
HAL Id: inria-00581029
https://inria.hal.science/inria-00581029

Submitted on 30 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The local Hölder function of a continuous function
Stephane Seuret, Jacques Lévy Véhel

To cite this version:
Stephane Seuret, Jacques Lévy Véhel. The local Hölder function of a continuous function. Applied
and Computational Harmonic Analysis, 2002, 13 (3), pp.263-276. �inria-00581029�

https://inria.hal.science/inria-00581029
https://hal.archives-ouvertes.fr


The lo
al H�older fun
tion of a 
ontinuousfun
tionSt�ephane Seuret, Ja
ques L�evy V�ehelProjet Fra
tales, INRIA Ro
quen
ourtB.P. 105, 78153 Le Chesnay Cedex, Fran
ee-mail: fStephane.Seuret, Ja
ques.Levy Vehelg�inria.frApril 25, 2002Abstra
tThis work fo
uses on the lo
al H�older exponent as a measure theregularity of a fun
tion around a given point. We investigate in de-tail the stru
ture and the main properties of the lo
al H�older fun
tion(i.e. the fun
tion that asso
iates to ea
h point its lo
al H�older expo-nent). We prove that it is possible to 
onstru
t a 
ontinuous fun
tionwith pres
ribed lo
al and pointwise H�older fun
tions outside a set ofHausdor� dimension 0.1 Introdu
tionThere exist various ways to measure the regularity of a fun
tion around agiven point. The most popular one is to use the pointwise H�older exponent(hereafter denoted �p), but other 
hara
terizations of lo
al regularity exist.These in
lude the lo
al H�older exponent, the 
hirp and os
illation exponents,the lo
al box and Hausdor� dimensions and the degree of fra
tional di�eren-tiability. We shall mainly be 
on
erned in this paper with the study of thelo
al H�older exponent and the lo
al H�older fun
tion, i.e. the fun
tion thatasso
iates to ea
h point its lo
al H�older exponent.1



There are several motivations for investigating the lo
al H�older exponent.First, this exponent is 
omputed through a lo
alization of the global H�olderexponent, and is thus perhaps the most natural exponent in the list above.Another obvious reason for introdu
ing regularity exponents other than�p is that the knowledge of the sole pointwise H�older exponent does notprovide a full des
ription of the regularity of a fun
tion. For instan
e the
usp fun
tion x ! jxj
 and the 
hirp fun
tion x ! jxj
 sin(1=jxj�), where
 and � are positive reals, have the same pointwise H�older exponent at 0,namely 
. However, they have strongly di�erent behaviours around 0. Inthese 
ases, the lo
al H�older exponents �l are respe
tively 
 and 
1+� . Thelower value of �l for the 
hirp fun
tion gives a 
lue about the os
illatorybehaviour of the fun
tion around 0.A further advantage of the lo
al H�older exponent over the pointwise ex-ponent is that �l is stable through the a
tion of pseudo-di�erential operators,while �p is not. This means for instan
e that the following equality alwaysholds : �Fl = �fl + 1, where �Fl is the lo
al exponent of a primitive F of f .In 
ontrast, one 
an only ensure in general that �Fp � �fp + 1.From a pra
ti
al point of view, most methods for estimating �p makeimpli
itly or expli
itly the assumption that �p = �l. It is thus of interest toinvestigate the domain of validity of this equality.Finally, in many appli
ation, the lo
al H�older exponent and its evolutionin \time" are a relevant tool for 
hara
terizing or pro
essing signals (see forinstan
e [8℄).While the main properties of the pointwise H�older fun
tion have alreadybeen investigated, no su
h study has been 
ondu
ted yet for the lo
al one.We prove in this paper that the 
lass of lo
al H�older fun
tions of 
ontinuousfun
tions is exa
tly the one of non negative lower semi-
ontinuous fun
tions.The next natural question 
onsists in determining the exa
t links betweenthe two H�older-based regularity 
hara
terizations, i.e. the pointwise andlo
al one. In other words, we want to answer the following question: towhat extent 
an one pres
ribe independently the pointwise and lo
al H�olderfun
tions of a 
ontinuous fun
tion ? We show that any 
ouple of fun
tions(f , g) su
h that f � g, and f (resp. g) belongs to the 
lass of lo
al (resp.pointwise) H�older fun
tions 
an be jointly the lo
al and pointwise H�olderfun
tions of a 
ontinuous fun
tion ex
ept on a set of Hausdor� dimension 0(see theorem 4.1 for a pre
ise statement).In se
tion 2, we re
all the de�nition and main properties of the pointwise2



exponent, and we start studying the lo
al one. In se
tion 3, we give thestru
ture of lo
al H�older fun
tions. We provide various 
omparisons betweenthe exponents in se
tion 4. Se
tion 5 is devoted to the 
onstru
tion of a
ontinuous fun
tion with pres
ribed lo
al and pointwise H�older fun
tions.2 De�nitions of the exponentsWe re
all in this se
tion the de�nitions of the two regularity exponents we areinterested in. The �rst one, the pointwise H�older exponent, is well known.The se
ond one is the lo
al H�older exponent. We give a slightly enhan
edde�nition of this exponent (as 
ompared to the one in [4℄), and investigateits basi
 properties.2.1 Pointwise H�older ExponentDe�nition 2.1 Let f : IR ! IR be a fun
tion, s > 0, s =2 IN , and x0 2 IR.Then f 2 Cs(x0) if and only if there exists a real � > 0, a polynomial P withdegree less than [s℄ and a 
onstant C su
h that8x 2 B(x0; �); jf(x)� P (x� x0)j � Cjx� x0js: (1)By de�nition, the pointwise H�older exponent of f at x0, denoted by�p(x0), is: supfs : f 2 Cs(x0)g.The following wavelet 
hara
terization of this exponent, due to S. Ja�ard([7℄), will be useful in the sequel:Proposition 2.1 Assume that f 2 C�(x0). If jk2�j � x0j � 1=2, thenjdj;kj � C2��j(1 + 2jjk2�j � x0j)�: (2)Conversely, if (2) holds for all (j; k)'s su
h that jk2�j�x0j � 2�j=(log j)2, andif f 2 C log, then there exist a 
onstant C and a polynomial P of degree atmost [�℄ su
h thatjf(x)� P (x� x0)j � Cjx� x0j�(log(jx� x0j))2: (3)
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C log is the 
lass of fun
tions f whose wavelet 
oeÆ
ients verifyjdj;kj � C2� jlog j :This regularity 
ondition is stronger than uniform 
ontinuity, but does notimply a uniform H�older 
ontinuity.2.2 Lo
al H�older ExponentLet f : 
 ! IR be a fun
tion, where 
 � IR an open set. One 
lassi
allysays that f 2 Csl (
) where 0 < s < 1 if there exists a 
onstant C su
h that,for all x; y in 
, jf(x)� f(y)j � Cjx� yjs: (4)If m < s < m + 1 (m 2 IN), then f 2 Csl (
) means that there exists a
onstant C su
h that, for all x; y in 
,j�mf(x)� �mf(y)j � Cjx� yjs�m:Set now �l(
) = supfs : f 2 Csl (
)g. Remark that, if 
0 � 
, �l(
0) ��l(
). We will use the following lemma to de�ne the lo
al H�older exponent.Lemma 2.1 Let (Oi)i2I be a family of de
reasing open sets (i.e. Oi � Oj ifi > j), su
h that \iOi = fx0g:Set �l(x0) = supf�l(Oi) : i 2 Ig: (5)Then �l(x0) does not depend on the 
hoi
e of the family (Oi)i2I.Proof: Let (Oi)i2I and ( ~Oi)i2I be two families of sets satisfying the above
onditions, and let us de�ne the two 
orresponding exponents�l(x0) = supf�l(Oi) : i 2 Ig;~�l(x0) = supf�l( ~Oi) : i 2 Ig:Assume that, for example, �l(x0) > ~�l(x0). Then there exists an integer i0su
h that �l(Oi) > ~�l(x0). Sin
e the ( ~Oi)i2I are de
reasing, and using that\i ~Oi = fx0g, there exists another integer i1 > i0 su
h that ~Oi1 � Oi0.4



Then ~�l(x0) � �l( ~Oi1) � �l(Oi0), whi
h gives a 
ontradi
tion.Sin
e �l is independent of the 
hoi
e of the family fOigi, we shall de�nethe lo
al H�older exponent using a sequen
e of intervals 
ontaining x0:De�nition 2.2 Let f be a fun
tion de�ned on a neighborhood of x0. LetfIngn2IN be a sequen
e of open de
reasing intervals 
onverging to x0. Thelo
al H�older exponent of the fun
tion f at x0, denoted by �l(x0), is�l(x0) = supn2IN �l(In) = limn!+1�l(In): (6)It is straightforward to prove that one always has �l(x0) � �p(x0).It is also easy to obtain a wavelet 
hara
terization of �l(x), whi
h will bea simple 
onsequen
e of the following 
lassi
al proposition ([10℄):Proposition 2.2 Let x0 2 IR and � > 0. Then f 2 Csl (B(x0; �)) if and onlyif there exists a 
onstant C, su
h that for all (j; k) su
h that k2�j 2 B(x0; �),one has jdj;kj � C2�sj.The last proposition leads to the following 
hara
terizationProposition 2.3�l(x0) = lim�!0(supfs : 9C; k2�j 2 B(x0; �)) jdj;kj � C2�sjg) (7)Proof: The proof is straightforward using the 
hara
terization provided byProposition 2.2.Remark 2.1 When dealing with 
ompa
tly supported fun
tions, one 
an as-sume that 
ompa
tly supported wavelet, like the Daube
hies ones for example([2℄), are used.
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3 The stru
ture of H�older fun
tionsOne 
an asso
iate to ea
h x its pointwise H�older exponent �p(x). This de�nesa fun
tion x ! �p(x), 
alled the pointwise H�older fun
tion of f . A naturalquestion is to investigate the stru
ture of the fun
tions �p(x) when f spansthe set of 
ontinuous fun
tions. The answer is given by the following theorem([1℄).Theorem 3.1 Let g : IR! IR+ be a fun
tion. The two following propertiesare equivalent:� g is a liminf of a sequen
e of 
ontinuous fun
tions,� There exists a 
ontinuous fun
tion f su
h that the pointwise H�olderfun
tion of f �p(x) satis�es �p(x) = g(x), 8x.As in the 
ase of the pointwise exponent, one 
an asso
iate to ea
h x thelo
al exponent of f at x. This de�nes a lo
al H�older fun
tion x ! �l(x).The stru
ture of lo
al H�older fun
tions is more 
onstrained than the one ofpointwise H�older fun
tions, sin
e the former must be lower semi-
ontinuousfun
tions ([4℄). More pre
isely, we have:Theorem 3.2 Let g : IR! IR+ be a fun
tion. The two following propertiesare equivalent:� g is a non-negative lower semi-
ontinuous (ls
) fun
tion.� There exists a 
ontinuous fun
tion f su
h that the lo
al H�older fun
tionof f , �l(x), satis�es �l(x) = g(x), 8x.Proof: From the de�nition of �l(x0), for all � > 0, there exists an intervalI� 
ontaining x0 su
h that�l(I�) > �l(x0)� �:Then, using the de�nition of �l(y) for every y 2 I�, one 
on
ludes that8y 2 I�; �l(y) � �l(I�) � �l(x0)� �:This exa
tly shows that x ! �l(x) is an ls
 fun
tion. Obviously, the 
onti-nuity of f entails �l � 0. 6



That the 
onverse property holds, i.e. any non-negative ls
 fun
tion isthe lo
al H�older fun
tion of a 
ontinuous fun
tion f : IR ! IR, will be a
onsequen
e of theorem 4.1 below.Now that we have dis
ussed the stru
tures of both �l and �p, we pro
eedto examine the relation between them.4 Relations between �l and �pWe start with two simple general bounds.Proposition 4.1 Let f : I ! IR be a 
ontinuous fun
tion (I is an intervalof IR). Let �p and �l be respe
tively its pointwise and lo
al H�older fun
tions.Then, 8x 2 I, �l(x) � min(�p(x); lim inft!x �p(t)): (8)Proof: We give the proof in the 
ase �p < 1.By de�nition, 8�, there exists a 
onstant C su
h that, for t 
lose enough tox, jf(t)� f(x)j � Cjt� xj�p(x)��. Comparing this to the de�nition of �l(x),one dedu
es that �l(x) � �p(x)� �, 8�, hen
e �l(x) � �p(x).On the other hand, for every � > 0, 8y 2 B(x; �), one has �l(B(x; �)) ��p(y). Combining this with the fa
t that �l(x) = lim�!0 �l(B(x; �)), oneobtains that �l(x) � lim inft!x �p(t).Proposition 4.2 Let f : I ! IR be a 
ontinuous fun
tion (I is an intervalof IR). If there exists � su
h that fx : �p(x) = �g is dense around x0, then�l(x0) � �.Proof: The proof is straightforward using Proposition 4.1.This proposition has an important 
onsequen
e in multifra
tal analy-sis: \multifra
tal" fun
tions, as IFS (see below and [1℄) or repartition fun
-tions of multinomial measures [3℄, usually have the property that, for all �,E� = fx : �p(x) = �g is either dense on the support of the fun
tion orempty. For fun
tions of this kind, �l is 
onstant. A 
onsequen
e is that it is7



not interesting in general to base a multifra
tal analysis on the lo
al H�olderexponent, sin
e the 
orresponding spe
trum would be degenerate.Let us now make a few remarks that go against some 
ommon thoughtsabout the relation between lo
al and pointwise H�older exponents.� x! �p(x) is a 
ontinuous fun
tion does not imply that �l(x) = �p(x)for every x. For a 
ounter-example, 
onsider the sum of a Weierstrassfun
tion with pointwise exponent � and a 
hirp (�; �) at 0, where� < �. Then �l(x) = �p(x) = � for all x 6= 0, and �p(0) = � while�l(0) = � < �.� The 
onverse proposition is also false: x! �l(x) is a 
ontinuous fun
-tion does not imply that �l(x) = �p(x) for every x: Any well-
hosen IFShas a 
onstant lo
al H�older exponent while x ! �p(x) is everywheredis
ontinuous.We now move to a di�erent kind of relation between �p and �l. The fol-lowing proposition assesses that the two exponents 
an not di�er everywhere:Proposition 4.3 Let f : I ! IR be a 
ontinuous fun
tion, where I is aninterval of IR. Assume that there exists 
 > 0 su
h that f 2 C
(I). Thenthere exists a subset D of I su
h that:� D is dense, un
ountable and has Hausdor� dimension 0.� 8x 2 D, �p(x) = �l(x).Furthermore, this result is optimal, i.e. there exist fun
tions with globalH�older regularity 
 > 0 su
h that �p(x) 6= �l(x) for all x outside a setof Hausdor� dimension 0.Proof: We give the proof of the last Proposition in the 
ase 8x, �p(x) � 1.The general result follows with similar arguments.Let us 
onsider a ball B(x0; �0) � I. We 
onstru
t three sequen
es ofpoints fxngn, fyngn, fzngn by the following method.
8



Let f�ngn be a positive sequen
e 
onverging to 0 when n! +1. Let usdenote by �0 the real number �l(B(x0; �0=2)). By de�nition of �l, there existtwo real number y1 and z1 su
h thaty1 2 B(x0; �0=2); z1 2 B(x0; �0=2);y1 < z1 and jf(y1)� f(z1)j > jy1 � z1j�0+�0:Let us now denote by x1 the middle point of [y1; z1℄, and by �1 the numbermin(2�1; jy1 � z1j=2).Now 
onsider the smaller ball B(x1; �1=2), and its asso
iated exponent�1 = �l(B(x1; �1=2)). There exist two real numbers y2 and z2 su
h thaty2 2 B(x1; �1=2); z2 2 B(x1; �1=2);y2 < z2 and jf(y2)� f(z2)j > jy2 � z2j�1+�1:We denote by x2 the middle point of [y2; z2℄, and by �2 the real numbermin(2�2; jy2 � z2j=2).We iterate this 
onstru
tion s
heme, and thus obtain the desired threesequen
es fxngn, fyngn, fzngn.Now one easily proves that� The sequen
e fxngn 
onverges to a real number x.� The sequen
es fyngn and fzngn also 
onverge to x.� For all n, one has the inequalitiesjyn � znj4 � jx� ynj � jyn � znj;jyn � znj4 � jx� znj � jyn � znj:One 
an sum up these inequalities by writing8n; jx� ynj � jx� znj � jyn � znj: (9)Let us now study the lo
al and pointwise H�older exponents of the limitpoint x, respe
tively denoted by �x and �x. Sin
e f 2 C
([0; 1℄), one has9




 � �x � �x.First remark that the sequen
e f�ngn is non-de
reasing, sin
e the intervalsB(xn; �n=2) are embedded. By Proposition 3.2, one has �x = limn �n. Indeed,sin
e one 
an 
hoose any de
reasing sequen
e of open sets 
onverging to x,one spe
i�
ally 
hooses the intervalB(xn; �n=2) (the 
onverge of �n is ensuredby the fa
t than one always has �n � �x).Let us now turn to the pointwise H�older exponent. For every � > 0, thereexist � > 0 and a 
onstant C su
h that, 8y 2 B(x; �), one has jf(x)�f(y)j �Cjx� yj�x��. On the other hand, there exists an in�nite number of 
ouples(yn; zn) su
h that yn 2 B(x; �) and zn 2 B(x; �). For those 
ouples, one 
anwrite jf(yn)� f(zn)j � jyn � znj�n+�nand, on the other sidejf(yn)� f(zn)j � jf(yn)� f(x)j+ jf(x)� f(zn)j� Cjyn � xj�x�� + Cjx� znj�x��� Cjyn � znj�x��;where one has used (9).Assume now that �x < �x, and let us take � < �x��x4 . Sin
e limn �n+�n =�x, there exists N su
h that n � N implies �n + �n � �x � 2�. For su
h n's,one has8n � N; Cjyn � znj�x�2� � Cjyn � znj�n+�n � jf(yn)� f(zn)jand jf(yn)� f(zn)j � Cjyn � znj�x��;whi
h gives 8n � N; Cjyn � znj�x�2� � Cjyn � znj�x��:Sin
e jyn � znj ! 0 when n goes to in�nity, this is absurd.One 
on
ludes �x = �x for the x we have found.A simple modi�
ation of the above 
onstru
tion shows that the set fx :�p(x) = �l(x)g is un
ountable. Indeed, starting from the interval I0 =10



[y0; z0℄, one 
an split it into 5 equal parts. Fo
us now on the se
ond and theforth subintervals, and apply the 
onstru
tion we have des
ribed above. Onethus obtains two subintervals I11 (the \left" one) and I21 (the \right" one).Iterating this s
heme, at ea
h stage n, one obtains 2n distin
t intervals I in,i 2 f1; 2; : : : ; 2ng. Using this method one 
onstru
ts a Cantor set Cf . It iseasy to see that it is un
ountable, and that ea
h point x 2 Cf still satis�es�p(x) = �l(x).Finally, both the optimality and the fa
t that the set where the exponents
oin
ide has Hausdor� dimension 0 are a 
onsequen
e of Theorem 4.1 below.Alternatively, one may 
onsider the 
ase of an IFS, for whi
h one has �l(x) =�p(x) exa
tly on a dense un
ountable set of dimension 0. More pre
isely,
onsider an (attra
tor of an) IFS de�ned on [0; 1℄, verifying the fun
tionalidentity : f(x) = 
1f(2x) + 
2f(2x� 1) (10)where 0:5 < j
1j < j
2j < 1. It is known that for su
h a fun
tion, �l(t) =�log2(j
2j) for all t. Furthermore (see [1℄), �p(t) is everywhere dis
ontinuous,and ranges in the interval [�log2(j
2j);�log2(j
1j)℄. Finally, for all � in thisinterval, the set of t for whi
h �p(t) = � is dense in [0; 1℄. This is thus anexample where the lo
al and pointwise exponents have drasti
ally di�erentbehaviors, with a 
onstant �l and a wildly varying �p. It is easy to show thatthe set D on whi
h �p(t) = �l(t) = �log2(j
2j) is exa
tly the set of pointsfor whi
h the proportion of 0 in the dyadi
 expansion is 1. That this set Dis dense, un
ountable, and of Hausdor� dimension 0 is a 
lassi
al result innumber theory.So far, we have proved that �l must be not larger than �p in the sensemade pre
ise by proposition 4.1, and that both exponents must 
oin
ide atleast on a subset of a 
ertain \size". Are there other 
onstraints that rulethe relations between �l and �p ? The following theorem essentially answersin the negative:Theorem 4.1 Let 
 > 0, f : [0; 1℄ ! [
;+1) a liminf of 
ontinuous fun
-tions, with kfk1 < +1, and g : [0; 1℄ ! [
;+1) a lower semi-
ontinuousfun
tion. Assume the 
ompatibility 
ondition, i.e. 8t 2 [0; 1℄, f(t) � g(t).Then there exists a 
ontinuous fun
tion F : [0; 1℄! IR su
h that:11



� for all x, �l(x) = g(x),� for all x outside a set D of Hausdor� dimension 0, �p(x) = f(x)We prove this theorem in the next se
tion, by expli
itly 
onstru
ting F .5 Joint pres
ription of the H�older fun
tions5.1 The 
ase where �l is 
onstantWe are going in this se
tion to present a fun
tion whose lo
al H�older fun
tionis 
onstant, and whose pointwise H�older fun
tion is everywhere 
onstant (andthus equal to the lo
al H�older exponent) ex
ept at 0, where �p(0) > �p(x),x 6= 0. This is the \inverse" 
ase of a 
usp or a 
hirp, where the regularityat a single point is lower than at all the other points.This 
onstru
tion is paving the way to the more general result we willprove in the next se
tion.Proposition 5.1 Let 0 < � < � be two real numbers. Then there existsa fun
tion f : ℄ � 1; 1[! IR su
h that 8x 6= 0; �p(x) = � and �p(0) = �.Moreover, one has �l(x) = �, 8x 2℄� 1; 1[.Proof: The existen
e of su
h a fun
tion is obvious: take for example thefun
tion FW : x! jxj���W�(x);where W� is the Weierstrass fun
tionW�(x) = +1Xn=1 2�n� sin(2�2nx): (11)We will exhibit another fun
tion f with the same property. This fun
tionis built using a wavelet method that 
an be generalized to pres
ribe arbitraryH�older fun
tions.First we are going to sele
t some parti
ular 
ouples (j; k) among the wholeset of indi
es f(j; k)gj2IN;k2ZZ. To a
hieve this, 
onsider the fun
tion g de�nedby g : x! e� 1x2 if x 6= 0;0 if x = 0:12



It is known that this fun
tion is in�nitely di�erentiable at 0, and that onehas 8k 2 IN; g(k)(0) = 0.For all n 2 IN �, 
hoose one integer i 2 f1; : : : ; 2ng, and de�nepi;n = g(i2�n)2n : (12)Consider the unique integer j su
h that 1 � 2jpi;n < 2, and de�ne another(unique) integer k = i2j�n.We have thus built a fun
tion, whi
h asso
iates with ea
h 
ouple (n; i)(where n � 1 and i 2 f1; : : : ; 2ng) another 
ouple of indi
es (j; k). Let usdenote by � this set of sele
ted indi
es.Let us de�ne the following set of wavelet 
oeÆ
ients:dj;0 = 2�j�; 8j;dj;k = 2�j�; if (j; k) 2 �;dj;k = 0 everywhere else:We add, in a uniform manner, some larger 
oeÆ
ients along exponential
urves in the time-frequen
y domain..We 
an de�ne a fun
tion f by the re
onstru
tion formulaf =Xj Xk dj;k j;k: (13)Let us now prove that this fun
tion satis�es the desired properties.First this fun
tion is well de�ned, sin
e, 8(j; k); jdj;kj � 2�j�. By thetheorem of Ja�ard, f is at least C�(x), for all x 2℄� 1; 1[.Case x 6= 0.8j; 8k, one has jdj;kj � 2�j�. Thus �p(x) � �.The proof of �p(x) � � is more deli
ate. For ea
h integer n, de�ne theunique integer in verifying in2�n � x < (in + 1)2�n. When n ! +1,in2�n ! x, and, sin
e g is 
ontinuous, g(in2�n) � g(x). The asso
iated
ouple (j; k) satis�es k2�j = in2�n1 � g(in2�n)2n 2j < 213



One 
an rewrite the last inequality ing(in2�n)2�n�1 � 2�j � g(in2�n)2�n;or equivalently, using that g(in2�n) � g(x) when n goes to in�nity, andtaking the logarithm, n+ Cx � j � (n+ 1) + Cx;where Cx is a 
onstant depending only on x.Now, for the asso
iated 
ouple (j; k), one has2jjx� k2�jj � C2n+1jx� k2�jj� C2n+1jx� in2�nj� C2;sin
e by 
onstru
tion jx � in2�nj � 2�n. Thus for su
h 
ouples (j; k), onehas exa
tly dj;k = 2�j� � 2�j�(1 + 2jjx� k2�jj)�: (14)Hen
e the inequality 8j; k; jdj;kj � C2�j�(1 + 2jjx � k2�jj)� is optimal, and�p(x) � �. One 
on
ludes �p(x) = �, sin
e we already showed �p(x) � �.Case x = 0.One noti
es �rst that, by 
onstru
tion, for k = 0, dj;0 = 2�j�, thus�p(0) � �.If k 6= 0, dj;k = 0, ex
ept if there exists an integer n � 1, and an integeri 2 f1; : : : ; 2ng, su
h that k2�j = i2�n;1 � 2j g(i2�n)2n < 2:Then, for this kind of indi
es (j; k),jdj;kj = 2�j� � (2�ng(i2�n))�� (i2�n)�(g(i2�n))�:But, using the stru
ture of the fun
tion g, there exists a 
onstant C (inde-pendent of x) su
h that, 8x > 0; g(x) � Cjxj�+1� .14



Thus jdj;kj � C(ji2�nj)�(ji2�nj�+1� )�� Cji2�nj�+�+1� Cjk2�jj�+�+1� C2�j(�+�+1)(1 + jkj)�+�+1:This proves that these 
oeÆ
ients, whi
h are larger than 2�j�, are neverthe-less seen as very regular ones from the point 0. The main 
ontribution to thepointwise regularity is thus given by the wavelet 
oeÆ
ients that are lo
atedat 0, the dj;0. One 
on
ludes �p(0) = �.To end the proof, we need to prove that �l(x) = �, 8x 2℄ � 1; 1[. Thisis easily done. Indeed, using the 
hara
terization given by (7), one obtainsthat 8x 6= 0, �l(x) = �. At 0, one 
an still write �l(0) � �, but on the otherhand one uses (8) and 
on
ludes that �l(0) � lim infx!0 �l(x) = �. This
on
ludes the proof.5.2 The general 
aseIn the last se
tion, we have built a fun
tion whose pointwise exponent at 0was larger than all the other ones. In parti
ular, at 0, we have for
ed thelo
al exponent to be equal to a given value �, while at the same time thepointwise exponent was for
ed to be larger than �. The next step is to beable to do this uniformly, on a set of x as large as possible. The purpose ofthis subse
tion is to prove the theorem stated in se
tion 4 that we re
all herefor 
onvenien
e:Theorem 4.1Let 0 < 
 < 1, f : [0; 1℄! [
;+1) a liminf of 
ontinuous fun
tions, withkfk1 < +1, and g : [0; 1℄ ! [
;+1) a lower semi-
ontinuous fun
tion.Assume the 
ompatibility 
ondition, i.e. 8t 2 [0; 1℄, f(t) � g(t). Then thereexists a 
ontinuous fun
tion F : [0; 1℄! IR su
h that:for all x, �l(x) = g(x); (15)Outside a set D of Hausdor� dimension 0, �p(x) = f(x): (16)15



Let us make a few remarks.� The proof is a kind of generalization of the method used in Proposition5.1. We are going to enlarge some 
oeÆ
ients, but this time we aregoing to do this \uniformly" and not only around a single point.� Our 
onstru
tion introdu
es an asymmetry between the lo
al and thepointwise exponent: one 
an pres
ribe everywhere the lo
al exponent,while one 
an not do the same thing at the same time (with this 
on-stru
tion) for the pointwise exponent. We believe that this restri
tionis not intrinsi
, and is only a 
onsequen
e of the approa
h we havetaken.� Eventually, we will see that, applying the method we introdu
e, one
an pres
ribe the pointwise exponent everywhere ex
ept on a set ofHausdor� dimension 0. This restri
tion is weaker that the one whi
ho

urs when one wants to pres
ribe at the same time the 
hirp and thepointwise H�older exponent: S. Ja�ard has proved in [6℄ that, in thisframe, the ex
luded set is of Lebesgue measure 0. Working with thelo
al H�older exponent thus allows more 
exibility.Proof: We shall one more time 
onstru
t the fun
tion by a wavelet method.First we are going to 
onstru
t some spe
i�
 approximations sequen
esof 
ontinuous fun
tions that will approximate the fun
tions f and g.By de�nition, one knows that there exist two sequen
es of 
ontinuousfun
tions ff 0ngn and fg0ngn su
h thatlim infn f 0n = f; (17)supn g0n = g: (18)We will use the two following lemmas, that roughly say that one 
an slowdown the speed of 
onvergen
e of these two sequen
es.Lemma 5.1 Let f be a liminf of 
ontinuous fun
tions. Then there exists asequen
e of polynomials f 1n that veri�esf(t) = lim infn f 1n(t); 8t 2 [0; 1℄;k(f 1n)0(t)kL1 � logn; 8n � 1 and t 2 [0; 1℄:16



The proof of this fa
t 
an be found in [5℄ or [1℄.Lemma 5.2 Let g be an ls
 fun
tion. Then there exists a sequen
e of poly-nomials g1n that veri�es g(t) = supn g1n(t); 8t 2 [0; 1℄;k(g1n)0(t)kL1 � logn; 8n � 1 and t 2 [0; 1℄:Proof: This is a little bit more 
ompli
ated. First let us de�ne, for all nand x, g2n(x) = maxp�nfgp(x)g. One still has g(x) = supn g2n(x). One alsohas g(x) = supn g3n(x) with g3n(x) = g2n(x)� 1=n.For ea
h n > 0, there exists a polynomial Pn su
h that kg3n�PnkL1 � 2�n.One has thus built a sequen
e of polynomials su
h that g = supn Pn.One 
an now, by the same method as in Lemma 5.1, slow down the se-quen
e fPngn su
h that it will satisfy the desired 
onditions.We now set the desired sequen
es ffngn and fgngn bygn(t) = maxp�n (g1p(t); 
=2)fn(t) = max(f 1n(t); gn(t) + 1n):They verify the following properties� They still respe
tively satisfy (17) and (18).� For ea
h n, the right and left derivatives of gn and fn at ea
h pointx 2 [0; 1℄ are lower than logn, sin
e they are maxima of a �nite numberof polynomials of derivative lower than logn.� gn is non-de
reasing, i.e. 8t 2 [0; 1℄, fgn(t)gn is an non-de
reasing se-quen
e of real numbers.� One has the inequality fn � gn for all n 2 IN�.We are now going to sele
t some 
ouples of indi
es, whi
h will be thebasis of our 
onstru
tion of a fun
tion F satisfying (15) and (16).17



For n 2 f1; 2; 3; : : :g, and i 2 f1; 2; 3; : : : ; 2n�1g, let us de�ne the twointegers jn and kn;i by jn = 2nkn;i = 2jn 2i� 1jn :At ea
h n, one obtains 2n�1 
ouples, whi
h are uniformly distributed on [0; 1℄in the sense that the xn;i = kn;i2�jn = 2i�1jn are uniformly distributed on [0; 1℄.We denote by � the set of these sele
ted 
ouples (jn; kn;i).We are now ready to 
onstru
t the wavelet 
oeÆ
ients of F . We de�nedj;k = 2�jgj(xn;i) = 2�jgj(kn;i2�jn ) if (j; k) 2 �;dj;k = 2�jfj(xn;i) everywhere else.The operation we are doing is a re-s
aling of some 
oeÆ
ients, a

ording tothe lo
al regularity.Remark that for all (j; k), jdj;kj � 2�j
=2, thusF (x) =Xj Xk dj;k j;k(x)is well de�ned and is C
=2([0; 1℄).Lo
al H�older exponentLet x0 2 [0; 1℄, and � > 0. One has g(x0) = supn gn(x0), thus thereexists an integer N1 su
h that n � N1 ) gn(x0) > g(x0) � �=2. Let N2 bean integer su
h that log(N2)2�N2 � �=2. De�ne N = max(N1; N2). Then,using the boundedness of the derivatives of gN , if � = 2�N , one obtains8y 2 B(x0; �),jgN(y)� gN(x0)j � (logN)jy � x0j � (logN)2�N � �=2;and thus 8y 2 B(x0; �), gN(y) � gN(x0)� �=2:18



One thus has gN(y) � gN(x0)� �=2 � g(x0)� �, and sin
e the sequen
e gn isnon-de
reasing, the last property is still true for any gn, n � N . One obtainsthe key property:8y 2 B(x0; �); 8n � N; gn(y) � g(x0)� �; (19)Consider now the wavelet 
oeÆ
ients dj;k su
h that their support is in-
luded in B(x0; �) (these 
oeÆ
ients are the ones one shall fo
us on to 
om-pute �l(B(x0; �))). There are two sorts of su
h 
oeÆ
ients� the \normal" ones, those whi
h do not belong to �. One 
an write forthem jdj;kj � 2�jfj(k2�j) � 2�jgj(k2�j) � 2�j(g(x0)��):� those whi
h belong to �. For them,jdj;kj � 2�jgn(xn;i) � 2�j(g(x0)��):Eventually, for all the interesting 
ouples of 
oeÆ
ients (j; k), jdj;kj �2�j(g(x0)��). One 
on
ludes �l(B(x0; �)) � g(x0)� �. The result is 
learly stilltrue on every ball B(x0; �1) with �1 � �, thus one has �l(x0) � g(x0)� �.On the other hand, 8n > 0, 
onsider the unique integer i that veri�esxn;i = kn;i2jn 2 [x0 � j�1n ; x0 + j�1n ℄. Then, using the boundedness of thederivatives of gn, one 
an writejgjn(xn;i)� gjn(x0)j � log(jn)j�1n � n2�n:Let N3 be su
h that N32�N3 � �=2. For n � max(N3; N) (where N has beenabove de�ned), one hasgjn(xn;i) � gjn(x0) + �=2 � g(x0) + � (20)There is an in�nite number of su
h 
ouples (n; i), whose asso
iated wavelet
oeÆ
ients satisfyjdj;kj = jdjn;kn;ij = 2�jngjn (xn;i) � 2�jn(g(x0)+�): (21)Now, by Proposition 2.2, �l(B(x0; �)) � g(x0)+�. Sin
e, one more time, thisis also true for any �1 � �, one has �l(x0) � g(x0) + �.19



Eventually, �l(x0) = g(x0).Pointwise H�older exponentThe estimation of this exponent is more 
ompli
ated. Let x0 2 [0; 1℄, and� > 0.Without the res
aled 
oeÆ
ients (i.e. if the djn;kn;i were all equal to2�jnfjn (xn;i)), it has been proved in [1℄ that 8x, �p(x) = f(x). The questionis: do we 
hange something when we modify the values of these spe
i�

oeÆ
ients? The modi�
ations may have big in
uen
e on regularity, be
ausethe new 
oeÆ
ients are larger than the \normal" ones (indeed, remember thatf(x) � g(x)).We will show that in fa
t, the res
aled 
oeÆ
ients are not seen by mostof the points x. Thus, for su
h points, one still has �p(x) = f(x).Let us de�ne the set EM byEM = fx : 9C; 9Nx; 8n � Nx; 8i; jx� 2i� 12n j � C2�2n 
M g; (22)where M veri�es M � kfk1. Let x0 be in EM . Sin
e xn;i = 2i�12n , one has,for every i and n � Nx, 2�2n 
M � Cjx0 � xn;ij; (23)or equivalently, repla
ing jn and kn;i by their values,2�jn 
M � Cjx0 � kn;i2�jnj:We know that 
 � gjn and f(x0) < M by 
onstru
tion, thus 8y 2 [0; 1℄,gjn(y)f(x0) � 
M , and for every i and n,2�jn gjn (y)f(x0) � Cjx0 � kn;i2�jnj:This is equivalent to2�jngjn (xn;i) � Cjx0 � kn;i2�jnjf(x0);whi
h implies2�jngjn (xn;i) � C2�jnf(x0)(2jnjx0 � kn;i2�jnj)f(x0);� C2�jnf(x0)(1 + 2jnjx0 � kn;i2�jnj)f(x0):20



But djn;kn;i = 2�jngjn(xn;i), hen
e, for any x0 2 EM , there exists a 
onstant Csu
h that jdjn;kn;ij � C2�f(x0)jn(1 + 2jnjx0 � kn;i2�jnj)f(x0): (24)This shows that, if x0 2 EM \ [0; 1℄, 8n � Nx, 8p, one has (24), whi
h en-sures �p(x0) = f(x0). The large 
oeÆ
ients, those whi
h are res
aled, arenot \seen" by the pointwise H�older exponent at x0.To end the proof, it is suÆ
ient to measure the size of EM . We provein Se
tion 6 that the 
omplementary set DM of the set EM has Hausdor�dimension 0. Moreover, any rational number x = p=q belongs to EM .Remark 5.1 One 
annot say anything about the x's that are in DM =[0; 1℄nEM , ex
ept that for su
h points x, g(x) = �l(x) � �p(x). Never-theless some of them must satisfy �p(x) = �l(x) even if the fun
tions f andg satisfy f(y) > g(y) for all y in [0; 1℄.Remark 5.2 Combining the 
onstru
tion we used with the 
onstru
tion dueto S. Ja�ard in [6℄, one 
an 
ertainly pres
ribe, outside a set of Hausdor�dimension 1 but of Lebesgue measure 0, three di�erent regularity exponentsat the same time: the lo
al H�older exponent, the pointwise H�older exponent,and the 
hirp exponent (
f [10℄). This is a �rst step towards a more 
ompletepres
ription of the regularity of a fun
tion. See [9℄ for more on this topi
.6 Study of the set EMWe begin by 
omputing the Hausdor� dimension of the 
omplementary setof EMProposition 6.1 For all M > 0, the Hausdor� dimension of the set DMde�ned by DM = [0; 1℄nEM (25)is 0.Proof: Let M > 0, C > 0, and de�ne ECM byECM = fx 2 [0; 1℄ : 9Nx; 8n � Nx; 8i; jx� 2i� 12n j � C2�2n 
M g; (26)21



or equivalently,ECM = fx 2 [0; 1℄ : 9Nx 2 IN; x 62 [n�NxFCn g; (27)where FCn = [2n�1i=1 BCn;iand BCn;i = �2i� 12n � C2�2n 
M ; 2i� 12n + C2�2n 
M � :Let DCM = [0; 1℄nECM . DCM obviously satis�esDCM = \N2IN [n�N FCn :Let � > 0. One hasXn�N 2n�1Xi=1 jBCn;ij� � Xn�N 2n�1j2C2�2n 
M j�� C 02�2N 
M �+N�1;whi
h goes to zero when N goes to in�nity (C 0 is a 
onstant independentof N). Sin
e for all N , [n�NFCn is obviously a 
over of DCM by balls of size2�2N 
M , one has exa
tly shown that the �-dimensional Hausdor� measure ofDCM is 0, 8� > 0. We 
on
lude that the Hausdor� dimension of DCM is 0.Remark now that DM � \n2IN�D1=nM . DM is thus also of Hausdor� di-mension 0.In Theorem 4.1, one may 
hoose, for all x, f(x) = M > 
 = g(x) > 0.Using Proposition 4.3, we dedu
e that DM = [0; 1℄nEM must be dense andun
ountable, otherwise �l would be di�erent from �p on a too large set. ThisimpliesCorollary 6.1 DM is un
ountable and dense in [0; 1℄.We remark �nally that our 
onstru
tion also allows to pres
ribe the point-wise H�older exponent at any rational point (even at dyadi
 ones). Indeed,Proposition 6.2 OQ \ [0; 1℄ � EM . 22



Proof: Let x = pq be a rational number.For every n 2 IN ,jx� 2p� 12n j = jpq � 2p� 12n j = j2np� (2p� 1)qq2n j:Let us de
ompose the integer q as q = 2nxq1, where q1 is an odd integer.Thus, for n � nx + 1,2np� (2p� 1)q = 2nx(2n�nxp� (2p� 1)q1) 6= 0;sin
e 2n�nxp is an even integer and (2p�1)q1 is an odd integer. Consequently,8n su
h that 2n � q,jx� 2p� 12n j = j2np� (2p� 1)qq2n j � 1q2n � (2�n)2:Thus x 2 EM and Proposition 6.2 is proved.7 A
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