x

and adec
(
aenc(x, inv(y)), y

)
→ x where inv is an idempotent operator, fol-

lowing the rule inv(inv(y)) → y, which associates to a public encryption key
its corresponding private key (for decryption), and conversely. The symbols
of cryptographic operators have the following profiles: pub : Name → Key,
inv : Key → Key, enc, aenc, dec, adec : Msg × Msg → Msg, inv is called
secret and all the others are called public. We consider also a secret con-
structor sent : Name × Name × Msg → Msg to add headers to messages,
and a public constructor symbol body : Msg → Msg for removing it with
the rule body(sent(xa, xb, x)) → x. We assume moreover some additional
secret constructors for Boolean: true, false : Bool, natural numbers 0 : Nat,
s : Nat→ Nat, lists of messages, nil : EventList, :: : Msg×MsgList→ MsgList
and constant values used in the protocol messages: K : Key, S : Msg. Fi-
nally, we assume that the set of names of honest agents (i.e. the set of terms
of sort Name) is a (possibly infinite) regular tree set (which we won’t define
explicitly) whose terms are made only of public constructor symbols.

Let us denote RC the set of the above rules, which are sometimes re-
ferred as explicit destructors rules in the protocol verification literature. The
constrained tree grammar GNF(RC) has sorted non terminals: xpair(x1, x2)y,

xenc(x, y)y, xaenc(x, y)y, xinv(v)y, xaenc(x, inv(y))y, xsent(xa, xb, x)y, Name,

xx
Key
y , xx

Msg
y , xx

List
y , xx

Bool
y , xx

Nat
y and xx

red
y . We assume that Name is the ini-

tial non-terminal of a regular tree grammar generating the constructor terms
of sort Name. The constrained production rules of GNF(RC) are the following
(M represents below any non-terminal of sort Msg):

xx
Nat
y := 0

∣∣ s( xx
Nat
y ) xx

List
y := nil

∣∣ M :: xx
List
y xx

Key
y := K

∣∣ pub
(
Name

)
xenc(x, y)y := enc(M1, M2) xinv(y)y := inv( xx

Key
y )

xaenc(x, y)y := aenc(M1, M2) xaenc(x, inv(y))y := aenc(M, xinv(y)y)

xpair(x1, x2)y := pair(M1, M2) xx
red
y := fst

(
xpair(x1, x2)y

) ∣∣ snd
(

xpair(x1, x2)y

)
xsent(xa, xb, x)y := sent( xx

Name
y , xx

Name
y , M) xx

red
y := body

(
xsent(xa, xb, x)y

)
xx

Msg
y := dec

(
xenc(x, y)y, M

)
Jy 6≈MK xx

red
y := dec

(
xenc(x, y)y, M

)
Jy ≈MK

xx
Msg
y := adec

(
xaenc(x, y1)y, xinv(y2)y

)
Jy1 6≈ y2K xx

red
y := . . . Jy1 ≈ y2K

xx
Msg
y := adec

(
xaenc(x, inv(y))y, M

)
Jy 6≈MK xx

red
y := . . . Jy ≈MK

The non terminal xx
red
y generates all RC-reducible ground constructor terms,

and the other n.t. generate all the ground constructor RC-normal forms.

Following the approach of [9], we consider traces of messages modelled as
lists, characterized by the symbol trace : MsgList → Bool, which is defined
recursively by trace(nil) = true and by extension with messages sent by the
agents participating to the protocol (honest or not). In the case of the Den-
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ning & Sacco protocol, the conditional rule (1) describes the honest agent
xa sending to agent xb a freshly chosen symmetric key K for further secure
communications. This key is encrypted, for authentication purpose, using the
asymmetric encryption function aenc and the secret key of xa, represented as
the inverse inv(pub(xa)) of its public key pub(xa). The result of this encryption
is later encrypted with xb’s public key pub(xb) so that only xb shall be able
to learn K. Moreover, xa appends its name at the beginning of the message
(using the pairing function pair) so that the receiver xb knows which public
key to use in order to obtain K.

trace(y) = true⇒ trace
(
sent(xa, xb, pair(xa, aenc(aenc(K, inv(pub(xa))),

pub(xb)))) :: y
)
→ true Jxa : Name, xb : Name, xa 6≈ xbK (1)

In the second conditional rule (2), the honest agent xb, while reading a message
x, expects that x has the above form. Then, he extracts the symmetric key
K, applying twice the asymmetric decryption function adec to the second
component of x, obtained by application of the projection function snd. This
key K is then used by agent xb to encrypt (with the function enc) a secret
code S that he wants to communicate to the agent xa.

trace(y) = true, sent(x′a, xb, xm) ∈ y ⇒ trace(sent(xb, fst(xm),

enc(S, adec(adec(snd(xm), inv(pub(xb))), pub(fst(xm))))) :: y)→ true (2)

We assume that the messages are sent and read through an insecure public
network controlled by an attacker. The attacker is able to read any message
sent to the network, to extract information from collected messages by apply-
ing public constructor symbols and the rules of RC, and to resend composed
messages to the network. The information extraction is modelled by the de-
fined function analyze : Nat ×MsgList → MsgList; given a list ` of messages
exchanged, we define analyze(`) is the smallest set containing `, and closed
under application of public constructor functions:

analyze(0, y)→ y analyze(s(n), y) → analyze(n, x :: y) Jx : NameK

x ∈ y ⇒ analyze(s(n), y) → analyze(n, f1(x) :: y)

x1 ∈ y, x2 ∈ y ⇒ analyze(s(n), y) → analyze(n, f2(x1, x2) :: y)

The two last rules are for every public constructor f1 of arity 1 (pub, fst,
snd, body) and f2 of arity 2 (pair, enc, dec, aenc, adec). The defined function
∈: Msg ×MsgList → Bool follows the rules: x ∈ nil → false, x1 ∈ x2 :: y →
true Jx1 ≈ x2K and x1 ∈ x2 :: y → x1 ∈ y Jx1 6≈ x2K. The ability of the attacker
to send fake message is modelled by this last conditional rule (3):

trace(y) = true, x ∈ analyze(n, y) = true⇒
trace(sent(I, xa, x) :: y)→ true Jxa : NameK (3)

6
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This conjecture expresses that the constant S remains secret to the attacker:

trace(y) = true⇒ S ∈ analyze(n, y)→ false Jy : xy
List
y , n : xx

Nat
y K

Note that the above variables y and n are constrained to be instantiated
by terms generated by GNF(RC) starting respectively from the non-terminals

xy
List
y and xx

Nat
y . The application of our procedure shows that this conjecture

is not a strong inductive theorem of R, by induction on traces.

Among the instances of the goal C generated 6 by appli-
cation of the production rules of GNF(RC), we have Cσ
where the substitution σ associates the variable y with ` =
sent(B, A, enc(S, adec(A, pub(A)))) :: sent(I, B, pair(A, aenc(A, pub(B)))) :: nil
and n with s(s(s(s(0)))), denoted 4 below (A, B and I are arbitrary distinct
constructor terms of sort Name).

We can show that Cσ is a counterexample (which indi-
cates an attack). In fact, the R-normal form of trace(`) is
true, and analyze(5, `) can be normalized as follows (let `′ =
enc(S, adec(A, pub(A))) :: `): analyze(5, `) → analyze(4, `′) → analyze(3, A :: `′)
→ analyze(2, pub(A) :: A :: `′) → analyze(1, adec(A, pub(A)) :: pub(A) :: A :: `′)
→ analyze(0, dec(enc(S, adec(A, pub(A))), adec(A, pub(A))) :: . . .) →
analyze(0, S :: . . .) → S :: . . . Hence, the conjecture is reduced to
true = true⇒ true→ false, which leads to a case of disproof.

Let us modify the protocol rules in order to fix this attack. We add a
pair(xa, xb) along with the key K in the first message:

trace(y) = true⇒ trace(sent(xa, xb, pair(xa, aenc(aenc(pair(pair(xa, xb), K),

inv(pub(xa))), pub(xb))) :: y)→ true Jxa : Name, xb : Name, xa 6= xbK (1’)

Before sending the second message, xb checks first the pair pair(xa, xb) sent in
the ciphertext (with k = adec(adec(snd(xm), inv(pub(xb))), pub(fst(xm)))):

trace(y) = true, sent(x′a, xb, xm) ∈ y, snd(fst(k)) = xb, fst(fst(k)) = fst(xm)⇒
trace(sent(xb, fst(xm), enc(S, k))) :: y)→ true (2’)

Let us complete the defined function trace with the following axioms:

trace(y) = false⇒ trace(x :: y)→ false,

trace(y) = true, x 6∈ analyze(n, y) = true⇒ trace(sent(I, xa, x) :: y)→ false Jxa : NameK . . .

In order to prove that the above conjecture is now true for the modified version
of the protocol, we generate the following subgoals (f1 ∈ {pub, fst, snd, body}

6 The procedure generates all the instances which are smaller than depth(R) (the maximum
depth of the left-hand sides of rules of R).
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and f2 ∈ {pair, enc, dec, aenc, adec}):

trace(y) = true⇒ S ∈ y → false Jy : xy
List
y K

trace(y) = true⇒ S ∈ analyze(n, x :: y)→ false Jy : xy
List
y , n : xx

Nat
y , x : NameK

trace(y) = true, x ∈ y ⇒ S ∈ analyze(n, f1(x) :: y)→ false Jy : xy
List
y , n : xx

Nat
y K

trace(y) = true, x1 ∈ y, x2 ∈ y ⇒ S ∈ analyze(n, f2(x1, x2) :: y)→ false Jy : xy
List
y , n : xx

Nat
y K

The proof of the first subgoal is immediate, but the other subgoals need more
developments and the interactive addition of some lemmas in order to derive
a proof. The difficulty here is that we need to verify all the execution traces in
order to certify a security protocol when R is not ground confluent (definition
of strong inductive theorems), whereas it is sufficient to find one erroneous
trace in order to show that the protocol is flawed. We are working on an
extension of our inference system with new simplification rules in order to
avoid the divergence during the validation of correct authentication protocols.
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[3] Adel Bouhoula and Michaël Rusinowitch. Implicit induction in conditional
theories. Journal of Automated Reasoning, 1995.

[4] Alan Bundy and Graham Steel. Attacking group protocols by refuting incorrect
inductive conjectures. Journal of Automated Reasoning, Special Issue on
Automated Reasoning for Security Protocol Analysis:1–28, december 2005.
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