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Abstract: We consider a model of medium-term commodity contracts man-
agement. Randomness takes place only in the prices on which the commodities
are exchanged whilst state variable is multi-dimensional. In [9], we proposed
an algorithm to deal with such problem, based on quantization of random pro-
cess and a dual dynamic programming type approach. We obtained accurate
estimates of the optimal value and a suboptimal strategy from this algorithm.
In this paper, we analyse the sensitivity with respect to parameters driving the
price model. We discuss the estimate of marginal price based on the Danskin's
theorem. Finally, some numerical results applied to realistic energy market
problems have been performed. Comparisons between results obtained in [9]
and other classical methods are provided and evidence the accuracy of the esti-
mate of marginal prices.
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Analyse de sensibilité de problémes de gestion de

contrats d'énergie par des techniques de

programmation stochastique

Résumé : Nous considérons un modèle de gestion de contrats de produit de
base en moyen terme. Les aléas ne portent que sur le dynamique de prix. Dans
[9], nous avons proposé un algorithme pour ce type de problème, basé sur la mé-
thode de quanti�cation de processus aléatoire, et l'approche de programmation
dynamique duale. Nous avons obtenu un estimateur précis de la valeur opti-
male et une stratégie sous-optimale par cet algorithme. Dans cet article, nous
analysons la sensibilité par rapport aux paramètres dans le processus aléatoire
(modèle de prix). Nous discutons un estimateur de coût marginal basé sur le
théorème de Danskin. A la �n, des tests numériques appliqués à des problèmes
réels dans le marché l'énergie ont été réalisés. Les comparaisons du résultat par
la méthode dans [9] et celui par des autres méthodes, donnent des estimateurs
précis sur le coût marginal.

Mots-clés : sensibilité, programmation stochastique, théorème Danskin,
programmation dynamique duale



Sensitivity analysis of energy contracts management problem 3

We consider a model of medium-term commodity contracts management.
Randomness takes place only in the prices on which the commodities are ex-
changed whilst state variable is multi-dimensional. In [9], we proposed an algo-
rithm to deal with such a problem, based on quantization of the random process
and a dual dynamic programming type approach. We obtained accurate esti-
mates of the optimal value and a suboptimal strategy from this algorithm. In
this paper, we analyse the sensitivity with respect to parameters driving the
price model. We discuss the estimate of marginal price based on the Danskin's
theorem. Finally, some numerical results applied to realistic energy market
problems have been performed. Comparisons between results obtained in [9]
and other classical methods are provided and give evidence of the good accu-
racy of the estimate of marginal prices.

1 Motivation

We study a class of problems in the following settings. First of all, we consider
a uniform discretization of time horizon [0, T ], 0 = t0 < t1 < · · · < tK = T , and
a discrete time Markov process (ξk) := (ξtk

) (in the following, we will replace
in index tk by k for sake of clarity) in the probability space L2(Ω, (Fk),P; Rd).
The canonic �ltration associated with (ξk) is denoted by Fk := σ(ξs, 0 ≤ s ≤ k).
We may write its dynamics as

ξk+1 = f(Wk, ξk, αk) 0 ≤ k ≤ K − 2, (1)

where ξ0 is deterministic, (αk) is a sequence of deterministic parameters, and
(Wk) is a sequence of independent squared integrable random variables, inde-
pendent of Fk, �nally f is a measurable mapping.

The stochastic dynamic decision problem has the following expression:

inf
(uk)∈U

E

[
K−1∑
k=0

ck(ξk) · uk

]
subject to uk ∈ Uk, almost surely,

xk+1 = xk +Akuk, x0 = 0,
xT ∈ XT almost surely;

(2)

where uk ∈ Rn is the control variable, U := L2(Ω, (Fk),P; Rn) is the functional
space of the control variable uk, Uk is a compact nonempty polyhedral set in
Rn, xk ∈ Rm represents the state variable, XT is the set of admissible �nal
states assumed to be a nonempty polyhedral set in Rm taking place in the �nal
stage constraint over state variable xT , Ak ∈ Rm×n is the dynamic matrix,
ck(·) : Rd → Rn is the running cost per unit, assumed to be Lipschitz.

Such a formulation (2) is motivated by the fact that most medium and
long-term energy contracts can be modelled as multi stage stochastic dynamic
programs. Indeed, most of the contracts de�ne the terms on how the commodity
will be exchanged throughout the duration of the contract. These terms gen-
erally state that the quantity to be taken at time tk (modelled by the control
uk) is bounded by minimal and maximal amounts. They also specify the price
at which the commodity will be exchanged at time tk; this price is generally a
function of the spot price (modelled by ck(ξk)) observed at that period. Since
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4 Z. Cen, J.F. Bonnans and T. Christel

the spot price is unknown at the beginning, the problem becomes stochastic.
The aim of the holder of such a contract is to optimize its decisions with re-
spect to the price information available to him at that time. Here, we choose
to maximize the expectation of the revenue. In order to be compliant with the
formulation of (2), we will �ip the sign of the real cost-revenue functions to
transform a maximizing problem into a standard minimization problem.

Most of the articles in the literature focus on the procedures on how to solve
problem (2) and hence how to get the contract's price (see Carmona and Touzi
[13], Carmona and Ludkovski [12], and Barrera-Esteve et al [6]). Although
essential, this information needs to be coupled with sensitivity information in a
trading perspective. Indeed, the values of sensitivities (called the greeks) allow
traders to replicate the price variations originating from the contracts they have
to manage on a regular basis. See [21, Chapter 17] for further discussions on
hedging strategies using the greeks applied to vanilla options.

A lot of e�orts have been made in order to assess proper sensitivities from
discontinuous payo�s such as digital or barrier options. However, only a hand-
ful of papers focus on optimal exercise type options and most of them concern
Bermudan options which are common in the banking industry. Recently, Cont
and Fournié have developed functional Itô formulae in order to study the sen-
sitivities of path dependent options without control [14, 15]. Our purpose in
this paper is to provide an alternative method to estimate sensitivities for prob-
lem (2) based on Danskin's theorem which is well known among optimization
practitioners. The advantage of Danskin's theorem is that it can be associated
to any discretization type method such as partial di�erential equations (PDE),
Monte Carlo or optimal quantization. Also, it does not require to reestimate
the conditional expectations once they have been computed during the price
estimation procedure.

This paper is organised as follows: section 2 presents the resolution frame-
work of problem (2) articulated around optimal quantization and stochastic
dual dynamic programming (SDDP). Section 3 introduces the model driving
the prices and section 4 focuses on Danskin's theorem through the computa-
tion of sensitivities. Convergence results are also provided in section 4. Finally,
numerical tests are performed in section 5.

2 A review of quantization discretization and stochas-

tic dual dynamic programming approach

In this section, we brie�y present the algorithm which was introduced in our
previous article [9].

2.1 Discretization

In many real life problems, the discrete time random process (ξk) may possibly
take values within an in�nite set. In order to make the problem numerically
tractable, we start by discretizing the random process by a tree. Because of the
Markov property of the random process, a recombining tree is the method of
choice for reducing complexity. Bally et al [3, 2] introduced the vectorial quanti-
zation tree method as a new discretization scheme. The main idea is to replace
ξk by the approximation ξ̂k whose support is a �nite set Γk =

{
ξi
k, 1 ≤ i ≤ Nk

}
.

INRIA



Sensitivity analysis of energy contracts management problem 5

The quantization ξ̂ is said to be optimal if it minimizes the error associated with
the L2 norm:

ξ̂ ∈ argmin

{
‖ξ − ξ̂‖2 :=

(
K−1∑
k=0

‖ξk − ξ̂k‖22

)1/2

: ξ̂k ∈ Γk,

K−1∑
k=0

#(Γk) =
K−1∑
k=0

Nk ≤ N

} (3)

where N is the number of quantized points in the tree. Then, we de�ne a
Voronoi tessellation associated with the quantized points ξi

k ∈ Γk by

Ci
k :=

{
ξk : |ξk − ξi

k| ≤ min
j 6=i

|ξk − ξj
k|
}
.

The �nal step consists in building the recombining tree by computing prob-
ability transitions:

pij
k := P

[
ξ̂k+1 = ξj

k+1 | ξ̂k = ξi
k

]
= P

[
ξk+1 ∈ C

j
k+1 | ξk ∈ Ci

k

]
based on the law of (ξk). Bally and Pagès also proposed in [3] the competitive
learning vectorial quantization (CLVQ) algorithm aimed at building a vectorial
quantization tree based on the stochastic gradient method.

2.2 Stochastic dual dynamic programming algorithm

After having discretized the random process (ξk) with the help of vectorial
quantization, we now focus on the resolution of problem (2). This problem can
be naturally decomposed in time by the dynamic programming principle. We
denote by Q(k, xk, ξk) the Bellman value:

Q(k, xk, ξk) = inf
(us)∈U

E

[
K−1∑
s=k

cs(ξs) · us

]
subject to us ∈ Us almost surely,

xs+1 = xs +Asus, x0 = 0,
xT ∈ XT almost surely.

(4)

Then, the dynamic programming principle can be written as

Q(k, xk, ξk) = inf
uk∈Uk

ck(ξk) · uk +Q(k + 1, xk+1, ξk) (5)

where
Q(k + 1, xk+1, ξk) = E[Q(k + 1, xk+1, ξk+1) | Fk]

and �nal time condition:

Q(T, xT , ξT−1) = χXT
(xT ) =

{
0 if xT ∈ XT

∞ otherwise

In that perspective, we have opted for the stochastic dual dynamic program-
ming (SDDP) algorithm which is well suited to our problem. The stochastic dual
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6 Z. Cen, J.F. Bonnans and T. Christel

dynamic programming method was �rst introduced by Pereira and Pinto [22].
Recently, Philpott and Guan [23] and Shapiro [25] have analysed the convergence
property of this method. The main idea of SDDP algorithm is to approximate
the Bellman value function Q(k, xk, ξk−1) by the supremum of a family of a�ne

function of xk, depending on tk and ξk, denoted by ϑ(k + 1, xk+1, ξ̂k,O
ξ̂k

k+1).
The method is based on successive iterations of forward and backward passes.

The forward pass generates a set of random trajectories following the dy-
namic of (ξk) and runs the optimization on the �y over these trajectories using
the following approximation of dynamic programming:

inf
uk∈Uk

ck(ξk) · uk + ϑ(k + 1, xk+1, ξ̂k,O
ξ̂k

k+1)

subject to xk+1 = xk +Akuk,

ϑ(k + 1, xk+1, ξ
i
k,O

ξ̂k

k+1) ≥ x∗ · xk+1 − e; ∀(x∗, e) ∈ Oξ̂k

k+1,

(6)

where Oξ̂k

k+1 is the set of optimality cuts cumulated at vertex ξ̂k ∈ Γk. The
statistical average performed over the value associated to each forward pass
provides an upper bound of the optimal value of (2).

The backward pass updates the optimality cuts Oξ̂k

k+1 on each vertex in the
tree using:

inf
uk∈Uk

ck(ξ̂k) · uk + ϑ(k + 1, xk+1, ξ̂k,O
ξ̂k

k+1)

subject to xk+1 = xk +Akuk,

ϑ(k + 1, xk+1, ξ
i
k,O

ξ̂k

k+1) ≥ x∗ · xk+1 − e; ∀(x∗, e) ∈ Oξ̂k

k+1.

(7)

Therefore the backward pass generates a lower bound of the optimal value at
the �rst stage.

The stopping criteria has been discussed in [25]. The criteria taken in this
article is that

|v − v| ≤ ρσ(v) (8)

where v is the forward pass value v is the backward pass value σ(v) is the
standard deviation of the forward pass value and ρ is a parameter.

Remark 2.1. Note that we are using the original continuous random process
(ξk) in the forward pass, whereas the discretized random process (ξ̂k) is used
in the backward pass. The convergence property follows 3 steps.

� The convergence result of L-Shape algorithm on �nite probability distri-
bution is given in Birge and Louveaux [7, chapter 7, theorem 1], where the
main argument is the �niteness of optimality cuts and feasibility cuts. The
convergence of classical SDDP method is studied in Philpott and Guan
[23] in �nite probability framework, and Shapiro [25] in general probability
framework.

� During the numerical test, we can �rst simulate the forward pass following
the discretized distribution (ξ̂k) and let the forward value and the back-
ward value converge. This convergence follows that the forward value of
Monte Carlo method is itself a random variable whose mean is the up-
per bound of L-Shape method which converges to lower bound by �nite
convergence of L-Shape method.

INRIA



Sensitivity analysis of energy contracts management problem 7

� Finally, we can change the forward simulation to following continuous
distribution. Using continuous distribution in forward sampling gives an
indication on the error induced by the discretization of the continuous
distribution.

Remark 2.2. The method presented here deviates from standard stochastic dual
dynamic programming in [22] because the random variable intervenes only in the
objective function and is not present in the right hand side of state dynamics.
This causes the partial convexity of Q(t, xt, ξt), which is non convex with respect
to ξt, forcing us to proceed to discretization of ξt. As a result, the optimality
cuts cannot be shared among discretized points ξi

t ∈ Γt. Therefore, this method
is clearly outperformed by others [6, 12] in terms of CPU time compared when
state variable is in low dimension, as it will be shown in section 5.3. However,
the main advantage resides in its ability to deal with high dimension (state
variable) problems.

3 Price model

In this paper, we assume that the random process, taking part in the modeling
of futures commodity price dynamics, follows the celebrated Black model [8].
Although simplistic, this model is equivalent to the one factor Gaussian HJM
model (see [16]) which is well adapted for forward curve modeling. This model is
discussed in the practice-based literature, Eydeland and Wolyniec[18, Chapter
5], and Lai et al [19]. Since we are using the vectorial quantization method
to discretize the underlying random process, we are not limited to that model.
Other �nancial price models can also be applied.

The price model takes as parameters the market volatilities σ, correlations
ρ as well as the forward curves F0. The Black model states that future prices of
commodities are martingales under the risk neutral probability P whose expec-
tations correspond to the original forward curve level F0 due to lack of arbitrage
opportunities. The forward contract price F t

s at time s, with maturity (also
called tenor) t, follows the dynamic:

ln
(F t

k+1)
i

(F t
k)i

= σiW i
k −

1
2
(σi)2 i = 1, . . . , d; (9)

where W i
k is a standard normal distribution N (0, 1), with correlation

corr(W i
s ,W

j
s ) = ρij .

Then, the spot prices at time tk are simply obtained by taking the tk-expiring
forward contracts at time tk: ξk = F k

k ,

ξi
k := (F k

k )i = (F k
0 )i exp

(
k−1∑
s=0

σiW i
s −

1
2
(σi)2k

)
i = 1, . . . , d; (10)

where (F k
0 ) is the original forward curve observed. Setting

Si
k := exp

(
k−1∑
s=0

σiW i
s − (σi)2k/2

)
,
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8 Z. Cen, J.F. Bonnans and T. Christel

we then have ξi
k = (F k

0 )iSi
k.

Finally, a simple computation on the price model (10) shows that:

∂ξi
k

∂(F k
0 )i

= Si
k, (11)

∂ξi
k

∂σi
= ξi

k

(
k−1∑
s=0

W i
s − σik

)
. (12)

Remark 3.1. In the context of our problem, it is reasonable to consider that
(F, σ) ∈ Rd×K

+ × Rd
+, where R+ = {x > 0} is positive value. Under this

condition, both ξt, DF,σξt have probability measure absolutely continuous with
respect to Lebesgue measure, i.e. the value set does not reduce to singleton.
Furthermore, the density function of log normal is bounded. This point is
essential to continue analysis below since this property provides continuity even
if the integrand is not continuous.

4 Sensitivity analysis

The principal contribution of this paper lies in the application of Danskin's
theorem for computing certain sensitivities of problem (2). In this section, we
begin by stating this theorem and apply it to our sensitivity analysis. Then, we
provide a result on the convergence properties of the sensitivity estimate of our
approximation algorithm in section 2 to the actual sensitivities of the original
problem (2).

In the subsequent analysis, given two Banach spaces X and Y , we say that
φ : X → Y is directionally di�erentiable at a point x ∈ X in the direction h ∈ X
if the following limit exists:

φ′(x;h) := lim
t↓0

φ(x+ th)− φ(x)
t

. (13)

4.1 Danskin's theorem and its applications

Let us denote by v(F, σ) (resp. U∗(F, σ)) the optimal value function (resp.
the optimal solution set) of the original problem (2). In this section, we show
that v(F, σ) is directionally di�erentiable at every F ∈ Rd×K

+ and σ ∈ Rd
+, and

Fréchet di�erentiable almost everywhere.
We �rst study the objective function of problem (2) which can be written

as:

f(F, σ, u) = E

[
K−1∑
k=0

ck(ξk(F k
0 , σ)) · uk

]
. (14)

f(F, σ, u) is a continuous function on Rd×K
+ ×Rd

+×U according to the continuity
of ck and the continuity of (ξk) in the price model (10). Then, we show the
Fréchet di�erentiability by the following lemma.

Lemma 4.1. The objective function f(F, σ, u) is Fréchet di�erentiable with
respect to F ∈ Rd×K

+ and σ ∈ Rd, and its derivative is

DF,σf(F, σ, u) = E

[
K−1∑
k=0

DF,σck · uk

]
. (15)

INRIA



Sensitivity analysis of energy contracts management problem 9

Proof. In view of the Lipschitz continuity of ck, Rademacher's theorem [24,
Theorem 9.60] states that it is almost everywhere Fréchet di�erentiable, and its
derivative is bounded. Note that in the derivative of f(F, σ, u) will appear the
derivative of ck as an integrand against measure of ξk. Furthermore, at time
tk, the random variable ξk follows a log-normal distribution according to our
price model, whose probability measure is absolutely continuous with respect
to the Lebesgue measure. Thus, using chain rule of derivative on the composite
mapping as well as the dominated convergence theorem ends the proof.

Following this lemma, we immediately deduce another property of f(F, σ, u).

Proposition 4.2. The derivative DF,σf is continuous with respect to (F, σ) ∈
Rd×K

+ × Rd
+, and it is weakly continuous with respect to u.

Proof. In view of (15), DF,σf(F, σ, u) is weakly continuous with respect to u.
Now, let us consider a sequence (Fn, σn) → (F ∗, σ∗) in Rd×K

+ × Rd
+, and

denote by ξn
k = ξk(Fn, σn) and ξ∗k = ξk(F ∗, σ∗). We have to show that

DF,σck(ξn
k ) L1

−−→ DF,σck(ξ∗k). By chain rule of derivative, at the points where ck
is di�erentiable, we have

DF,σck(ξk) = Dξk
ck(ξk)DF,σξk(F, σ). (16)

The term DF,σξk(F, σ) is computed in (11) and (12). As mentioned in remark
3.1, ξ∗k and its derivative DF,σξ∗k (resp. ξn

k and DF,σξn
k ) both have bounded

density function pdf∗k (resp. pdfn
k ) with respect to Lebesgue measure. Since

ck : Rd → Rn is Lipschitz, Dck ∈ L∞(Ω,F ,P) ⊂ Lq(Ω,F ,P), 1 ≤ q < ∞.
Since the space of continuous functions with compact support Cc(Ω) is dense in
Lq(Ω,F ,P), we have ∀ε > 0, ∃g, such that ‖g −Dck‖q ≤ ε.

‖g(ξn
k )−Dck(ξn

k )‖q =
(∫

ξ

|g(ξ)−Dck(ξ)|qpdfn
k (ξ)dξ

)1/q

≤ ‖pdfn
k‖1/q

∞ ‖g −Dck‖q

≤ ‖pdfn
k‖1/q

∞ ε

We have same result for (F ∗, σ∗)

‖g(ξ∗k)−Dck(ξ∗k)‖q ≤ ‖pdf∗k‖1/q
∞ ε

Moreover, ξn
k

a.s.−−→ ξ∗k and DF,σξn
k

Lp

−−→ DF,σξ∗k, 1 ≤ p < ∞. By continuity of g
and the dominated convergence theorem, ∃Np, we have that ∀n ≥ Np

‖g(ξn
k )− g(ξ∗k)‖q ≤ ε.

Thus, for n ≥ Nq

‖Dck(ξn
k )−Dck(ξ∗k)‖q

≤ ‖Dck(ξn
k )− g(ξn

k )‖q + ‖g(ξn
k )− g(ξ∗k)‖q + ‖g(ξ∗k)−Dck(ξ∗k)‖q

≤ (‖pdfn
k‖1/q

∞ + ‖pdf∗k‖1/q
∞ + 1)ε

(17)

Let ε→ 0, we obtain Dck(ξn
k ) Lq

−−→ Dck(ξ∗k).

Finally, taking p−1 + q−1 = 1, DF,σck(ξn
k ) L1

−−→ DF,σck(ξ∗k) follows by combi-
nation of convergence of Dξk

ck(ξk) in Lp and convergence of DF,σξk in Lq.

RR n° 7574



10 Z. Cen, J.F. Bonnans and T. Christel

Next, we recall Danskin's theorem:

Theorem 4.3. [10, Theorem 4.13] Let V be a nonempty, compact topological
space and ψ : Rn × V → R. Let φ(x) be the optimal value function and V ∗(x)
be the optimal solution set:

φ(x) := min
v∈V

ψ(x, v) V ∗(x) := argmin
v∈V

ψ(x, v)

If ψ(·, v) is di�erentiable for every v ∈ V and Dxψ(x, v) is continuous on Rn×V ,
then φ(x) is locally Lipschitz continuous, directionally di�erentiable, and

φ′(x;h) = inf
v∈V ∗(x)

Dxψ(x, v)h. (18)

In particular, if for some x ∈ Rn, the set V ∗(x) = {v∗} is a singleton, then the
min-function is di�erentiable at x and

φ′(x) = Dxψ(x, v∗). (19)

In order to show the directional di�erentiability of v(F, σ), we only need to
verify the compactness assumption of the feasible solution space in Danskin's
theorem 4.3. In our framework, the feasible solution set U taking value in (Uk)
is a bounded closed subset of L2 ∩ L∞. From the Banach Alaoglu Bourbaki
theorem [11, theorem 3.16], it is a weak compact subset in L2.

Corollary 4.4. The optimal function v(F, σ) is Fréchet di�erentiable at almost
every F ∈ Rd×K

+ and σ ∈ Rd
+, and at the point where v(F, σ) is di�erentiable,

we have
Dv(F, σ) = DF,σf(F, σ, u), for all u ∈ U∗. (20)

Proof. The almost every Fréchet di�erentiability is a direct consequence of
Rademacher's theorem [24, Theorem 9.60] and the fact that v(F, σ) is locally
Lipschitz by Danskin's theorem. And if u1 and u2 are two optimal solutions such
that DF,σf(F, σ, u1) 6= DF,σf(F, σ, u2), then (18) states that f is not Fréchet
di�erentiable at (F, σ). Then, we have a contradiction.

The direct application of Danskin's theorem leads to one method to compute
the value of sensitivities. We will focus on the sensitivities δF (dF ) and δσ(dσ)
and give an expression the directional derivative of the optimal value v(F, σ)
with respect to the forward curve F and volatility vector σ in the directions dF
and dσ:

δF (dF ) := v′(F, σ; dF, 0) = inf
(u∗k)∈U∗

E

[
K−1∑
k=0

DF ckdF
k
0 · u∗k

]
(21)

δσ(dσ) := v′(F, σ; 0, dσ) = inf
(u∗k)∈U∗

E

[
K−1∑
k=0

Dσckdσ · u∗k

]
(22)

Danskin's theorem requires all the optimal solutions which is generally dif-
�cult to obtain in stochastic programs which are not strongly convex. In most
cases, we can only get one optimal policy (u∗k), and the whole optimal policy

INRIA



Sensitivity analysis of energy contracts management problem 11

set is hard to compute. Therefore, we can simply obtain an upper bound of the
sensitivity value:

δF (dF ) ≤ δ̄F (dF, u∗) := E

[
K−1∑
k=0

DF ckdF
k
0 · u∗k

]
(23)

δσ(dσ) ≤ δ̄σ(dσ, u∗) := E

[
K−1∑
k=0

Dσckdσ · u∗k

]
(24)

However, by corollary 4.4, v(F, σ) is Fréchet di�erentiable almost everywhere.
Thus, the inequalities in (23) and (24) become equality at almost every F and
σ. So, knowing one optimal policy u∗ ∈ U∗, allows us to get the derivative value
almost everywhere.

Furthermore, we can study the derivatives associated to the standard base
of F and σ. At almost every F and σ, we have:

(δF )i
k := δF (ei

k) = E
[
∂ck(ξk)
∂(F k

0 )i
· u∗k
]

i = 1, . . . , d (25)

(δσ)i := δσ(ei) = E

[
K−1∑
k=0

∂c(ξk)
∂σi

· u∗k

]
i = 1, . . . , d (26)

Then, at almost every F and σ:

δF (dF ) =
K−1∑
k=0

d∑
i=1

(dF )i
k(δF )i

k δσ(dσ) =
d∑

i=1

(dσ)i(δσ)i. (27)

4.2 Convergence of sensitivity estimate

In this section, we start by presenting two discrete approximations of problem
(2) helping us describe the forward and backward schemes made in our algo-
rithm in section 2. Then we show some properties of the solutions of the discrete
approximation problems and present their convergence to the solution of prob-
lem (2). Eventually, we deduce the convergence of the sensitivity estimates of
the discrete approximation problems to the sensitivities of continuous problem.

We consider a sequence of optimal vectorial quantization trees ξ̂
m
∈ Γm,

such that the total number of quantized points is Nm and limm→∞Nm = ∞.
Denote by (F̂m

k ) the canonic �ltration associated to the discretized random
process (ξ̂

m

k ): F̂m
k := σ(ξ̂

m

s , 0 ≤ s ≤ k).
Let us consider two discrete approximations of problem (2). The �rst one

enforces a constant strategy in each Voronoi cell. We call it as the quantization
approximation of problem (2):

vm
Q (F, σ) = inf

(um
k )∈U

E

[
K−1∑
k=0

ck(ξk) · um
k

]
subject to um

k ∈ Uk, almost surely

um
k (ξk, x

m
k ) =

∑
ξi,m

k ∈Γm
k

ui,m
k (xm

k )1Ci,m
k

(ξk)

xm
k+1 = xm

k +Aku
m
k , xm

0 = 0
xm

T ∈ Xm
T almost surely

(28)
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12 Z. Cen, J.F. Bonnans and T. Christel

By forward induction, we can deduce that uk is F̂m
k adapted and that xk is

F̂m
k−1 measurable. This quantization approximation describes the formulation

made in the forward pass of our algorithm.
Since uk is F̂m

k adapted, we may write the cost function as a function of (28)
as

E

[
K−1∑
k=0

ck(ξk) · um
k

]
= E

[
K−1∑
k=0

E
[
ck(ξk) · um

k |F̂m
k

]]

= E

[
K−1∑
k=0

E
[
ck(ξk)|F̂m

k

]
· um

k

]
.

(29)

In this formulation the decision ui,m
k to be taken when the state belongs to the

cell Ci
k at step tk actually depends on the previous cells along the realization of

ξ. We may give another approximation formulation by replacing in each Voronoi

cell E
[
ck(ξk)|F̂m

k

]
by ck(E[ξk | ξk ∈ Ci

k]) in the previous formulation. It can be

shown, see [26, Chapter 3], that it is equivalent to one large size formulation on
scenarios. We call it be the scenario approximation of problem (2):

vm
S (F, σ) = inf

(um
k )∈U

∑
(ξi,m

k )k

pi,m

(
K−1∑
k=0

ck(ξi,m
k ) · ui,m

k

)

subject to ui,m
k ∈ Uk

(non-anticipativity) ui,m
k = uj,m

k , if ξi,m
[k] = ξj,m

[k]

xi,m
k+1 = xi,m

k +Aku
i,m
k , xi,m

0 = 0

xi,m
K ∈ Xi,m

K

(30)

where ξi,m
[k] := (ξi0,m

0 , . . . , ξik,m
k ) ∈ (Γm

0 , . . . ,Γ
m
k ) is a sub-trajectory in the quan-

tization tree until time tk, pi,m :=
∏K−2

k=0 p
ikik+1,m
k is the probability associated

to one trajectory ξi,m
[K−1]. This scenario approximation describes the formulation

made in the backward pass in our algorithm.
Denote by vm

Q (F, σ) and u∗,mQ (F, σ) (resp. vm
S (F, σ) and u∗,mS (F, σ)) the opti-

mal value function and one optimal solution of the quantization approximation
problem (28) (resp. of the scenario approximation problem (30)).

In the same way as (25) and (26), we obtain the sensitivity estimates corre-
sponding to the above discretized approximation problems by Danskin's theo-
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Sensitivity analysis of energy contracts management problem 13

rem:

(δm
Q,F )i

k := (vm
Q )′(F, σ; ei

k, 0) ≤ (δ̄m
Q,F )i

k := E
[
∂ck(ξk)
∂(F k

0 )i
· (u∗,mQ )k

]
i = 1, . . . , d

(31)

(δm
Q,σ)i := (vm

Q )′(F, σ; 0, ei) ≤ (δ̄m
Q,σ)i := E

[
K−1∑
k=0

∂c(ξk)
∂σi

· (u∗,mQ )k

]
i = 1, . . . , d

(32)

(δm
S,F )i

k := (vm
S )′(F, σ; ei

k, 0) ≤ (δ̄m
S,F )i

k := E

[
∂ck(ξ̂k)
∂(F k

0 )i
· (u∗,mS )k

]
i = 1, . . . , d

(33)

(δm
S,F )i := (vm

S )′(F, σ; ei, 0) ≤ (δ̄m
S,σ)i := E

[
K−1∑
k=0

∂c(ξ̂k)
∂σi

· (u∗,mS )k

]
i = 1, . . . , d

(34)

Lemma 4.5. If the distribution of ξk is absolutely continuous with respect to
the Lebesgue measure, then the optimal value functions of the two discrete dis-
crete approximation problems vm

S (F, σ) and vm
Q (F, σ) are Fréchet di�erentiable

at almost every F ∈ Rd×K and σ ∈ Rd
+.

Proof. The scenario approximation problem (30) can be viewed as a large linear
program. According to the linear programming theory, vm

S is piecewise linear,
concave with respect to the coe�cient of the objective function de�ned in whole
space, so vm

S is locally Lipschitz and then almost everywhere Fréchet di�eren-
tiable by Rademacher's theorem [24, Theorem 9.60]. Under the assumption
on the distribution of ξk, and the fact that (F, σ) → ξ̂

m
(F, σ) is injective and

Fréchet di�erentiable, the chain rule of Fréchet derivative of composite mapping
holds almost everywhere and we deduce the lemma for scenario approximation
problem (30).

The quantization approximation problem (28) only di�ers from (30) by re-
placing the coe�cient in objective function E[c(ξt) | ξt ∈ Ci

t ] by c(E[ξt | ξt ∈
Ci

t ]). Thus, concavity of value function vm
Q with respect to the coe�cient in

the objective function still holds. With the same arguments, we get the al-
most everywhere Fréchet di�erentiability for the optimal value function of the
quantization approximation problem (28).

Therefore, we are able to obtain exact sensitivity values for both discrete
approximation problems following Danskin's theorem almost everywhere, i.e.
the inequalities (31)- (34) become equalities almost everywhere.

Lemma 4.6. A subsequence of the optimal strategy u∗,mQ of the quantization

approximation problem (28) converges weakly in L2(Ω, (Ft),P; Rn×K) to an op-
timal strategy u∗ of continuous problem (2).

Proof. We denote by v∗Q the limit inferior of the associated value function
v∗Q := lim infm→∞ v∗,mQ , and the subsequence associated to this limit inferior
u∗,mn1

Q . The feasible set of (28) is a subset of U taking value in U which is
non empty, convex and bounded. The optimal solution u∗,mn1

Q is therefore a
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14 Z. Cen, J.F. Bonnans and T. Christel

bounded sequence in a Hilbert space U . Therefore, we deduce the existence of
a weakly convergent subsequence u∗,mn2

Q that converges in the weak topology
to u∗Q following [11, Corollary 3.30]. Since the feasible set is closed and convex,
it is weakly closed and hence u∗Q is feasible. Since u∗,mQ is always feasible for
the original problem (2), we get v ≤ v∗,mQ for every m. Let m go to ∞ and we
obtain the �rst inequality v ≤ v∗Q.

In order to obtain the reverse inequality, let us build a sequence which is
feasible for the quantization approximation problem (28) and which converges
to an optimal solution of problem (2). The feasible solution set U is included
in L2, where C∞ is dense. Then for one optimal solution (u∗k) ∈ U∗ of the
continuous problem (2), there exists one sequence (un,c

k ) ∈ C∞ converging to
(u∗k) such that

∑K−1
k=0 ‖u

n,c
k − u∗‖ ≤ 1/n. We build

un,m
k (ξ[k]) = E

[
un,c

k (ξ[k]) | F̂m
k

]
,

which is one feasible solution of the quantization approximation problem (28).
The convergence of un,m

k to un,c
k in L2 is due to the convergence ‖ξ−ξ̂

m
‖ → 0 and

the dominated convergence theorem. We denote by vn,m
Q the value associated

with strategy un,m
k . Therefore, vm

Q ≤ vn,m
Q . Let us consider the sequence vn,n

Q ,
and let n → ∞, we obtain the second inequality v∗Q ≤ v. Thus, we get v∗Q = v
and hence prove the lemma.

One immediate corollary is

Corollary 4.7. The sensitivity estimates of the quantization approximation
problem δ̄m

Q,F and δ̄m
Q,σ de�ned in (31) and (32) converge to the sensitivity values

of continuous problem δF and δσ (de�ned in (21) and (22)) at almost every
F ∈ Rd×K

+ and σ ∈ Rd
+.

Lemma 4.8. A subsequence of the optimal strategy u∗S of scenario approxi-
mation problem (30) converges weakly in L2(Ω, (Ft),P; Rn×K) to an optimal
strategy u∗ of continuous problem (2).

Proof. In view of lemma 4.6, we just need to compare the optimal value function
vm

S and vm
Q . Both discretized approximation problems have the same feasible

solution space L2(Ω, (F̂m
k ),P) → (Uk). By a straightforward computation, we

can obtain that

vm
Q − vm

S =
K−1∑
k=0

E[ck(ξk)(u∗,mQ )k]−
K−1∑
k=0

E[ck(ξ̂k)(u∗,mS )k]

≤
K−1∑
k=0

E[ck(ξk)(u∗,mS )k]−
K−1∑
k=0

E[ck(ξ̂k)(u∗,mS )k]

≤
K−1∑
k=0

[ck]lip‖Uk‖∞‖ξt − ξ̂t‖2

≤CQS

K−1∑
k=0

‖ξk − ξ̂k‖2 ≤ 2CQS‖ξ − ξ̂‖2
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Sensitivity analysis of energy contracts management problem 15

where ‖U‖∞ = sup {|u| ∈ U}, and CQS is a constant which only depends on
[ck]lip and ‖U‖∞. This error bound can be obtained on (vm

S − vm
Q ) by using

same technique. Thus we have

|vm
Q − vm

S | ≤ 2CQS‖ξ − ξ̂‖2

Following Zador's theorem (see below theorem 4.10), we get that limm→∞ vm
Q =

limm→∞ vm
S . Then, the lemma can be proved by following the same argument

as in the proof of 4.6.

Then, we have a similar corollary as corollary 4.7 for the scenario approxi-
mation problem:

Corollary 4.9. The sensitivity estimates of the scenario approximation problem
δ̄m
S,F and δ̄m

S,σ de�ned in (33) (34) converge to the sensitivity values of continuous

problem δF and δσ de�ned in (21) and (22), at almost every F ∈ Rd×K
+ and

σ ∈ Rd
+.

Proof. This corollary is obtained following the fact that (ξ̂
m

k ) converges to (ξk)
and that u∗,mS converges weakly in U to u∗ and the [11, Proposition 3.13].

Finally, we recall Zador's theorem:

Theorem 4.10. [20, Theorem 6.2] If E[|ξ|p+η] <∞ for some η > 0, then,

lim
N

(
Np/d min

|Γ|≤N
‖ξ − ξ̂‖p

p

)
= Jp,d

(∫
|g|d/(d+p)(u)du

)1+p/d

where P(du) = g(u)λd(du) + ν, ν ⊥ λd (λd Lebesgue measure on Rd). The
constant Jp,d corresponds to the case of the uniform distribution on [0, 1]d.

This theorem implies that min
|Γ|≤N

‖ξ − ξ̂‖p = O(N1/d).

5 Algorithm and numerical tests

5.1 Algorithm

After getting one optimal (ε-optimal) strategy (u∗,tr−sddp
k ) thanks to our dis-

cretization and SDDP algorithm described in section 2, we use the Monte Carlo
method to compute the expectations in (31)-(32).

We simulate a sample ξs, s = 1, . . . , S of trajectories and compute the value
of sensitivities for each trajectory:

s(δF )i
k =

∂ck(ξs
k)

∂(F k
0 )i

· su∗,tr−sddp
k , i = 1, . . . , d; (35)

s(δσ)i =
K−1∑
k=0

∂ck(ξs
k)

∂σi
· su∗,tr−sddp

k , i = 1, . . . , d. (36)
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16 Z. Cen, J.F. Bonnans and T. Christel

Therefore we obtain the mean and standard deviation of this sample:

µtr−sddp
(δF )i

k

=
1
S

S∑
s=1

s(δF )i
k, σtr−sddp

(δF )i
k

=

(
1

S − 1

S∑
s=1

(s(δF )i
k − µtr−sddp

(δF )i
k

)2
)1/2

;

(37)

µtr−sddp
(δσ)i =

1
S

S∑
s=1

s(δσ)i, σtr−sddp
(δσ)i =

(
1

S − 1

S∑
s=1

(s(δσ)i − µtr−sddp
(δσ)i )2

)1/2

.

(38)

5.2 Comparison of methods

We shall now address the question of the accuracy of the results obtained from
the application of Danskin's theorem. In that perspective, we benchmark them
against the sensitivities obtained by the mean of other algorithms.

The �rst comparison lies in the discretization of state variable (xk). In-
deed, many popular algorithms impose the discretization of (xk) as a prerequi-
site whilst our SDDP based algorithm removes this constraint. Although more
e�cient than SDDP in low dimensions, the (xk) discrete algorithms become
numerically intractable when the dimension of (xk) increases.

The second source of comparison concerns the discretization of the random
process (ξk). In our framework, we have chosen the optimal quantization tree
method as a way to discretize the randomness. As long as (ξk) remains in low
dimension, we may also implement a PDE based method.

Finally, the last and probably most important criteria of comparison resides
in the way the sensitivity values are computed. We challenge the numerical
results obtained by the application of the Danskin's theorem against the �nite
di�erence method which is as simple as it is popular.

5.2.1 Danskin + quantization tree + state space discretization

The �rst comparison method is the algorithm proposed in [5] that combines the
quantization tree method and the dynamic programming principle on discretized
state space (x̂k). Let us stress again that this method proves to be very e�cient
as long as the state variable (xk) remains in low dimension. Let vtr−disc stands
for the Bellman value and u∗,tr−disc for the optimal strategy:

vtr−disc(k, x̂k, ξ̂k) = min
uk∈Uk

(
ck(ξ̂k)uk + E[vtr−disc(k + 1, x̂k + uk, ξ̂k+1) | ξ̂k]

)
;

(39)

u∗,tr−disc(k, x̂k, ξ̂k) = argmin
uk∈Uk

(
ck(ξ̂k)uk + E[vtr−disc(k + 1, x̂k + uk, ξ̂k+1) | ξ̂k]

)
;

(40)

where

E[vtr−disc(k + 1, x, ξ̂k+1) | ξ̂k = ξi
k] =

∑
ξj

k+1∈Γk+1

pij
k v

tr−disc(k + 1, x, ξj
k+1).

We can reuse the same formula as (35)-(38) with the optimal policy u∗,tr−disc

to compute the sensitivity values that will be denoted by (δF )tr−disc and (δσ)tr−disc.
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Thanks to this procedure, we are able to compare two methods to compute the
optimal solutions obtained on the same quantization tree as the one used in our
SDDP based algorithm.

5.2.2 Danskin + PDE + state space discretization

If the random process (ξk) is in low dimension, one natural idea is to use a PDE
method to compute conditional expectations. Therefore, the second comparison
method presented in this paragraph combines a PDE method with the dynamic
programming principle on a discretized state space (x̂k). In order to use a PDE
method, we need to build one continuous time process from the discrete time
random process. To be consistent with our price model (9), we will use the
continuous version of the Black model:

dF ·t = σF ·tdWt; (41)

and make an interpolation of F t
0 between tk and tk+1:

F t
0 =

t− tk
tk+1 − tk

F k+1
0 +

t− tk+1

tk − tk+1
F k

0 , tk ≤ t ≤ tk+1. (42)

Let vpde−disc(k, xk, ξk) stand for the Bellman value, and u∗,pde−disc(k, xk, ξk)
for the optimal strategy:

vpde−disc(k, x̂k, ξk) = min
uk∈Uk

(
ck(ξk)uk + E[vpde−disc(k + 1, x̂k + uk, ξk+1) | ξk]

)
;

(43)

u∗,pde−disc(k, x̂k, ξk) = argmin
u∈Uk

(
ck(ξk)uk + E[vpde−disc(k + 1, x̂k + uk, ξk+1) | ξk]

)
.

(44)

Let ṽ(t, x, ξt) := E[vpde−disc(k + 1, x, ξk+1) | ξt], tk ≤ t ≤ tk+1. Combining
the Feynman-Kac formula and Itô's lemma on the continuous extension of our
price model (41) (42), we compute the conditional expectations by solving the
following PDE backwards from tk+1 to tk:
∂ṽ
∂t

+ 1
2
∑d

i=1(σ
i)2(ξi)2 ∂2ṽ

∂(ξi)2
+
∑

i 6=j ρijσ
iσjξiξj ∂2ṽ

∂ξi∂ξj = 0, tk ≤ t ≤ tk+1;

ṽ(tk+1, ·, ξtk+1
) = vpde−disc(tk+1, ·, ξtk+1

).
(45)

This parabolic partial di�erential equation is straightforward to solve numeri-
cally in dimension 1. For example, we may solve it by the use of a �nite di�erence
method with an implicit scheme, which is introduced in appendix A.

Once we have obtained the optimal solution u∗,pde−disc, we may still ap-
ply Danskin's theorem by using the same formula (35)-(38). We denote the
sensitivity result by (δF )pde−disc and (δσ)pde−disc.

Note that this method does not depend on the quantization tree. Hence,
the results obtained from the method presented in the current paragraph give
evidence of the accuracy of discretizing (ξk) by the quantization tree method.
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18 Z. Cen, J.F. Bonnans and T. Christel

5.2.3 Finite di�erence (fd.) + PDE + state space discretizaton

The last method used to compare the accuracy of the sensitivity estimates is
probably the most used in practice. Once an e�cient numerical method to
compute the optimal value v(F, σ) is available, the �nite di�erence method may
be used to approximate the derivative value:

(δfd
F )i

k =
v(F + εei

k, σ)− v(F − εei
k, σ)

2ε
; (46)

(δfd
σ )i =

v(F, σ + εei)− v(F, σ − εei)
2ε

. (47)

In the following numerical tests, we use PDE and the state variable discretization
to compute the optimal value v(F, σ). We denote by (δF )fd−pde and (δσ)fd−pde

the sensitivity estimates. This method allows us to compare the relevance of
the values obtained from Danskin's theorem.

5.3 Swing option

The �rst test is performed on swing options which are fairly common in the
energy markets. A swing option allows its holder to purchase a total amount
of commodity during a predetermined period of time. A typical swing option
contract has the following parameters: a feasible control set Uk = [0, 1] for every
time step tk, a �nal state set XK = [L,U ], and a time horizon K = 50 in our
example. The running cost function c(ξk) is equal to ξk −Kk, where the strike
Kk = F k

0 .
Under certain circumstances, swing option featuring one dimension control

possesses the bang-bang property. Bardou et al [5, 4] show that there always
exists a bang-bang optimal strategy when (L,U) ∈ Z2. Therefore, the dis-
cretization on xt takes values in Z only.

In the current test, we take the lower bound of the exercise right L equal
to 20, and upper bound of the exercise right U equal to 30. We set F k

0 in
price model curve to 1.0 + 0.2 sin(2πtk/T ), and volatility σ to 30%/

√
K. The

quantization tree built contains N = 5000 vertices dispatched on K = 50 stages.
The estimation of transition probability is carried out by Monte-Carlo method
using 107 samples. The SDDP algorithm generates 5000 scenarios in forward
pass and uses 20 scenarios in backward pass. The stopping criteria (8) takes
ρ = 1. Concerning the parameters intervening in the PDE resolution (see section
A), we set the lower bound ξ to 0.1, the upper bound ξ to 5.0, the number of
discretization space steps J to 200, and �nally the number of time discretization
L to 5. Finally, we take ε = 0.01 in the �nite di�erence estimation. The program
is written in C++ with GNU Linear Programming Kit(GLPK) 4.44, and the
test was performed on a PC with a 3.07GHz Intel Xeon CPU and 12GByte main
memory. The results obtained for optimal values are given in table 1.

tree+sddp. tree+discret. pde.+discret.
ub. σ(ub.) lb.

optimal value -2.41646 0.105759 -2.3741 -2.37197 -2.36187

Table 1: Optimal values for the 3 methods.
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The forward value (by Monte Carlo) is a random variable whose expectation
is a value associated to a suboptimal policy, i.e. an upper bound of optimal
value. Furthermore, our backward value is a lower bound of discretized problem,
which is not the lower bound of the original problem. Therefore, it is possible
that the forward value is smaller than the backward value.

The sensitivity values with respect to each contract of the forward curve are
displayed in �gure 1.

Figure 1: Sensitivity values with respect to F obtained by the 4 methods. Since
the standard deviations of the �rst 3 methods represent less than 1% of the
sensitivity values, we will not plot them for sake of clarity.

Finally, the sensitivity values with respect to σ are given in table 2.

tree+sddp. tree+discret. pde.+discret. fd.+ pde.
mean std. dev. mean std. dev. mean std. dev.

δσ -32.181 0.695 -32.198 0.698 -32.207 0.700 -35.558

Table 2: Sensitivity value with respect to σ obtained by the 4 methods.

We remark that the sensitivity values obtained by all 4 methods are close to
each other. This result proves the accuracy of the sensitivity values obtained by
our original algorithm (Danskin + quantization tree + SDDP). Furthermore,
we also observe the closeness of the deltas obtained by �nite di�erences to those
obtained by Danskin for the case where the discretization methods are the same
(i.e. PDE+discretization).

Compared to other methods, our algorithm does not procure any advantage
in CPU time for such a low dimension problem. In order to show the advantage
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of our algorithm, we consider in next section the second numerical test in our
previous article [9].

.1 Small commodity portfolio case study

We now consider a gas trading portfolio. A trading company purchases natural
gas from a set of producing countries indexed at a price formula and sells it to
consuming countries at another other price formula (see �gure 2 for the main
market and table 3 for the price formulae). Annual quantity and price formulae
have been agreed contractually, the latter are functions of the future prices of
major energy markets ξt, such as crude oil price (OIL), north American natural
gas price (NA NG), and Europe natural gas price (EU NG). The objective is to
analyse the sensitivity of the optimal value of the portfolio with respect to the
forward price 4 and volatility of the random process.

Figure 2: A �ctive supply and demand portfolio, as well as the possible routes.
N: producing country; •: consuming country.

Port Annual
QC.*

Monthly
QC.*

Price formula**

Caribbean [48.0, 54.0] [0.0, 6.0] NA NG− 0.1

Scandinavia [24.0, 30.0] [0.0, 3.0]

(
0.05OIL + 2.5 if OIL ≤ 75

0.07OIL + 1.0 otherwise

North Africa [100.0, 100.0] [0.0, 12.0]

(
0.9NA NG + 0.4 if NA NG ≤ 5

0.8NA NG + 0.9 otherwise

North Amer-
ican

[84.0, 88.0] [0.0, 8.0] NA NG

Europe [68.0, 76.0] [0.0, 8.0] EU NG
Asia [20.0, 20.0] [0.0, 4.0] 0.08OIL− 0.8

Table 3: Constraints and price formulae
* The quantity unit is in TBtu. MMBtu stands for a million British thermal unit, a
TBtu is a trillion British thermal unit thus equivalent to a Million MMBtu.

** The price unit is $/MMBtu.
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The forward price F t
0 in (9) is read from the energy market. We take the

following values in the numerical test (see in table 4).

Time OIL∗ EU NG∗ NA NG∗

0 73.0 5.2 5.15
1 73.5 5.3 5.30
2 74.0 5.2 5.22
3 74.5 4.5 4.51
4 75.0 4.4 4.35
5 75.5 4.3 4.33
6 76.0 4.2 4.18
7 76.5 4.3 4.32
8 77.0 4.4 4.37
9 77.5 5.2 5.21
10 78.0 5.3 5.25
11 78.5 5.4 5.42

Table 4: Forward price
* ξ1 = OIL, ξ2 = EU NG, and ξ3 = NA NG.

The quantization tree is processed with N = 36000 R3-valued elementary
quantizers dispatched on T = 12 stages. The estimation of transition probability
is carried out by Monte-Carlo method using 109 samples.

The parameters driving the stochastic processes in the test are set as follows:
volatility σ1 = σ2 = σ3 = 40%, and correlations ρ12 = 0.7 ρ13 = 0.2 ρ23 = 0.4.
And the parameters driving the SDDP part of the algorithm are forward pass
samples Mf = 3000, backward pass sample Mb = 10. The stopping criteria (8)
takes ρ = 1. The program is written in C++ with Cplex 10.1, and the tests
were performed on a PC with a 2.2 GHz Dual Core AMD CPU and 16GByte
main memory.

In this numerical test, the other comparison methods are not adapted be-
cause of the large dimension of the state variable m = 6. Discretizing both state
variable and the random space will make the problem numerically intractable.
Therefore, we can only provide results based on Danskin's theorem combined
with SDDP algorithm in section 2. The optimal value is presented in table 5,

and sensitivity values are in tables 6 and 7.

upper bound std. dev. of upper bound lower bound

optimal value -39.867 2.101 -41.900

Table 5: optimal value by quantization tree + SDDP method
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time (k) (δF )1k σ(δF )1k* (δF )2k σ(δF )2k* (δF )3k σ(δF )3k*

1 0.18109 0.001100 -6.84792 0.03678 1.71388 0.05419
2 0.17694 0.001921 -6.46495 0.04078 0.74796 0.05983
3 0.11645 0.003923 -7.61937 0.02690 3.99273 0.04073
4 -0.13737 0.003147 -7.71228 0.03440 7.34259 0.04771
5 -0.19478 0.003637 -6.62139 0.05821 7.02937 0.04985
6 -0.28043 0.003461 -3.50367 0.08464 7.23409 0.08504
7 -0.25886 0.004282 -3.55706 0.10215 6.41680 0.10195
8 -0.20894 0.009255 -4.75887 0.09313 6.74792 0.13136
9 0.15477 0.004703 -6.25490 0.07210 -0.02695 0.09731
10 0.13744 0.003497 -6.66237 0.10089 1.13770 0.14961
11 0.11403 0.003813 -5.71724 0.08349 -0.80012 0.13695

Table 6: sensitivity value with respect to forward price
* σ here means standard derivation.

δ1σ δ2σ δ3σ

value 31.6862 -38.9346 -95.6475
std. dev. 10.7139 11.7742 8.4706

Table 7: sensitivity values with respect to volatility

A Appendix � Implicit scheme of �nite di�erence

for 1 dimension PDE

Generally, the parabolic partial di�erential equation is very di�cult to solve
numerically in high dimension. We refer to Allaire [1] and Ern and Guermand
[17] for more details.

In the case that ξt is in dimension one, the equation (45) is written as∂ṽ∂t + 1
2σ

2ξ2 ∂2ṽ
∂ξ2 = 0, tk ≤ t ≤ tk+1, ξ ∈ [ξ, ξ],

ṽ(tk+1, ·, ξtk+1
) = g(tk+1, ·, ξtk+1

).
(48)

To apply the �nite di�erence scheme, we need to discretize both time t and
space ξ. Let the time step be ht = (tk+1 − tk)/L, and the space step be hξ =
(ξ − ξ)/J , where L, J are positive integers. We denote by ṽl

j an approximation
of ṽ(tk + lht, ξ + jhξ) where 0 ≤ l ≤ L and 0 ≤ j ≤ J . The standard implicit
�nite di�erence scheme is

ṽl+1
j − ṽl

j

ht
+ 1

2σ
2ξl

j

ṽl
j+1 − 2ṽl

j + ṽl
j−1

h2
ξ

= 0,

ṽL
j (·) = g(tk+1, ·, ξ + jhξ).

(49)
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Thus, we need the boundary condition at bounds of ξ. By the arguments of
the problem context, we take the following boundary conditions:

∂2ṽ
∂ξ2 = 0, ξ = ξ,

∂2ṽ
∂ξ2 = 0, ξ = ξ.

(50)

Thus, the �nite di�erence scheme at bounds are:{
ṽl+1
0 − ṽl

0 = 0,
ṽl+1

J − ṽl
J = 0.

(51)
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