M. Tompa, N. Li, T. Bailey, G. Church, D. Moor et al., Assessing computational tools for the discovery of transcription factor binding sites, Nature Biotech, vol.23, issue.1, pp.137-144, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01624324

T. Bailey and C. Elkan, Fitting a mixture model by expectation maximization to discover motifs in biopolymers, Proc Int Conf Intell Syst Mol Biol, pp.28-36, 1994.

T. Bailey and C. Elkan, Unsupervised learning of multiple motifs in biopolymers using expectation maximization, Mach Learning, vol.21, issue.51, 1995.

C. Lawrence, S. Altschul, M. Boguski, and J. Wootton, Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment, Science, vol.262, issue.5131, pp.208-214, 1993.

A. Neuwald, J. Liu, and C. Lawrence, Gibbs motif sampling: detection of bacterial outer membrane protein repeats, Protein Sci, vol.4, issue.8, pp.1618-1632, 1995.

G. Hertz and G. D. Stormo, Identifying DNA and protein patterns with statistically significant alignments of multiple sequences, Bioinformatics, vol.15, issue.7-8, pp.563-577, 1999.

J. Hughes, P. Estep, S. Tavazoie, and G. Church, Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae, J Mol Biol, vol.296, issue.5, pp.1205-1214, 2000.

P. Pevzner and S. Sze, Combinatorial approaches to finding subtle signals in DNA sequences, Proc Int Conf Intell Syst Mol Biol, vol.8, pp.269-278, 2000.

J. Buhler and M. Tompa, Finding motifs using random projections, J Comput Biol, vol.9, issue.2, pp.225-242, 2002.

J. Gertz, L. Riles, P. Turnbaugh, S. W. Ho, and B. Cohen, Discovery, validation, and genetic dissection of transcription factor binding sites by comparative and functional genomics, Genome Res, vol.15, pp.1145-1152, 2005.

R. Siddharthan, E. Siggia, and E. Van-nimwegen, PhyloGibbs: A Gibbs Sampling Motif Finder That Incorporates Phylogeny, vol.1, 2005.

J. Van-helden, A. B. Collado-vides, and J. , Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies, J Mol Biol, vol.281, issue.5, pp.827-842, 1998.

S. Maclellan, A. Maclean, and T. Finan, Promoter prediction in the rhizobia, Microbiology, vol.152, pp.1751-1763, 2006.

D. Guhathakurta and G. Stormo, Identifying target sites for cooperatively binding factors, Bioinformatics, vol.17, issue.7, pp.608-621, 2001.

M. Gelfand, E. Koonin, and A. Mironov, Prediction of transcription regulatory sites in archae by comparative genomic approach, Nucleic Acids Res, vol.28, pp.695-705, 2000.

J. Van-helden, A. F. Rios, and J. Collado-vides, Discovering regulatory elements in non-coding sequences by analysis of spaced dyads, Nucleic Acids Res, vol.28, issue.8, pp.1808-1818, 2000.

X. Liu, D. Brutlag, and J. Liu, BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes, Pac Symp Biocomput, pp.127-138, 2001.

E. Eskin, M. Gelfand, and P. Pevzner, Genome-Wide Analysis of Bacterial Promoter Regions, Pac Symp Biocomput, vol.8, pp.29-40, 2003.

H. Li, V. Rodius, C. Gross, and E. Siggia, Identification of the Binding Sites of Regulatory Proteins in Bacterial Genomes, Proc Natl Acad Sci, vol.99, pp.11772-11777, 2002.

M. Mwangi and E. Siggia, Genome wide identification of regulatory motifs in Bacillus subtilis, BMC Bioinformatics, vol.4, issue.1, p.18, 2003.

D. Studholme, S. Bentley, and J. Kormanec, Bioinformatic identification of novel regulatory DNA sequence motifs in Streptomyces coelicolor, BMC Microbiol, vol.4, issue.14, 2004.

L. Marsan and M. Sagot, Algorithms for extracting structured motifs using a suffix tree with an application to promoter and regulatory site consensus identification, J Comput Biol, vol.7, issue.3-4, pp.345-362, 2000.

A. Carvalho, A. Freitas, A. Oliveira, and M. Sagot, An Efficient Algorithm for the Identification of Structured Motifs in DNA Promoter Sequences
URL : https://hal.archives-ouvertes.fr/hal-00427913

, IEEE/ACM Trans Comput Biol Bioinform, vol.3, issue.2, pp.126-140, 2006.

P. E. Jacques, S. Rodrigue, L. Gaudreau, J. Goulet, and R. Brzezinski, Detection of prokaryotic promoters from the genomic distribution of hexanucleotide pairs, BMC Bioinformatics, vol.7, issue.423, 2006.

W. J. Lane and S. Darst, The Structural Basis for Promoter -35 Element Recognition by the Group IV ? Factors, PLoS Biol, vol.4, issue.9, p.269, 2006.

A. Vanet, L. Marsan, A. Labigne, and M. Sagot, Inferring Regulatory Elements from a Whole Genome. An Analysis of Helicobacter pylori ? 80 Family of Promoter Signals, J Mol Biol, vol.297, pp.335-353, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00427110

M. Wosten, Eubacterial sigma-factors, FEMS Microbiol Rev, vol.22, pp.127-150, 1998.

D. Hawley and W. Mcclure, Compilation and analysis of Escherichia coli promoter DNA sequences, Nucleic Acids Res, vol.11, pp.2237-2255, 1983.

S. Lisser and H. Margalit, Compilation of E. coli mRNA promoter sequences, Nucleic Acids Res, vol.21, issue.7, pp.1507-1516, 1993.

C. Harley and R. Reynolds, Analysis of E. coli promoter sequences, Nucleic Acids Res, vol.15, pp.2343-2361, 1987.

A. Dombroski, B. Johnson, M. Lonetto, and C. Gross, The sigma subunit of Escherichia coli RNA polymerase senses promoter spacing, Proc Natl Acad Sci, vol.93, pp.8858-8862, 1996.

A. Typas and R. Hengge, Role of the spacer between the -35 and -10 regions in ? S promoter selectivity in Escherichia coli, Mol Microbiol, vol.59, issue.3, pp.1037-1051, 2006.

G. Hertz and G. Stormo, Escherichia coli promoter sequences: analysis and prediction, Methods Enzymol, vol.273, pp.30-42, 1996.

K. Barne, J. Bown, S. Busby, and S. Minchin, Region 2.5 of the Escherichia coli RNA polymerase ? 70 subunit is responsible for the recognition of the 'extended -10' motif at promoters, EMBO J, vol.16, pp.4034-4040, 1997.

N. Agarwal and A. Tyagi, Mycobacterial transcriptional signals: requirements for recognition by RNA polymerase and optimal transcriptional activity, Nucleic Acid Res, vol.34, issue.15, pp.4245-4257, 2006.

I. Uchiyama, MBGD: microbial genome database for comparative analysis, Nucleic Acids Res, vol.31, pp.58-62, 2003.

A. Huerta, M. Francino, E. Morett, and J. Collado-vides, Selection for Unequal Densities of ? 70 Promoter-Like Signals in Different Regions of Large Bacterial Genomes, PLoS Genet, vol.2, issue.11, p.185, 2006.

S. Schbath, An efficient statistic to detect over-and under-represented words in DNA sequences, J Comput Biol, vol.4, pp.189-192, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02685031

S. Burden, Y. Lin, and R. Zhang, Improving promoter prediction for the NNPP2.2 algorithm: a case study using Escherichia coli DNA sequences, Bioinformatics, vol.21, issue.5, pp.601-607, 2005.

W. Strohl, Compilation and analysis of DNA sequences associated with apparent streptomycete promoters, Nucleic Acids Res, vol.20, issue.5, pp.961-974, 1992.

S. Robin and S. Schbath, Numerical comparison of several approximations of the word count distribution in random sequences, J Comput Biol, vol.8, issue.4, pp.349-359, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02675878

S. Robin, S. Schbath, and V. Vandewalle, Statistical tests to compare motif count exceptionalities, BMC Bioinformatics, vol.8, issue.84, pp.1-20, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01197521

M. Francino and H. Ochman, Deamination as the Basis of Strand-Asymetric Evolution in Transcribed Escherichia coli Sequences, Mol Biol Evol, vol.18, issue.6, pp.1147-1150, 2001.

S. Bentley, K. Chater, A. Cerdeno-tarraga, G. Challis, N. Thompson et al., Harper ea D: Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2), Nature, vol.417, pp.141-147, 2002.

H. Ikeda, J. Ishikawa, A. Hanamoto, M. Shinose, H. Kikuchi et al., Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis, Nat Biotechnol, vol.21, pp.526-531, 2003.

K. Konstantinidis and J. Tiedje, Trends between gene content and genome size in prokaryotic species with larger genomes, Proc Natl Acad Sci, vol.101, issue.9, pp.3160-3165, 2003.

, Sanger Institute Protein Classification Scheme

P. Karp, M. Riley, M. Saier, I. Paulsen, J. Collado-vides et al., The EcoCyc Database. Nucleic Acids Res, vol.30, pp.56-58, 2002.

M. Paget, V. Molle, G. Cohen, Y. Aharonowitz, and M. Buttner, Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the ? R regulon, Mol Microbiol, vol.42, issue.4, pp.1007-1020, 2001.

S. Raman, T. Song, X. Puyang, S. Bardarov, W. J. Jacobs et al., The Alternative Sigma Factor SigH Regulates Major Components of Oxidative and Heat Stress Responses in Mycobacterium tuberculosis, J Bacteriol, pp.6119-6125, 2001.

M. Bibb, V. Molle, and M. Buttner, BldN , an Extracytoplasmic Function RNA Polymerase Sigma Factor Required for Aerial Mycelium Formation in Streptomyces coelicolor A3(2), J Bacteriol, vol.182, issue.16, pp.4606-4616, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02282935

K. Brown, S. Wood, and M. Buttner, Isolation and characterization of the major vegetative RNA polymerase of Streptomyces coelicolor A3(2); renaturation of a sigma subunit using GroEL

, Mol Microbiol, vol.6, pp.1133-1139, 1992.

Y. Cho, E. Lee, B. E. Ahn, and J. H. Roe, SigB, an RNA polymerase sigma factor required for osmoprotection and proper differentiation of Streptomyces coelicolor A3(2), Mol Microbiol, vol.42, issue.1, pp.205-214, 2001.

I. Delic, P. Robbins, and J. Westpheling, Direct repeat sequences are implicated in the regulation of two Streptomyces chitinase promoters that are subjet to carbon catabolite control, Proc Natl Acad Sci, vol.89, pp.1885-1889, 1992.

A. Saito, M. Ishizaka, P. J. Francisco, T. Fijii, and K. Miyashita, Transcriptional co-regulation of five chitinase genes scattered on the Streptomyces coelicolor A3(2) chromosome, Microbiology, vol.146, pp.2937-2946, 2000.

H. Baylis and M. Bibb, Transcriptional analysis of the 16S rRNA gene of the rrnD gene set of, Streptomyces coelicolor, vol.3, issue.2

, Mol Microbiol, vol.2, issue.5, pp.569-579, 1988.

J. G. Kang, M. Y. Hahn, A. Ishihama, and J. H. Roe, Identification of sigma factors for growth phase-related promoter selectivity of RNA polymerases from Streptomyces coelicolor A3(2), Nucleic Acids Res, vol.25, issue.13, pp.2566-2573, 1997.

J. Hahn, S. Oh, and J. Roe, Regulation of the furA and catC operon, encoding a ferric uptake regulator homologue and catalaseperoxidase, respectively, in Streptomyces coelicolor A3(2), J Bacteriol, vol.182, issue.13, pp.3767-3774, 2000.

M. Buttner and N. Brown, Two promoters from the Streptomyces plasmid pIJ101 and their expression in Escherichia coli, Gene, vol.51, issue.2-3, pp.179-186, 1987.

K. Flärdh, E. Leibovitz, M. Buttner, and K. Chater, Generation of a nonsporulating strain of Streptomyces coelicolor A3(2) by the manipulation of a developmentally controlled ftsZ promoter, Mol Microbiol, vol.38, issue.4, pp.737-749, 2000.

M. Pope, B. Green, and J. Westpheling, The bldB Gene Encodes a Small Protein Required for Morphogenesis, Antibiotic Production, and Catabolite Control in Streptomyces coelicolor, J Bacteriol, vol.180, issue.6, pp.1556-1562, 1998.

I. Ahel, D. Vujaklija, A. Mikoc, and V. Gamulin, Transcriptional analysis of the recA gene in Streptomyces rimosus: identification of the new type of promoter, FEMS Microbiol Lett, vol.209, pp.133-137, 2002.

M. Elliot, M. Bibb, M. Buttner, and B. Leskiw, BldD is a direct regulator of key developmental genes in, Streptomyces coelicolor, vol.3, issue.2

, Mol Microbiol, vol.40, issue.1, pp.257-269, 2001.

H. Tan, H. Yang, Y. Tian, W. Wu, C. Whatling et al., The Streptomyces coelicolor sporulationspecific s WhiG form of RNA polymerase transcribes a gene encoding a ProX-like protein that is dispensable for sporulation, Gene, vol.212, pp.137-146, 1998.

F. Blattner, G. Bloch, C. Perna, N. Burland, V. Riley et al., The complete genome sequence of Escherichia coli K-12, Science, vol.277, pp.1453-1474, 1997.

M. Mc-clelland, K. Sanderson, J. Spieth, S. Clifton, P. Latreille et al., Complete genome sequence of Salmonella enterica serovar Typhimurium LT2, Nature, vol.413, issue.6858, pp.852-856, 2001.

F. Kunst, N. Ogasawara, I. Moszer, A. Albertini, G. Alloni et al., The complete genome sequence of the gram-positive bacterium Bacillus subtilis, Nature, vol.390, pp.249-256, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02694553

M. Rey, P. Ramaiya, B. Nelson, S. Brody-karpin, E. Zaretsky et al., Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species, Genome Biology, vol.5, issue.10, p.77, 2004.

B. Veith, C. Herzberg, S. Steckel, J. Freesche, K. Maurer et al., The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential, J Mol Microbiol Biotechnol, vol.7, issue.4, pp.204-211, 2004.

M. Cao, P. Kobel, M. Morshedi, M. Wu, C. Paddon et al., Defining the Bacillus subtilis ? W Regulon: A Comparative Analysis of Promoter Consensus Search, Run-off Transcription/Macroarray Analysis (ROMA), and Transcriptional Profiling Approaches, J Mol Biol, vol.316, pp.443-457, 2002.