G. Allaire, Conception optimale de structures, Mathématiques & Applications, vol.58, 2007.

D. N. Arnold, An Interior Penalty Finite Element Method with Discontinuous Elements, SIAM Journal on Numerical Analysis, vol.19, issue.4, pp.742-760, 1982.
DOI : 10.1137/0719052

D. N. Arnold, F. Brezzi, B. Cockburn, and D. Marini, Discontinuous Galerkin Methods for Elliptic Problems, Discontinuous Galerkin methods, pp.89-101, 1999.
DOI : 10.1007/978-3-642-59721-3_5

M. Astorino, Interaction fluide-structure dans le système cardiovasculaire Analyse numérique et simulation, 2010.

M. Astorino, F. Chouly, and M. A. Fernández, Robin Based Semi-Implicit Coupling in Fluid-Structure Interaction: Stability Analysis and Numerics, SIAM Journal on Scientific Computing, vol.31, issue.6
DOI : 10.1137/090749694

URL : https://hal.archives-ouvertes.fr/inria-00361284

M. Astorino, J. Gerbeau, O. Pantz, and K. Traoré, Fluid???structure interaction and multi-body contact: Application to aortic valves, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.45-46, pp.45-463603, 2009.
DOI : 10.1016/j.cma.2008.09.012

URL : https://hal.archives-ouvertes.fr/inria-00542238

M. Astorino and C. Grandmont, Convergence analysis of a projection semi-implicit coupling scheme for fluid???structure interaction problems, Numerische Mathematik, vol.96, issue.1, pp.721-767, 2010.
DOI : 10.1007/s00211-010-0311-x

URL : https://hal.archives-ouvertes.fr/hal-00860416

S. Badia and R. Codina, On some fluid???structure iterative algorithms using pressure segregation methods. Application to aeroelasticity, International Journal for Numerical Methods in Engineering, vol.3, issue.1, pp.46-71, 2007.
DOI : 10.1002/nme.1998

S. Badia, F. Nobile, and C. Vergara, Fluid???structure partitioned procedures based on Robin transmission conditions, Journal of Computational Physics, vol.227, issue.14, pp.7027-7051, 2008.
DOI : 10.1016/j.jcp.2008.04.006

S. Badia, F. Nobile, and C. Vergara, Robin???Robin preconditioned Krylov methods for fluid???structure interaction problems, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.33-36, pp.33-362768, 2009.
DOI : 10.1016/j.cma.2009.04.004

S. Badia, A. Quaini, and A. Quarteroni, Modular vs. non-modular preconditioners for fluid???structure systems with large added-mass effect, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.49-50, pp.49-504216, 2008.
DOI : 10.1016/j.cma.2008.04.018

S. Badia, A. Quaini, and A. Quarteroni, Splitting Methods Based on Algebraic Factorization for Fluid-Structure Interaction, SIAM Journal on Scientific Computing, vol.30, issue.4, pp.1778-1805, 2008.
DOI : 10.1137/070680497

G. A. Baker, Finite element methods for elliptic equations using nonconforming elements, Mathematics of Computation, vol.31, issue.137, pp.45-59, 1977.
DOI : 10.1090/S0025-5718-1977-0431742-5

K. J. Bathe and H. Zhang, Finite element developments for general fluid flows with structural interactions, International Journal for Numerical Methods in Engineering, vol.60, issue.1, 2004.
DOI : 10.1002/nme.959

Y. Bazilevs, V. M. Calo, T. J. Hughes, and Y. Zhang, Isogeometric fluid-structure interaction: theory, algorithms, and computations, Computational Mechanics, vol.196, issue.2, pp.3-37, 2008.
DOI : 10.1007/s00466-008-0315-x

R. Becker, P. Hansbo, and R. Stenberg, A finite element method for domain decomposition with non-matching grids, ESAIM: Mathematical Modelling and Numerical Analysis, vol.37, issue.2, pp.209-225, 2003.
DOI : 10.1051/m2an:2003023

URL : https://hal.archives-ouvertes.fr/inria-00073065

C. Bernardi, Y. Maday, and A. T. Patera, Domain decomposition by the mortar element method In Asymptotic and numerical methods for partial differential equations with critical parameters, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci, vol.384, pp.269-286, 1992.

C. Bertoglio, D. Chapelle, M. A. Fernández, J. Gerbeau, and P. Moireau, Filtering-based data assimilation in vascular fluid-structure interaction through displacement measurements at the interface, IV European Congress on Computational Mechanics (ECCM IV): Solids, Structures and Coupled Problems in Engineering, 2010.

P. N. Brown and Y. Saad, Convergence Theory of Nonlinear Newton???Krylov Algorithms, SIAM Journal on Optimization, vol.4, issue.2, pp.297-330, 1994.
DOI : 10.1137/0804017

E. Burman and M. A. Fernández, Robin-based explicit coupling schemes in incompressible fluid-structure interaction

E. Burman and M. A. Fernández, Stabilized explicit coupling for fluidstructure interaction using Nitsche's method, C. R. Math. Acad. Sci. Paris, issue.8, pp.345467-472, 2007.

E. Burman and M. A. Fernández, Stabilization of explicit coupling in fluidstructure interaction involving fluid incompressibility, Comput. Methods Appl. Mech. Engrg, vol.198, pp.5-8766, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00247409

E. Burman and P. Hansbo, A unified stabilized method for Stokes??? and Darcy's equations, Journal of Computational and Applied Mathematics, vol.198, issue.1, pp.35-51, 2007.
DOI : 10.1016/j.cam.2005.11.022

E. Burman and P. Zunino, A Domain Decomposition Method Based on Weighted Interior Penalties for Advection???Diffusion???Reaction Problems, SIAM Journal on Numerical Analysis, vol.44, issue.4, pp.1612-1638, 2006.
DOI : 10.1137/050634736

P. Causin, J. Gerbeau, and F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid???structure problems, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.42-44, pp.42-444506, 2005.
DOI : 10.1016/j.cma.2004.12.005

URL : https://hal.archives-ouvertes.fr/hal-00695954

D. Chapelle and K. J. Bathe, The Finite Element Analysis of Shells - Fundamentals, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00839738

D. Chapelle, P. Moireau, and P. L. Tallec, Robust filtering for joint stateparameter estimation in distributed mechanical systems, Discrete Contin. Dyn. Syst, vol.23, issue.12, pp.65-84, 2009.

Y. Cheng, H. Oertel, and T. Schenkel, Fluid-Structure Coupled CFD Simulation of the Left Ventricular Flow During Filling Phase, Annals of Biomedical Engineering, vol.190, issue.4, pp.567-576, 2005.
DOI : 10.1007/s10439-005-4388-9

A. J. Chorin, On the convergence of discrete approximations to the Navier-Stokes equations, Mathematics of Computation, vol.23, issue.106, pp.341-353, 1969.
DOI : 10.1090/S0025-5718-1969-0242393-5

J. Degroote, S. Annerel, and J. Vierendeels, Stability analysis of Gauss???Seidel iterations in a partitioned simulation of fluid???structure interaction, Computers & Structures, vol.88, issue.5-6, pp.5-6263, 2010.
DOI : 10.1016/j.compstruc.2009.09.003

J. Degroote, K. Bathe, and J. Vierendeels, Performance of a new partitioned procedure versus a monolithic procedure in fluid???structure interaction, Computers & Structures, vol.87, issue.11-12, pp.11-12793, 2009.
DOI : 10.1016/j.compstruc.2008.11.013

J. Degroote, A. Swillens, P. Bruggeman, R. Haelterman, P. Segers et al., Simulation of fluid-structure interaction with the interface artificial compressibility method, International Journal for Numerical Methods in Biomedical Engineering, vol.83, issue.2, pp.3-4276, 2010.
DOI : 10.1016/j.compstruc.2008.05.005

P. Degroote, J. Bruggeman, R. Haelterman, and J. Vierendeels, Stability of a coupling technique for partitioned solvers in FSI applications, Computers & Structures, vol.86, issue.23-24, pp.23-242224, 2008.
DOI : 10.1016/j.compstruc.2008.05.005

S. Deparis, Numerical Analysis of Axisymmetric Flows and Methods for Fluid-Structure Interaction Arising in Blood Flow Simulation, 2004.

S. Deparis, M. Discacciati, G. Fourestey, and A. Quarteroni, Fluidstructure algorithms based on Steklov-Poincaré operators, Comput. Methods Appl. Mech. Engrg, vol.195, pp.41-435797, 2006.
DOI : 10.1016/j.cma.2005.09.029

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Deparis, M. A. Fernández, and L. Formaggia, Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions, ESAIM: Mathematical Modelling and Numerical Analysis, vol.37, issue.4, pp.601-616, 2003.
DOI : 10.1051/m2an:2003050

URL : https://hal.archives-ouvertes.fr/hal-00705114

W. Dettmer and D. Peri´cperi´c, A computational framework for fluid???rigid body interaction: Finite element formulation and applications, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.13-16, pp.13-161633, 2006.
DOI : 10.1016/j.cma.2005.05.033

N. Diniz-dos-santos, J. Gerbeau, and J. Bourgat, A partitioned fluid???structure algorithm for elastic thin valves with contact, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.19-20, pp.19-201750, 2008.
DOI : 10.1016/j.cma.2007.03.019

URL : https://hal.archives-ouvertes.fr/hal-00701780

J. Donéa, S. Giuliani, and J. P. Halleux, An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions, Computer Methods in Applied Mechanics and Engineering, vol.33, issue.1-3, pp.689-723, 1982.
DOI : 10.1016/0045-7825(82)90128-1

C. Farhat, M. Lesoinne, and P. L. Tallec, Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity, Computer Methods in Applied Mechanics and Engineering, vol.157, issue.1-2, pp.95-114, 1998.
DOI : 10.1016/S0045-7825(97)00216-8

C. Farhat, K. Van-der-zee, and P. Geuzaine, Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.17-18, pp.17-181973, 2006.
DOI : 10.1016/j.cma.2004.11.031

C. A. Felippa, K. C. Park, and C. Farhat, Partitioned analysis of coupled mechanical systems, Comput. Methods Appl. Mech. Engrg, vol.190, pp.24-253247, 2001.

M. A. Fernández, Incremental displacement-correction schemes for the explicit coupling of a thin structure with an incompressible fluid, Comptes Rendus Mathematique, vol.349, issue.7-8, 2011.
DOI : 10.1016/j.crma.2011.03.001

M. A. Fernández, L. Formaggia, J. Gerbeau, and A. Quarteroni, The derivation of the equations for fluids and structure, Cardiovascular mathematics, pp.77-121
DOI : 10.1007/978-88-470-1152-6_3

M. A. Fernández and J. Gerbeau, Algorithms for fluid-structure interaction problems, Cardiovascular mathematics, pp.307-346, 2009.
DOI : 10.1007/978-88-470-1152-6_9

M. A. Fernández, J. Gerbeau, and C. Grandmont, A projection algorithm for fluid???structure interaction problems with strong added-mass effect, Comptes Rendus Mathematique, vol.342, issue.4, pp.279-284, 2006.
DOI : 10.1016/j.crma.2005.12.017

M. A. Fernández, J. F. Gerbeau, and C. Grandmont, A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid, International Journal for Numerical Methods in Engineering, vol.9, issue.4, pp.794-821, 2007.
DOI : 10.1002/nme.1792

M. A. Fernández and M. Moubachir, A Newton method using exact jacobians for solving fluid???structure coupling, Computers & Structures, vol.83, issue.2-3, pp.127-142, 2005.
DOI : 10.1016/j.compstruc.2004.04.021

M. A. Fernández and J. Mullaert, Displacement-velocity cor- rection schemes for incompressible fluid-structure interac- tion, Submitted to C. R. Acad. Sci. Paris Sér. I Math

C. A. Figueroa, I. E. Vignon-clementel, K. E. Jansen, T. J. Hughes, and C. A. Taylor, A coupled momentum method for modeling blood flow in three-dimensional deformable arteries, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.41-43, pp.41-435685, 2006.
DOI : 10.1016/j.cma.2005.11.011

L. Formaggia, J. Gerbeau, F. Nobile, and A. Quarteroni, On the coupling of 3D and 1D Navier???Stokes equations for flow problems in compliant vessels, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.6-7, pp.6-7561, 2001.
DOI : 10.1016/S0045-7825(01)00302-4

URL : https://hal.archives-ouvertes.fr/hal-00691928

L. Formaggia, K. Perktold, and A. Quarteroni, Basic mathematical models and motivations, Cardiovascular mathematics, pp.47-75, 2009.
DOI : 10.1007/978-88-470-1152-6_2

C. Förster, W. A. Wall, and E. Ramm, Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.7, pp.1278-1293, 2007.
DOI : 10.1016/j.cma.2006.09.002

G. Fourestey and S. Piperno, A second-order time-accurate ALE Lagrange???Galerkin method applied to wind engineering and control of bridge profiles, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.39-41, pp.39-414117, 2004.
DOI : 10.1016/j.cma.2003.12.060

URL : https://hal.archives-ouvertes.fr/hal-00607735

M. J. Gander and L. Halpern, Optimized Schwarz Waveform Relaxation Methods for Advection Reaction Diffusion Problems, SIAM Journal on Numerical Analysis, vol.45, issue.2, pp.666-697, 2007.
DOI : 10.1137/050642137

M. W. Gee, U. Küttler, and W. Wall, Truly monolithic algebraic multigrid for fluid-structure interaction, International Journal for Numerical Methods in Engineering, vol.33, issue.2, 2010.
DOI : 10.1002/nme.3001

URL : http://mediatum.ub.tum.de/doc/1084630/document.pdf

J. Gerbeau and M. Vidrascu, A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows, ESAIM: Mathematical Modelling and Numerical Analysis, vol.37, issue.4, pp.631-648, 2003.
DOI : 10.1051/m2an:2003049

URL : https://hal.archives-ouvertes.fr/inria-00071895

J. Gerbeau, M. Vidrascu, and P. Frey, Fluid???structure interaction in blood flows on geometries based on medical imaging, Computers & Structures, vol.83, issue.2-3, pp.155-165, 2005.
DOI : 10.1016/j.compstruc.2004.03.083

C. Grandmont and Y. Maday, Nonconforming grids for the simulation of fluid-structure interaction, Domain decomposition methods, pp.262-270, 1997.
DOI : 10.1090/conm/218/03017

J. Guermond, Some implementations of projection methods for Navier-Stokes equations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.30, issue.5, pp.637-667, 1996.
DOI : 10.1051/m2an/1996300506371

J. L. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.44-47, pp.44-476011, 2006.
DOI : 10.1016/j.cma.2005.10.010

G. Guidoboni, R. Glowinski, N. Cavallini, and S. Canic, Stable loosely-coupled-type algorithm for fluid???structure interaction in blood flow, Journal of Computational Physics, vol.228, issue.18, pp.6916-6937, 2009.
DOI : 10.1016/j.jcp.2009.06.007

G. Guidoboni, R. Glowinski, N. Cavallini, S. Canic, and S. Lapin, A kinematically coupled time-splitting scheme for fluid???structure interaction in blood flow, Applied Mathematics Letters, vol.22, issue.5, pp.684-688, 2009.
DOI : 10.1016/j.aml.2008.05.006

M. E. Gurtin, An Introduction to Continuum Mechanics, Journal of Applied Mechanics, vol.51, issue.4, 1981.
DOI : 10.1115/1.3167763

P. Hansbo, Nitsche's method for interface problems in computa-tional mechanics, GAMM-Mitteilungen, vol.15, issue.2, pp.183-206, 2005.
DOI : 10.1002/gamm.201490018

P. Hansbo and J. Hermansson, Nitsche's method for coupling non-matching meshes in fluid-structure vibration problems, Computational Mechanics, vol.32, issue.1-2, pp.134-139, 2003.
DOI : 10.1007/s00466-003-0467-7

P. Hansbo, J. Hermansson, and T. Svedberg, Nitsche's method combined with space???time finite elements for ALE fluid???structure interaction problems, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.39-41, pp.4195-4206, 2004.
DOI : 10.1016/j.cma.2003.09.029

M. Heil, A. L. Hazel, and J. Boyle, Solvers for large-displacement fluid???structure interaction problems: segregated versus monolithic approaches, Computational Mechanics, vol.22, issue.1, pp.91-101, 2008.
DOI : 10.1007/s00466-008-0270-6

B. Hübner, E. Walhorn, and D. Dinkle, A monolithic approach to fluid???structure interaction using space???time finite elements, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.23-26, pp.2087-2104, 2004.
DOI : 10.1016/j.cma.2004.01.024

]. E. Järvinen, P. , M. Lyly, and J. Salenius, A method for partitioned fluid???structure interaction computation of flow in arteries, Medical Engineering & Physics, vol.30, issue.7, pp.917-923, 2008.
DOI : 10.1016/j.medengphy.2007.12.008

M. M. Joosten, W. G. Dettmer, and D. Peri´cperi´c, Analysis of the block Gauss-Seidel solution procedure for a strongly coupled model problem with reference to fluid-structure interaction, International Journal for Numerical Methods in Engineering, vol.1, issue.7, pp.78757-778, 2009.
DOI : 10.1007/s00466-008-0278-y

M. Juntunen and R. Stenberg, Nitsche???s method for general boundary conditions, Mathematics of Computation, vol.78, issue.267, pp.1353-1374, 2009.
DOI : 10.1090/S0025-5718-08-02183-2

S. A. Kock, J. V. Nygaard, N. Eldrup, E. Fründ, A. Klaerke et al., Mechanical stresses in carotid plaques using MRI-based fluid???structure interaction models, Journal of Biomechanics, vol.41, issue.8, pp.411651-1658, 2008.
DOI : 10.1016/j.jbiomech.2008.03.019

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

U. Küttler, M. W. Gee, C. Förster, A. Comerford, and W. A. Wall, Coupling strategies for biomedical fluid-structure interaction problems, International Journal for Numerical Methods in Biomedical Engineering, vol.10, issue.4, pp.3-4305, 2009.
DOI : 10.1002/cnm.1281

U. Küttler and W. A. Wall, Fixed-point fluid???structure interaction solvers with dynamic relaxation, Computational Mechanics, vol.35, issue.6???8, pp.61-72, 2008.
DOI : 10.1007/s00466-008-0255-5

U. Küttler and W. A. Wall, Vector Extrapolation for Strong Coupling Fluid-Structure Interaction Solvers, Journal of Applied Mechanics, vol.76, issue.2, p.21205, 2009.
DOI : 10.1115/1.3057468

L. Lanoye, J. Vierendeels, P. Segers, and P. Verdonck, Vascular fluid-structure-interaction using Fluent and Abaqus software, Journal of Biomechanics, vol.39, pp.440-440, 2006.
DOI : 10.1016/S0021-9290(06)84797-4

W. Layton, H. K. Lee, and J. Peterson, A defect-correction method for the incompressible Navier???Stokes equations, Applied Mathematics and Computation, vol.129, issue.1, pp.1-19, 2002.
DOI : 10.1016/S0096-3003(01)00026-1

P. L. Tallec, Numerical methods for nonlinear three-dimensional elasticity, Handbook of numerical analysis, pp.465-622, 1994.
DOI : 10.1016/S1570-8659(05)80018-3

P. , L. Tallec, and P. Hauret, Energy conservation in fluid structure interactions In Numerical methods for scientific computing. Variational problems and applications, Internat. Center Numer. Methods Eng, pp.94-107, 2003.

P. , L. Tallec, and S. Mani, Numerical analysis of a linearised fluid-structure interaction problem, Numer. Math, vol.87, issue.2, pp.317-354, 2000.

P. , L. Tallec, and J. Mouro, Fluid structure interaction with large structural displacements, Comput. Meth. Appl. Mech. Engrg, vol.190, pp.3039-3067, 2001.

M. Lesoinne and C. Farhat, Higher-Order Subiteration-Free Staggered Algorithm for Nonlinear Transient Aeroelastic Problems, AIAA Journal, vol.36, issue.9, pp.1754-1757, 1998.
DOI : 10.2514/2.7555

Z. Li and C. Kleinstreuer, Computational analysis of type II endoleaks in a stented abdominal aortic aneurysm model, Journal of Biomechanics, vol.39, issue.14, pp.2573-2582, 2006.
DOI : 10.1016/j.jbiomech.2005.09.002

Y. Maday, Analysis of coupled models for fluid-structure interaction of internal flows, Cardiovascular mathematics, pp.279-306, 2009.
DOI : 10.1007/978-88-470-1152-6_8

H. G. Matthies and J. Steindorf, Partitioned but strongly coupled iteration schemes for nonlinear fluid???structure interaction, Computers & Structures, vol.80, issue.27-30, pp.27-301991, 2002.
DOI : 10.1016/S0045-7949(02)00259-6

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. P. Mok and W. A. Wall, Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures, Trends in computational structural mechanics, 2001.

D. P. Mok, W. A. Wall, and E. Ramm, Partitioned analysis approach for the transient, coupled response of viscous fluids and flexible structures, Proceedings of the European Conference on Computational Mechanics. ECCM'99, 1999.

D. P. Mok, W. A. Wall, and E. Ramm, Accelerated iterative substructuring schemes for instationary fluid-structure interaction, Computational Fluid and Solid Mechanics, pp.1325-1328, 2001.
DOI : 10.1016/B978-008043944-0/50907-0

H. Morand and R. Ohayon, Fluid-Structure Interaction: Applied Numerical Methods, 94] J. Mouro. Interactions fluide structure en grands déplacements, 1995.

F. Nobile and C. Vergara, An Effective Fluid-Structure Interaction Formulation for Vascular Dynamics by Generalized Robin Conditions, SIAM Journal on Scientific Computing, vol.30, issue.2, pp.731-763, 2008.
DOI : 10.1137/060678439

T. Nomura and T. J. Hughes, An arbitray Lagrangian-Eulerian finite element method for interaction of fluid and rigid body, Comput. Methods Appl. Mech. Eng, vol.95, issue.1, pp.115-138, 1992.

S. Piperno, Simulation numérique de phénomènes d'interaction fluidestructure, 1995.

S. Piperno, Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations, International Journal for Numerical Methods in Fluids, vol.134, issue.10, pp.251207-1226, 1997.
DOI : 10.1002/(SICI)1097-0363(19971130)25:10<1207::AID-FLD616>3.0.CO;2-R

URL : https://hal.archives-ouvertes.fr/hal-00607776

S. Piperno and P. E. Bournet, Numerical simulations of wind effects on flexible civil engineering structures, Revue Europ??enne des ??l??ments Finis, vol.72, issue.4, pp.5-6659, 2001.
DOI : 10.1080/12506559.1999.10511401

URL : https://hal.archives-ouvertes.fr/hal-00607761

S. Piperno and C. Farhat, Design of Efficient Partitioned Procedures for the Transient Solution of Aeroelastic Problems, Fluid-structure interaction, pp.23-49, 2003.
DOI : 10.1080/10618569608940779

URL : https://hal.archives-ouvertes.fr/hal-00607750

A. Quaini and A. Quarteroni, A SEMI-IMPLICIT APPROACH FOR FLUID-STRUCTURE INTERACTION BASED ON AN ALGEBRAIC FRACTIONAL STEP METHOD, Mathematical Models and Methods in Applied Sciences, vol.17, issue.06, pp.957-983, 2007.
DOI : 10.1142/S0218202507002170

K. Riemslagh, J. Vierendeels, and E. Dick, A simple but efficient coupling procedure for flexible wall fluid-structure interaction, Fluids 2000 Conference and Exhibit, 2000.
DOI : 10.2514/6.2000-2336

S. Rugonyi and K. J. Bathe, On finite element analysis of fluid flows coupled with structural interaction. CMES -Comp, Modeling Eng. Sci, vol.2, issue.2, pp.195-212, 2001.

A. Salsac, S. R. Sparks, J. M. Chomaz, and J. C. Lasheras, Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms, Journal of Fluid Mechanics, vol.560, pp.19-51, 2006.
DOI : 10.1017/S002211200600036X

URL : https://hal.archives-ouvertes.fr/hal-01023355

M. Schäfer, M. Heck, and S. Yigit, An Implicit Partitioned Method for the Numerical Simulation of Fluid-Structure Interaction, Fluid-structure interaction, pp.171-194, 2006.
DOI : 10.1007/3-540-34596-5_8

J. Sokolowski and J. Zolésio, Introduction to shape optimization, 1992.

H. J. Stetter, The defect correction principle and discretization methods, Numerische Mathematik, vol.11, issue.4, pp.425-443, 1978.
DOI : 10.1007/BF01432879

E. W. Swim and P. Seshaiyer, A nonconforming finite element method for fluid???structure interaction problems, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.17-18, pp.17-182088, 2006.
DOI : 10.1016/j.cma.2005.01.017

S. Sy and C. M. Murea, A stable time advancing scheme for solving fluid???structure interaction problem at small structural displacements, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.2, pp.210-222, 2008.
DOI : 10.1016/j.cma.2008.07.010

R. Temam, Une méthode d'approximation de la solution deséquationsdeséquations de Navier-Stokes, Bull. Soc. Math. France, vol.96, pp.115-152, 1968.

T. E. Tezduyar, Finite Element Methods for Fluid Dynamics with Moving Boundaries and Interfaces, Arch. Comput. Methods Engrg, vol.8, pp.83-130, 2001.
DOI : 10.1002/0470091355.ecm069

T. E. Tezduyar and S. Sathe, Modelling of fluid???structure interactions with the space???time finite elements: Solution techniques, International Journal for Numerical Methods in Fluids, vol.195, issue.6-8, pp.6-8855, 2007.
DOI : 10.1002/fld.1430

M. Thiriet, Biology and Mechanics of Blood Flows. Part II: Mechanics and Medical Aspects, CRM Series in Mathematical Physics, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01113077

J. Vierendeels, L. L. , J. Degroote, and P. Verdonck, Implicit coupling of partitioned fluid???structure interaction problems with reduced order models, Computers & Structures, vol.85, issue.11-14, pp.11-14970, 2007.
DOI : 10.1016/j.compstruc.2006.11.006

W. A. Wall, S. Genkinger, and E. Ramm, A strong coupling partitioned approach for fluid???structure interaction with free surfaces, Computers & Fluids, vol.36, issue.1, pp.169-183, 2007.
DOI : 10.1016/j.compfluid.2005.08.007

H. Watanabe, S. Sugiura, H. Kafuku, and T. Hisada, Multiphysics Simulation of Left Ventricular Filling Dynamics Using Fluid-Structure Interaction Finite Element Method, Biophysical Journal, vol.87, issue.3, pp.2074-2085, 2004.
DOI : 10.1529/biophysj.103.035840

M. F. Wheeler, An Elliptic Collocation-Finite Element Method with Interior Penalties, SIAM Journal on Numerical Analysis, vol.15, issue.1, pp.152-161, 1978.
DOI : 10.1137/0715010

L. Wiechert, T. Rabczuk, A. Comerford, R. Metzke, and W. A. Wall, Towards stresses and strains in the respiratory system, Mathematical and numerical modelling of the human lung, pp.98-113, 2008.
DOI : 10.1051/proc:082307

X. L. Yang, Y. Liu, and J. M. Yang, Fluid-structure interaction in a pulmonary arterial bifurcation, Journal of Biomechanics, vol.40, issue.12, pp.2694-2699, 2007.
DOI : 10.1016/j.jbiomech.2007.01.008