A New Scheme for Land Cover Classification in Aerial Images: Combining Extended Dependency Tree-HMM and Unsupervised Segmentation

Mohamed El Yazid Boudaren 1 Abdel Belaïd 2
2 READ - READ
LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : An important challenge to any image pixels classification system is to correctly assign each pixel to its proper class without blurring edges delimiting neighboring regions. In this paper, we present an aerial image mapping approach that advantageously combines unsupervised segmentation with a supervised Markov model based recognition. The originality of the proposed system carries on three concepts: the introduction of an auto-adaptive circular-like window size while applying our stochastic classification to preserve region edges, the extension of the Dependency Tree-HMM to permit the computation of likelihood probability on windows of different shapes and sizes and a mechanism that checks the coherence of the indexing by integrating both segmentations results: from unsupervised over segmentation, regions are assigned to the predominating class with a focus on inner region pixels. To validate our approach, we achieved experiments on real world high resolution aerial images. The obtained results outperform those obtained by supervised classification alone.
Type de document :
Chapitre d'ouvrage
Sio‐Iong Ao and Len Gelman. Lecture Notes in Electrical Engineering - Electronic Engineering and Computing Technology, 60, Springer, pp.471-482, 2010, 〈10.1007/978-90-481-8776-8_40〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00579704
Contributeur : Abdel Belaid <>
Soumis le : jeudi 24 mars 2011 - 16:09:21
Dernière modification le : lundi 5 novembre 2018 - 16:28:02
Document(s) archivé(s) le : samedi 25 juin 2011 - 02:50:09

Fichier

Boudaren-bookchapterpdf.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Mohamed El Yazid Boudaren, Abdel Belaïd. A New Scheme for Land Cover Classification in Aerial Images: Combining Extended Dependency Tree-HMM and Unsupervised Segmentation. Sio‐Iong Ao and Len Gelman. Lecture Notes in Electrical Engineering - Electronic Engineering and Computing Technology, 60, Springer, pp.471-482, 2010, 〈10.1007/978-90-481-8776-8_40〉. 〈inria-00579704〉

Partager

Métriques

Consultations de la notice

150

Téléchargements de fichiers

138