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ABSTRACT

This paper links two a priori different topics, group testing

and traitor tracing. Group testing, as an instantiation of a

compressed sensing problem over binary data, is indeed eas-

ier than traitor tracing because the mixing model is far sim-

pler. State-of-the-art algorithms for traitor tracing, including

the celebrated probabilistic Tardos code, are applied to the

group testing problem. They yield better than or competitive

performance when compared to state-of-the-art algorithms.

Index Terms— Compressed sensing, Fingerprinting.

1. INTRODUCTION

Group testing and traitor tracing aim at the same goal: re-

trieving the identity of very few people in a huge popula-

tion. In group testing, these few people are contaminated by a

given disease while in traitor tracing, these people are dishon-

est users illegally distributing copyrighted material. This sec-

tion briefly introduces both subjects and motivates that both

are indeed similar instantiations of a noisy compressed sens-

ing problem over binary data, the remaining part of the paper

proposes a design of the contact matrix and reconstruction al-

gorithms inspired by traitor tracing techniques.

1.1. Group testing

Group testing is usually introduced as the epidemiology prob-

lem (many other applications are listed for instance in [1, Sec.

1]) where we need to identify a small set of virally-infected

people in a large population. Typically, blood samples are

tested to screen out the infected persons. If the size N of the

population is large, the cost of individual tests is prohibitive

and a group testing strategy is deployed. It consists in per-

forming T ≪ N tests on several pools of blood samples. The

contact matrix M is the binary T×N matrix indicating which

blood sample is involved in a given test: Mij = 1 means that

test i uses the blood of individual j, Mij = 0 otherwise. The

results of the test are stored in a binary vector y (yi = 1 if the

i-th test is positive, 0 otherwise). Infected persons are to be

identified from y and M. K denotes the set of the indices of
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these K persons, and the N -bit long vector x the unknown in-

dicating vector (i.e. xi = 1 if individual i is infected). From

a compressed sensing viewpoint, the goal is to recover the

sparse input vector x explaining the output y = M⊗ x (⊗
denotes binary matrix multiplication). In words, the output

vector y solely depends on the K columns of the restriction

of M to K.

Many papers have proposed bounds on the minimal num-

ber of tests or practical designs (creation of M and recon-

struction of x) based on combinatorics. The pool design is

usually based on a disjunct or separable contact matrix. How-

ever, a recent trend is to look at this problem from a proba-

bilistic point of view [1, 2]. The result of a test should be seen

as a random variable Y reflecting the fact that the test may

not be perfect. Cheraghchi et al. introduced the concept of

activation: one infected person in the pool will independently

trigger the test with probability Π [1]. Atia and Saligrama

preferred to speak of a probability of dilution u = 1−Π; they

also envisaged another setup with additive noise (q is the false

positive test probability) [2]. Sejdinovic and Johnson recently

considered both dilution and additive noise [3].

The introduction of randomness gives birth to an informa-

tion theoretical study which states the asymptotical scaling of

the number of tests T as a function of (N,K, u, q) [2, 3]. A

random construction of M has also been proposed in [1, 3].

However, this construction must know in advance K.

1.2. Traitor tracing

An application of traitor tracing, a.k.a. passive fingerprint-

ing, is the Video-on-Demand scenario where a movie is dis-

tributed to N users. During the purchase, each user indeed re-

ceives a personal copy of the movie. The versioning process

usually divides the movie into T video blocks, and it hides

a bit into each block thanks to a watermarking technique.

Therefore, a unique codeword Mj = (M1j , . . . ,MTj)
t is

sequentially hidden in the copy of the j-th user. A collusion

of size K is a group of dishonest users K = {j1, . . . , jK}
mixing their versions to forge a pirated copy. Since the par-

tition of the movie is a priori not secret, the pirates can ex-

change video blocks. The T -bit long vector y decoded from

the pirated content is thus a mix of the K codewords such that

yi ∈ {Mij |j ∈ K}, ∀i ∈ [T ] ([T ] , {1, . . . , T}). Therefore,



like in the group testing field, the output vector y depends on

the K columns of the restriction of M to K, and the goal of

the accusation process is to identify these K dishonest users.

Similar to the work of Atia & Saligrama, Moulin has

bounded the performance of a traitor tracing scheme from an

information theoretic viewpoint [4]. In particular, he proved

that the single decoder is outperformed by joint decoders.

The first type of accusation takes a decision on a user-by-user

basis whereas the latter type works on groups of users.

As for a practical construction of a traitor tracing code,

Tardos was the first to exhibit an optimum solution [5], nowa-

days celebrated as the Tardos code, in the sense that its

length T has the optimum scaling in O(K2 log(N/ǫ)), where

ǫ is the probability of accusing an innocent user. The code

construction is fully probabilistic.

1.3. Similarities and differences

The similarity between the two fields lies in the mathe-

matical model capturing how y depends on the K code-

words {Mj |j ∈ K}. This is usually done in traitor trac-

ing by the collusion strategy θ ∈ [0, 1]K+1 with θσ ,

PYi
[1|∑j∈K Mij = σ], 0 ≤ σ ≤ K. Translated into group

testing terminology, a test result is a binary r.v. whose dis-

tribution depends on the number of infected involved in the

test. For instance, applied to Sejdinovic’s setup [3], we have

θσ = 1− (1− q)uσ . If (q, u) = (0, 0), then this θ is known,

in the field of traitor tracing, as the all-one collusion strategy.

In group testing, parameters (u, q) are known because

they depend on the biological nature of the test. The problem

then solely depends on the numbers of infected: the number

of tests has been shown to be scaling as O(K logN) [2].

However, in traitor tracing, the colluders are free to choose

their collusion strategy provided it complies with the marking

assumption: θ0 = 0 and θK = 1. In words, when they all

have the i-th video block containing the same hidden symbol,

this symbol is decoded in the pirated movie since they can’t

modify the embedded symbol. The performance of the traitor

tracing code must be guaranteed whatever the collusion strat-

egy. This is achieved by focusing on the worst case attack [6]

or resorting to an accusation process statistically orthogonal

to θ as originally proposed by Tardos [5]. The optimum code

length T has been shown to be scaling as O(K2 logN/ǫ),
where ǫ is the probability of accusing an innocent, due to this

nuisance parameter θ [4]. This renders traitor tracing more

difficult than group testing. On the other hand, traitor tracing

aims at finding some colluders, whereas the goal of group

testing is the exact recovery of the K infected.

2. THE CONTACT MATRIX

2.1. Generation

The population is composed of N individuals, among them

K infected persons. There will be T tests. The contact matrix

is constructed like a Tardos fingerprinting code. Vector p =
(p1, . . . , pT )

t are instances of i.i.d. r.vs drawn according to

f(p) s.t. 0 < pi < 1, ∀i ∈ [T ]. The goal of this section is to

determine an appropriate distribution. Then, elements of the

contact matrix are independently drawn s.t. PMij
[1] = pi.

2.2. Probabilities

As already mentioned, the assumptions of [3] lead to model

θσ = 1 − (1 − q)uσ . We now focus on a test with pi = p
and drop the index i. Thanks to the probabilistic construction

of the contact matrix, the probability that σ infected are in-

volved in this particular test is PΣ[σ|p] =
(

K
σ

)

pσ(1− p)K−σ .

PA[a] denotes the probability that r.v. A takes the value a.

Therefore, the probability that this test is positive is

PY [1|p,K] =

K
∑

σ=0

θσ

(

K

σ

)

pσ(1− p)K−σ (1)

which nicely simplifies to 1−(1−q)(1−p+up)K . In the same

way, assume we know the identity of L < K infected, and

among them, ρ < L are involved in this test. The probability

that the test is positive given this extra information is

PY [1|p, ρ, L,K] =

K−L+ρ
∑

σ=ρ

θσ

(

K − L

σ − ρ

)

pσ−ρ(1−p)K−L−σ+ρ

which simplifies to 1 − (1 − q)(1 − p + up)K−Luρ. In par-

ticular, for L = 1, we have:

PY [1|p, 0, 1,K] = 1− (1− q)(1− p+ up)K−1 (2)

PY [1|p, 1, 1,K] = 1− (1− q)(1− p+ up)K−1u (3)

2.3. Analysis of the single decoder

Thanks to (1), (2) and (3), we compute the amount of infor-

mation I(Y ;X|p) that this test result brings about the identity

of one infected person. This figure bounds the performance

of the single decoder. Since the first step of our reconstruc-

tion algorithm (see next section) relies on this decoder, it is

of utmost importance to maximize this figure of merit. Fig. 1

shows the typical behavior of this quantity as a function of p
for the setups of [1](top) and [3](bottom) . Define p⋆(K) ,

argmaxp∈(0,1) I(Y ;X|p). We were not able to find a close

form expression of its maximum but a good approximation

is I(Y ;X|p⋆(K)) ∝ K−1. This is a strong difference w.r.t.

traitor tracing where maxp∈(0,1) I(Y ;X|p) ∝ K−2 for the

worst attack [7]. Since we do not a priori know the value of K
at the generation of M, we cannot set pi = p⋆(K), ∀i ∈ [T ].
However, given a range K ∈ [K,K], we choose f(p) as the

uniform distribution over [p⋆(K), p⋆(K)].

3. THE RECONSTRUCTION ALGORITHM

Once vector y is observed, the reconstruction algorithm aims

at identifying the K infected. In traitor tracing, the decoder of
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Fig. 1. I(Y ;X|p) in nats as a function of p for different values

of K. (top) Setup of [1]: q = 0 and u = 0.2 ; (bottom) Setup

of [3]: q = 0.01 and u = 0.05.

a Tardos code computes a score for each codewords. It then

accuses people whose score is above a threshold. Originally,

Tardos proposed a pivotal quantity with respect to θ, in the

sense that the distribution of the scores does not depend on

this nuisance parameter [5]. In group testing, there is little

ambiguity on θ because it only depends on K (we assume that

(u, q) is known). Therefore, we prefer a ‘learn and match’

strategy which consists of estimating K first and then use an

optimal detector. This has been tested for traitor tracing with

some difficulties because identifiability issues appear: ∃θ1 6=
θ2 s.t. PY [1|p,θ1] = PY [1|p,θ2], ∀p ∈ (0, 1) [7, Prop. 4].

Here, it is not the case provided u 6= 1 and q 6= 1.

3.1. Estimation of K

The maximum likelihood estimator is given by:

K̂ = argmax
K

T
∑

i=1

logPY [yi|pi,K].

There is no close form expression, but since pi are distributed

over a short interval, an approximation is K̂0 = log(∆/(1 +
∆)/(1−q))/ log(1−E(p)(1−u)), with ∆ =

∑

yi=0 log(1−
pi(1−u))/

∑

yi=1 log(1− pi(1−u)). We then refine this by

looking for a maximum K̂ of the likelihood around K̂0.

3.2. Single decoder with likelihood ratio test

Once K has been estimated, the score of each individual j is

indeed a test between the hypotheses:

• H0: This individual is not infected. The test results are

independent of her blood sample: PY,Mj
= PYPMj

.

• H1: This individual is infected. The test results depend

on her blood sample: PY,Mj
= PY|Mj

PMj
.

The score of individual j is then the log-likelihood ratio com-

puted thanks to (1), (2) and (3):

sj =

T
∑

i=1

log
PY [yi|pi,Mij , 1, K̂]

PY [yi|pi, K̂]
. (4)

This decoder is more complex than the distance decoder pro-

posed in [1], but a careful implementation takes one second

to yield 106 scores on a regular computer. Yet, this decoder

allows exact recovery only if the K infected get ranked first.

3.3. Advanced decoders

We propose two improvements of the single decoder. The

first idea is to go for a joint decoder which computes scores

for τ -tuples. This has never been done, as far as we know, due

to the prohibitive complexity of browsing all the
(

N
τ

)

combi-

nations. We will tend to this gradually. In the first step, we

use the previous single decoder and isolate in the set S(2) the

|S(2)| = ⌈
√
2!N⌉ persons having the highest scores. There

are
(

|S(2)|
2

)

= O(N) pairs in S(2) so that the computation

of their scores is ‘affordable’. After having sorted these pair

scores in decreasing order, we include in S(3) individuals in-

volved in the pairs having the highest scores, and stop when

the size |S(3)| equals ⌈ 3
√
3!N⌉. Denote by r(3) the number of

pairs we had to browse to fill set S(3). The idea is to grad-

ually discard the less likely people while maintaining a list

S(k) of suspects short enough to allow the computation of
(

|S(k)|
k

)

= O(N) scores over bigger k-tuples in the next step.

For a given k-tuples Kℓ, define ρiℓ ,
∑

j∈Kℓ
Mij , ∀i ∈ [T ]

to compute the score as the following log-likelihood ratio:

s
(k)
ℓ =

T
∑

i=1

log
PY [yi|pi, ρiℓ, k, K̂]

PY [yi|pi, K̂]
. (5)

Exact recovery implies that no infected is discarded at any

step, which is a weaker condition than for the single decoder.

The second idea consists in deeming as infected the most

likely individuals. It is then possible to include this side in-

formation in the computation of the new scores. At the end

of the (k − 1)-th iteration of the joint decoder, |S(k)| persons

are suspected because they belong to the first r(k) (k − 1)-
tuples (Note that we fix |S(k)| so that r(k) is indeed a ran-

dom variable). While filling the set S(k) we also count the

number of times individuals in this set appear in the r(k) first

(k − 1)-tuples. Usually these tuples are hybrid, i.e. com-

posed of infected and sound persons. But whereas we always

find the same K infected, the identities of the sound persons

are very different from a hybrid tuple to another. Therefore,

infected people have a high number of appearances whereas

sound people have low figures. In our algorithm, we accuse



only one individual j(k) if the number of appearances are suf-

ficiently unevenly distributed. Denote I(k) the set of deemed

infected at iteration k. We have I(1) = I(2) = ∅ (no side

information is available for the single and the pair decoder)

and I(k+1) = I(k) ∪ {j(k)} if someone is accused at round

k ≥ 2. Define σ
(k)
i =

∑

j∈I(k) Mij , ∀i ∈ [T ]. Then the score

for k-tuple Kℓ with this side information is:

s
(k)
ℓ =

T
∑

i=1

log
PY [yi|pi, ρiℓ + σ

(k)
i , k + |I(k)|, K̂]

PY [yi|pi, σ(k)
i , |I(k)|, K̂]

(6)

Exact recovery implies that only truly infected are included in

the side information.

4. EXPERIMENTS

In this section we compare our proposed Tardos single and

joint, side-informed decoders with two group testing setups

reported by Cheraghchi et al. ([1], N = 100000, K = 10,

u = 0.2 and q = 0) and Sejdinovic & Johnson ([3, 2], N =
5000, K = 50, u = 0.05, q = 0.01).

Fig. 2 shows the probabilities for exact recovery of all

K infected individuals depending on the number of tests T
for the Cheraghchi setup (top) and Sejdinovic setup (bottom).

Here, the ‘Tardos’ contact matrix is constructed using the op-

timum p⋆ = 0.0684 and p⋆ = 0.0138, resp. At least 1000
trials have been performed at the various numbers of tests.

For the Cheraghchi setup, our decoders outperform the

distance decoder [1], reducing the number of tests for exact

recovery from 3000 to about 1200 tests using the single, and

about 700 tests using the joint, side-informed Tardos decoder.

In the Sejdinovic setup, the joint, side-informed Tardos de-

coder is competitive with the belief propagation reconstruc-

tion approach [3]; about the same number of tests are required

for exact recovery.

We remark that both previous experimental setups assume

K to be known which is unrealistic in practice. Experiments

confirm that the performance of our decoders indeed degrades

only slightly relying on the proposed estimate K̂. For the

sake of fair comparison, however, we stick to the scenarios

reported in the literature.

5. CONCLUSION

This paper makes for the first time the connection between

traitor tracing and group testing stressing their similarities

and differences. Traitor tracing accusation processes are used

for the identification of infected person and are shown to be

competitive to previous reconstruction algorithm. Our future

work aims at creating a measure of confidence about this re-

construction, associating each individual with an estimation

of the probability that she is infected.
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Fig. 2. Comparison of our single and joint, side-informed

decoders with two group testing setups.
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