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Abstract

This work focuses on the local Holder exponent as a measure the
regularity of a function around a given point. We investigate in de-
tail the structure and the main properties of the local Hélder function
(i.e. the function that associates to each point its local Holder expo-
nent). We prove that it is possible to construct a continuous function
with prescribed local and pointwise Holder functions outside a set of
Hausdorff dimension 0.

1 Introduction

There exist various ways to measure the regularity of a function around a
given point. The most popular one is to use the pointwise Holder exponent
(hereafter denoted «,,), but other characterizations of local regularity exist.
These include the local Holder exponent, the chirp and oscillation exponents,
the local box and Hausdorff dimensions and the degree of fractional differen-
tiability. We shall mainly be concerned in this paper with the study of the
local Holder exponent and the local Holder function, i.e. the function that
associates to each point its local Holder exponent.



There are several motivations for investigating the local Hélder exponent.
First, this exponent is computed through a localization of the global Holder
exponent, and is thus perhaps the most natural exponent in the list above.

Another obvious reason for introducing regularity exponents other than
«, is that the knowledge of the sole pointwise Holder exponent does not
provide a full description of the regularity of a function. For instance the
cusp function z — |z|7 and the chirp function z — |z|”sin(1/]2|%), where
v and [ are positive reals, have the same pointwise Holder exponent at 0,
namely v. However, they have strongly different behaviours around 0. In
these cases, the local Holder exponents «; are respectively v and 1—'+Lﬂ The
lower value of «; for the chirp function gives a clue about the oscillatory
behaviour of the function around 0.

A further advantage of the local Holder exponent over the pointwise ex-
ponent is that «; is stable through the action of pseudo-differential operators,
while «y, is not. This means for instance that the following equality always
holds : of = af + 1, where of is the local exponent of a primitive F of f.
In contrast, one can only ensure in general that allf > asz + 1.

From a practical point of view, most methods for estimating «, make
implicitly or explicitly the assumption that o, = . It is thus of interest to
investigate the domain of validity of this equality.

Finally, in many application, the local Holder exponent and its evolution
in “time” are a relevant tool for characterizing or processing signals (see for
instance [8]).

While the main properties of the pointwise Holder function have already
been investigated, no such study has been conducted yet for the local one.
We prove in this paper that the class of local Holder functions of continuous
functions is exactly the one of non negative lower semi-continuous functions.
The next natural question consists in determining the exact links between
the two Holder-based regularity characterizations, i.e. the pointwise and
local one. In other words, we want to answer the following question: to
what extent can one prescribe independently the pointwise and local Holder
functions of a continuous function 7 We show that any couple of functions
(f, g) such that f < g, and f (resp. g) belongs to the class of local (resp.
pointwise) Hélder functions can be jointly the local and pointwise Holder
functions of a continuous function except on a set of Hausdorff dimension 0
(see theorem 4.1 for a precise statement).

In section 2, we recall the definition and main properties of the pointwise



exponent, and we start studying the local one. In section 3, we give the
structure of local Holder functions. We provide various comparisons between
the exponents in section 4. Section 5 is devoted to the construction of a
continuous function with prescribed local and pointwise Holder functions.

2 Definitions of the exponents

We recall in this section the definitions of the two regularity exponents we are
interested in. The first one, the pointwise Holder exponent, is well known.
The second one is the local Holder exponent. We give a slightly enhanced
definition of this exponent (as compared to the one in [4]), and investigate
its basic properties.

2.1 Pointwise Holder Exponent

Definition 2.1 Let f: IR — IR be a function, s >0, s ¢ IN, and xy € IR.
Then f € C*(xy) if and only if there exists a real n > 0, a polynomial P with
degree less than [s] and a constant C' such that

Vo € B(xo,n), |f(x) = Px = x0)| < Ol — ol (1)

By definition, the pointwise Holder exponent of f at wxy, denoted by
ap (), is: sup{s: f € C*(x)}.

The following wavelet characterization of this exponent, due to S. Jaffard
([7]), will be useful in the sequel:

Proposition 2.1 Assume that f € C*(xg). If |k277 — x| < 1/2, then
|djf] < C27% (14 27[k277 — o)™ (2)

Conwersely, if (2) holds for all (j, k)’s such that [k27 — xo| < 279/083)° " and
if f € C'°8, then there exist a constant C' and a polynomial P of degree at
most [a] such that

|f(x) = Pz — 20)| < Cla — xo|*(log(|w — zo]))*. (3)



C'9 is the class of functions f whose wavelet coefficients verify
dy] < C27%.

This regularity condition is stronger than uniform continuity, but does not
imply a uniform Holder continuity.

2.2 Local Holder Exponent

Let f: Q — IR be a function, where €2 C IR an open set. One classically
says that f € CF(Q2) where 0 < s < 1 if there exists a constant C' such that,
for all z,y in €,

[f(z) = f(y)] < Cle —yl*. (4)
Ifm<s<m+1(meIN), then f € C;(2) means that there exists a
constant C' such that, for all z,y in €,

0™ f(x) = 0" f(y)| < Clo —y[*~™.

Set now ;(2) = sup{s: f € C7(2)}. Remark that, if Q" C Q, o, (') >
a;(2). We will use the following lemma to define the local Holder exponent.

Lemma 2.1 Let (O;)ier be a family of decreasing open sets (i.e. O; C O, if
i > j), such that

ﬁiOi = {.’170}
Set
a(zg) = sup{y(0;) i € I}. (5)
Then oy(xg) does not depend on the choice of the family (O;)er.

Proof: Let (O;);cr and (O;);e; be two families of sets satisfying the above
conditions, and let us define the two corresponding exponents

ay(zg) = sup{al(Oj) i€ 1},
a(zo) = sup{y(0;) i € I}.

Assume that, for example, a;(z9) > d;(zo). Then there exists an integer i

such that oy(O;) > d(xo). Since the (O;);c; are decreasing, and using that
M;O0; = {xo}, there exists another integer i; > iy such that O;, C Oy,.
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Then @ (xy) > al(éil) > oy (O;,), which gives a contradiction. n

Since o is independent of the choice of the family {O;};, we shall define
the local Holder exponent using a sequence of intervals containing xg:

Definition 2.2 Let f be a function defined on a neighborhood of xy. Let
{L}new be a sequence of open decreasing intervals converging to xy. The
local Hélder exponent of the function f at xqy, denoted by «y(xy), is

ay(zg) = sup oy(I,) = lim oy(l,). (6)

nelN n—-+o0o

It is straightforward to prove that one always has a;(xg) < a,(zo).

It is also easy to obtain a wavelet characterization of oy(x), which will be
a simple consequence of the following classical proposition ([10]):

Proposition 2.2 Let xy € IR andn > 0. Then f € C/(B(xo,n)) if and only
if there exists a constant C, such that for all (j,k) such that k277 € B(zg,n),
one has |d; x| < C279.

The last proposition leads to the following characterization
Proposition 2.3

a(zo) = 7l7iir[1](sup{s :3C, k277 € B(wo,n) = |djx] < C27%}) (7)

Proof: The proof is straightforward using the characterization provided by
Proposition 2.2. "

Remark 2.1 When dealing with compactly supported functions, one can as-
sume that compactly supported wavelet, like the Daubechies ones for example

([2]), are used.



3 The structure of Holder functions

One can associate to each z its pointwise Holder exponent a,(x). This defines
a function © — «,(x), called the pointwise Holder function of f. A natural
question is to investigate the structure of the functions «,(z) when f spans
the set of continuous functions. The answer is given by the following theorem

([1)-

Theorem 3.1 Let g : IR — IR" be a function. The two following properties
are equivalent:

e g is a liminf of a sequence of continuous functions,

e There exists a continuous function f such that the pointwise Holder
function of f a,(x) satisfies a,(x) = g(x), V.

As in the case of the pointwise exponent, one can associate to each x the
local exponent of f at x. This defines a local Holder function = — ().
The structure of local Holder functions is more constrained than the one of
pointwise Holder functions, since the former must be lower semi-continuous
functions ([4]). More precisely, we have:

Theorem 3.2 Let g : IR — IR" be a function. The two following properties
are equivalent:

e ¢ is a non-negative lower semi-continuous (lsc) function.

e There exists a continuous function f such that the local Holder function
of f, ay(x), satisfies ay(x) = g(x), V.

Proof: From the definition of ay(xy), for all € > 0, there exists an interval
I, containing xy such that

(L) > agxg) — €.
Then, using the definition of ay(y) for every y € I, one concludes that
Yy € I, ay(y) > ay(I) > ayxg) — €.

This exactly shows that © — () is an lsc function. Obviously, the conti-
nuity of f entails oy > 0.



That the converse property holds, i.e. any non-negative lsc function is
the local Holder function of a continuous function f : IR — IR, will be a
consequence of theorem 4.1 below.

Now that we have discussed the structures of both «; and «,, we proceed
to examine the relation between them.

4 Relations between o; and ¢,
We start with two simple general bounds.

Proposition 4.1 Let f: I — IR be a continuous function (I is an interval
of IR). Let oy, and «y be respectively its pointwise and local Hélder functions.
Then, Vo € 1,

a(z) < min(a,(z), lirtri)ixnfap(t)). (8)

Proof: We give the proof in the case o, < 1.
By definition, Ve, there exists a constant C' such that, for ¢ close enough to
z, |f(t) — f(z)| < Ot — x|*@~¢ Comparing this to the definition of a;(r),
one deduces that o;(z) < a,(x) — €, Ve, hence oy(z) < ().

On the other hand, for every n > 0, Vy € B(x,n), one has a;(B(x,n)) <
a,(y). Combining this with the fact that oy(x) = lim,_o c;(B(x,n)), one
obtains that ay(z) < liminf, ., o, (t). n

Proposition 4.2 Let f: I — IR be a continuous function (I is an interval
of IR). If there exists a such that {x : ap(x) = a} is dense around xg, then
a(zg) < a.

Proof: The proof is straightforward using Proposition 4.1. "

This proposition has an important consequence in multifractal analy-
sis: “multifractal” functions, as IFS (see below and [1]) or repartition func-
tions of multinomial measures [3], usually have the property that, for all «,
E, = {z : ap(z) = a} is either dense on the support of the function or
empty. For functions of this kind, «a; is constant. A consequence is that it is
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not interesting in general to base a multifractal analysis on the local Holder
exponent, since the corresponding spectrum would be degenerate.

Let us now make a few remarks that go against some common thoughts
about the relation between local and pointwise Holder exponents.

e = — a,(z) is a continuous function does not imply that o (z) = a,(2)
for every z. For a counter-example, consider the sum of a Weierstrass
function with pointwise exponent a and a chirp (o, ) at 0, where
f < a. Then oy(z) = a,(x) = a for all x # 0, and a,(0) = « while
a(0) =6 < a.

e The converse proposition is also false: © — () is a continuous func-
tion does not imply that o, (x) = o, () for every x: Any well-chosen IFS
has a constant local Holder exponent while z — «a,(z) is everywhere
discontinuous.

We now move to a different kind of relation between o, and ;. The fol-
lowing proposition assesses that the two exponents can not differ everywhere:

Proposition 4.3 Let f : I — IR be a continuous function, where I is an
interval of IR. Assume that there exists v > 0 such that f € CV(I). Then
there exists a subset D of I such that:

e D is dense, uncountable and has Hausdorff dimension 0.
o Vr €D, ay(zr) = ay(x).

Furthermore, this result is optimal, i.e. there exist functions with global
Hélder regularity v > 0 such that a,(z) # «(x) for all x outside a set
of Hausdorff dimension 0.

Proof: We give the proof of the last Proposition in the case YV, o, (z) < 1.
The general result follows with similar arguments.

Let us consider a ball B(zg,ny) C I. We construct three sequences of
points {x, }n, {yn}n, {zu}n by the following method.



Let {€,}n be a positive sequence converging to 0 when n — +oo. Let us
denote by [y the real number a;(B(xg,19/2)). By definition of ¢y, there exist
two real number y; and z; such that

Y1 € B(wo,1m0/2), 21 € B(wo,m0/2),
y1 <z and |f(y1) — f(z1)] > |y — z1|Poteo.

Let us now denote by z; the middle point of [y, 21], and by 7, the number
min(21, g, — 2]/2).

Now consider the smaller ball B(xz1,7;/2), and its associated exponent
p1 = aqy(B(x1,m/2)). There exist two real numbers y, and z; such that

Yo € B(w1,1m/2), 22 € B(w1,m1/2),
Yo < 2o and | f(y2) — f(22)] > |y2 — 22|+,

We denote by x5 the middle point of [ys, 25|, and by 7, the real number
min(2-2, g, — 2]/2).

We iterate this construction scheme, and thus obtain the desired three
sequences {zp }n, {Untn, {zn}n-

Now one easily proves that

e The sequence {z,}, converges to a real number z.
e The sequences {y,}, and {z,}, also converge to x.
e For all n, one has the inequalities

y — Z
MS |x_yn| §|yn_zn|a

— Z

One can sum up these inequalities by writing

Vi, |z — yu| ~ |2 — zp| ~ |Yn — 2n]- 9)

Let us now study the local and pointwise Holder exponents of the limit
point z, respectively denoted by [, and a,. Since f € C7([0,1]), one has

9



v < By < .

First remark that the sequence {3, }, is non-decreasing, since the intervals
B(xp,n,/2) are embedded. By Proposition 3.2, one has 3, = lim,, 3,. Indeed,
since one can choose any decreasing sequence of open sets converging to x,
one specifically chooses the interval B(z,, 1,/2) (the converge of 3, is ensured
by the fact than one always has 3, < «a,).

Let us now turn to the pointwise Holder exponent. For every € > 0, there
exist 7 > 0 and a constant C such that, Vy € B(x,n), one has |f(z) — f(y)| <
Clz — y|**~¢. On the other hand, there exists an infinite number of couples
(Yn, 2n) such that y, € B(z,n) and z, € B(z,n). For those couples, one can
write

£ (yn) = f(20)] > |y — 2n|Pn T

and, on the other side

| (yn) = f(zn)] [f(yn) = F(@)] + (@) = f(20)]

Clyn — 2|* ™ + Clo — 2o
C|yn - Zn|axiea

ININ TN

where one has used (9).

Assume now that 3, < «ag, and let us take € < "‘””fzﬁ””. Since lim,, £, +¢€, =
Be, there exists N such that n > N implies 3, + €, < a, — 2¢. For such n’s,
one has

VTL Z Na C|yn - Zn|ami2€ S C|yn - Zn|ﬂn+€n S |f(yn) - f(zn)|
and |f(yn) — f(20)| < Clyn — 20|* 7,

which gives
VTL Z N7 C|yn - Zn|ami2€ S C|yn - Zn|a17€-

Since |y, — z,| — 0 when n goes to infinity, this is absurd.
One concludes «a, = 3, for the x we have found.

A simple modification of the above construction shows that the set {z :
a,(x) = o(x)} is uncountable. Indeed, starting from the interval [, =
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[y, 20|, one can split it into 5 equal parts. Focus now on the second and the
forth subintervals, and apply the construction we have described above. One
thus obtains two subintervals I (the “left” one) and I? (the “right” one).
[terating this scheme, at each stage n, one obtains 2" distinct intervals I?,
i €{1,2,...,2"}. Using this method one constructs a Cantor set C. It is
easy to see that it is uncountable, and that each point x € C still satisfies

ap(x) = ay(x).

Finally, both the optimality and the fact that the set where the exponents
coincide has Hausdorff dimension 0 are a consequence of Theorem 4.1 below.
Alternatively, one may consider the case of an IFS, for which one has o (z) =
a,(x) exactly on a dense uncountable set of dimension 0. More precisely,
consider an (attractor of an) IFS defined on [0, 1], verifying the functional
identity :

f(z) =1 f(27) + cof (20 — 1) (10)

where 0.5 < |¢1| < |eo] < 1. It is known that for such a function, o;(t) =
—loga(|c2]) for all . Furthermore (see [1]), ,(t) is everywhere discontinuous,
and ranges in the interval [—logs(|ca|), —loga(|c1|)]. Finally, for all «v in this
interval, the set of ¢ for which «,(tf) = « is dense in [0,1]. This is thus an
example where the local and pointwise exponents have drastically different
behaviors, with a constant «; and a wildly varying «,. It is easy to show that
the set D on which «a,(t) = ay(t) = —loga(|c2|) is exactly the set of points
for which the proportion of 0 in the dyadic expansion is 1. That this set D
is dense, uncountable, and of Hausdorff dimension 0 is a classical result in
number theory.

So far, we have proved that oy must be not larger than «, in the sense
made precise by proposition 4.1, and that both exponents must coincide at
least on a subset of a certain “size”. Are there other constraints that rule
the relations between o; and «, ? The following theorem essentially answers
in the negative:

Theorem 4.1 Let v > 0, f:[0,1] = [vy,+00) a liminf of continuous func-
tions, with ||f|ls < 400, and g : [0,1] = [y,+00) a lower semi-continuous
function. Assume the compatibility condition, i.e. Vt € [0,1], f(t) > g(t).
Then there ezists a continuous function F : [0,1] — IR such that:

11



e forall z, ay(z) = g(x),
e for all x outside a set D of Hausdorff dimension 0, ay(z) = f(z)

We prove this theorem in the next section, by explicitly constructing F'.

5 Joint prescription of the Holder functions

5.1 The case where ¢; is constant

We are going in this section to present a function whose local Hélder function
is constant, and whose pointwise Holder function is everywhere constant (and
thus equal to the local Holder exponent) except at 0, where a,(0) > a,(z),
x # 0. This is the “inverse” case of a cusp or a chirp, where the regularity
at a single point is lower than at all the other points.

This construction is paving the way to the more general result we will
prove in the next section.

Proposition 5.1 Let 0 < [ < « be two real numbers. Then there exists
a function f :] —1,1[— IR such that Vo # 0,,(x) = ( and o,(0) = a.
Moreover, one has ay(x) = 3, Vo €] — 1,1].

Proof: The existence of such a function is obvious: take for example the
function

Fy: o — |o|* P Ws(w),

where Wj is the Weierstrass function

Ws(z) = 20:0 27" sin (272" 7). (11)

n=1

We will exhibit another function f with the same property. This function
is built using a wavelet method that can be generalized to prescribe arbitrary
Holder functions.

First we are going to select some particular couples (j, k) among the whole
set of indices {(j, k) }jem kez. To achieve this, consider the function g defined
by

g:r— e 3 if v #0,
0 if x =0.

12



It is known that this function is infinitely differentiable at 0, and that one
has Yk € IN, g®)(0) = 0.

For all n € IN*, choose one integer i € {1,...,2"}, and define

g(i27"
=220, (12)

Consider the unique integer j such that 1 < 27p;,, < 2, and define another
(unique) integer k = 27",

We have thus built a function, which associates with each couple (n,7)
(where n > 1 and 7 € {1,...,2"}) another couple of indices (j, k). Let us
denote by I' this set of selected indices.

Let us define the following set of wavelet coefficients:

djp = 277°Vj,
dj, = 2777, if (j,k) €T,

d;r = 0 everywhere else.

We add, in a uniform manner, some larger coefficients along exponential
curves in the time-frequency domain..
We can define a function f by the reconstruction formula

F=220diktj (13)
ik

Let us now prove that this function satisfies the desired properties.
First this function is well defined, since, V(j,k),|d;x| < 2777, By the
theorem of Jaffard, f is at least C#(x), for all z €] — 1, 1].

Case = # 0.
Vj,Vk, one has |d; ;| <2798, Thus a,(z) > 8.

The proof of a,(z) < [ is more delicate. For each integer n, define the
unique integer i, verifying i,27" < x < (i, + 1)27". When n — +oo,
i,2”™ — x, and, since ¢ is continuous, ¢(i,27") ~ g(x). The associated
couple (7, k) satisfies

k277 =4,27"
gy
1< %2‘7 <2

13



One can rewrite the last inequality in
g(i,27™2 " <270 < g(i,27 )27,

or equivalently, using that ¢(i,2™™) ~ ¢(x) when n goes to infinity, and
taking the logarithm,

n+C; <j<(n+1)+Cy,

where (), is a constant depending only on z.
Now, for the associated couple (7, k), one has

21x — k277 < 02"z — k27
< C2"MYy — 27"
< (2,

since by construction |x — i,27"| < 27", Thus for such couples (j, k), one

has exactly _ _ . _
dip =27 ~ 27981 + 2|z — k277))P. (14)

Hence the inequality Vj, k, |d; x| < C279%(1 + 27|z — k277|)P is optimal, and
ap(z) < B. One concludes a,(z) = 3, since we already showed «,(z) > .

Case r = 0.
One notices first that, by construction, for k¥ = 0, d;p = 277%, thus
a,(0) < a.
If K #0, d;, = 0, except if there exists an integer n > 1, and an integer
i€ {l,...,2"}, such that
k277 = 27",
1< 24270 <9

Then, for this kind of indices (j, k),

dikl = 2777 < (27"g(i27"))
< (277 (gi2™)”.

But, using the structure of the function g, there exists a constant C' (inde-
a+l
pendent of x) such that, Vo > 0, g(z) < C’|x|%.

14



Thus

C(li2 )P (liz %)
C|i2"|etot!

O|k2f] |a+ﬂ+1

027j(a+ﬂ+1) (1 + |k|)a+ﬂ+1‘

|djx

VANVANR VARV

This proves that these coefficients, which are larger than 277%, are neverthe-
less seen as very regular ones from the point 0. The main contribution to the
pointwise regularity is thus given by the wavelet coefficients that are located
at 0, the d;o. One concludes a,(0) = a.

To end the proof, we need to prove that o;(z) = 3, Vo €] — 1,1[. This
is easily done. Indeed, using the characterization given by (7), one obtains
that Vo # 0, y(z) = 8. At 0, one can still write «;(0) > 3, but on the other
hand one uses (8) and concludes that «;(0) < liminf, .oy (x) = 5. This
concludes the proof. "

5.2 The general case

In the last section, we have built a function whose pointwise exponent at 0
was larger than all the other ones. In particular, at 0, we have forced the
local exponent to be equal to a given value (3, while at the same time the
pointwise exponent was forced to be larger than . The next step is to be
able to do this uniformly, on a set of x as large as possible. The purpose of
this subsection is to prove the theorem stated in section 4 that we recall here
for convenience:

Theorem 4.1

Let 0 < v <1, f:]0,1] = [y, +00) a liminf of continuous functions, with
Ifllee < 400, and g : [0,1] — [y,+00) a lower semi-continuous function.
Assume the compatibility condition, i.e. ¥t € [0,1], f(t) > g(t). Then there
exists a continuous function F : [0,1] — IR such that:

for all x, ay(z) = g(x), (15)

Outside a set D of Hausdorff dimension 0, a,(x) = f(x). (16)
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Let us make a few remarks.

e The proof is a kind of generalization of the method used in Proposition
5.1. We are going to enlarge some coeflicients, but this time we are
going to do this “uniformly” and not only around a single point.

e Our construction introduces an asymmetry between the local and the
pointwise exponent: one can prescribe everywhere the local exponent,
while one can not do the same thing at the same time (with this con-
struction) for the pointwise exponent. We believe that this restriction
is not intrinsic, and is only a consequence of the approach we have
taken.

e Eventually, we will see that, applying the method we introduce, one
can prescribe the pointwise exponent everywhere except on a set of
Hausdorff dimension 0. This restriction is weaker that the one which
occurs when one wants to prescribe at the same time the chirp and the
pointwise Holder exponent: S. Jaffard has proved in [6] that, in this
frame, the excluded set is of Lebesgue measure 0. Working with the
local Holder exponent thus allows more flexibility.

Proof: We shall one more time construct the function by a wavelet method.
First we are going to construct some specific approximations sequences
of continuous functions that will approximate the functions f and g.

By definition, one knows that there exist two sequences of continuous
functions {f }, and {g>}, such that

liminf f; = f, (17)

sup gn = 9. (18)

We will use the two following lemmas, that roughly say that one can slow
down the speed of convergence of these two sequences.

Lemma 5.1 Let f be a liminf of continuous functions. Then there exists a
sequence of polynomials f} that verifies

f) = liminf £1(0), Vi € [0,1),
D' () |lpe < logn, Yn > 1 and t € [0,1].

n
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The proof of this fact can be found in [5] or [1].

Lemma 5.2 Let g be an lsc function. Then there exists a sequence of poly-
nomials g\ that verifies

g(t) = supg,(t), ¥t € 0,1],
1) Ol < logn, ¥n > 1 and t € [0,1].
Proof: This is a little bit more complicated. First let us define, for all n
and z, ¢2(x) = max,<,{g,(z)}. One still has g(x) = sup, g2(x). One also
has g(z) = sup, g,(z) with g3(z) = gz (z) —1/n.

For each n > 0, there exists a polynomial P, such that ||g; — P, || < 27"
One has thus built a sequence of polynomials such that g = sup,, P,.

One can now, by the same method as in Lemma 5.1, slow down the se-
quence {P,}, such that it will satisfy the desired conditions. n

We now set the desired sequences { f,,}, and {g,}, by

gu(t) = max(g,(t),7/2)

p<n

Fult) = max(FL(0), 0a(1) + ).

They verify the following properties
e They still respectively satisfy (17) and (18).

e For each n, the right and left derivatives of g, and f, at each point
x € [0,1] are lower than logn, since they are maxima of a finite number
of polynomials of derivative lower than logn.

e g, is non-decreasing, i.e. Vt € [0,1], {g,(t)}, is an non-decreasing se-
quence of real numbers.

e One has the inequality f,, > g, for all n € IN*.

We are now going to select some couples of indices, which will be the
basis of our construction of a function F' satisfying (15) and (16).
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For n € {1,2,3,...}, and i € {1,2,3,...,2"7 '} let us define the two
integers j, and &, ; by

L g2l

In

At each n, one obtains 2"~ ! couples, which are uniformly distributed on [0, 1]
in the sense that the x,; = k, ;27" = 23—;1 are uniformly distributed on [0, 1].
We denote by A the set of these selected couples (jy,, kni)-

We are now ready to construct the wavelet coefficients of F'. We define

dj = 27900 =9Il M (k) € A,

dip = 279i@) everywhere else.

The operation we are doing is a re-scaling of some coefficients, according to
the local regularity.

Remark that for all (j, k), |d; x| < 27772, thus

F(z) = Z zk: dj ki k()

is well defined and is C"/2([0, 1]).
Local Holder exponent

Let zy € [0,1], and € > 0. One has g(zy) = sup, gn(xp), thus there
exists an integer Ny such that n > Ny = g,(w) > g(x9) — ¢/2. Let N, be
an integer such that log(N2)2 2 < ¢/2. Define N = max(N;, N,). Then,
using the boundedness of the derivatives of gy, if 7 = 27V, one obtains
vy € B(xﬂa 77)7

lgn () — gw (x0)| < (log N)|y — x| < (log N)27" < €/2,
and thus Vy € B(xo,n),

gn(y) > gn(w0) — €/2.
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One thus has gy (y) > gn(z0) —€/2 > g(xy) — €, and since the sequence g, is
non-decreasing, the last property is still true for any g,, n > N. One obtains
the key property:

Vy € B(xo,n), Yn > N, ga(y) > g(z0) — €, (19)

Consider now the wavelet coefficients d;; such that their support is in-
cluded in B(zg,n) (these coefficients are the ones one shall focus on to com-
pute «;(B(xg,n))). There are two sorts of such coefficients

e the “normal” ones, those which do not belong to A. One can write for
them

\d; | < 9=ifi(k277) < 9=igi(k277) < 9=ilg(z0)=c)

e those which belong to A. For them,

|dj,k| < 9=39n(Tn,i) < 9—i(9(wo)—e€)

Eventually, for all the interesting couples of coefficients (j, %), |d;x| <
2799(0)=9)  One concludes oy (B(z9,1)) > g(¢) — €. The result is clearly still
true on every ball B(zg,n;) with r; < 7, thus one has oy(xy) > g(xg) — €.

On the other hand, Vn > 0, consider the unique integer ¢ that verifies
Tpi = kni2" € [w9 — j, ', w0 + j;']. Then, using the boundedness of the
derivatives of g,, one can write

195, (Tni) — g5, (x0)| < log(jn)ip " < 027"

Let N3 be such that N32 ™ < ¢/2. For n > max(N3, N) (where N has been
above defined), one has

Gin (i) < g5, (w0) +€/2 < g(wo) + € (20)

There is an infinite number of such couples (n, i), whose associated wavelet
coefficients satisfy

|d],k = 27jn9jn($n,i) Z Q*jn(g($0)+5)‘ (21)

= |d ‘n:kn,i

Now, by Proposition 2.2, a;(B(x¢,7n)) < g(zo)+¢€. Since, one more time, this
is also true for any n; <1, one has a;(zg) < g(xg) + €.
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Eventually, o;(zo) = g(xy).
Pointwise Holder exponent

The estimation of this exponent is more complicated. Let 24 € [0, 1], and
e > 0.

Without the rescaled coefficients (i.e. if the dj, 4, , were all equal to
2~ infin(@ni)) it has been proved in [1] that Vz, a,(x) = f(z). The question
is: do we change something when we modify the values of these specific
coefficients? The modifications may have big influence on regularity, because
the new coefficients are larger than the “normal” ones (indeed, remember that
fz) = g(x)).

We will show that in fact, the rescaled coefficients are not seen by most
of the points x. Thus, for such points, one still has a,(x) = f(z).

Let us define the set Ej; by

. 21— 1 _on
Ey = {z : 3C, 3Ny, Y > Ny, Vi |5 — ——| > €2 '3y, (22)
where M verifies M > || f||oo. Let o be in Ey. Since z,,; = 2;1, one has,
for every ¢ and n > N,,
272" < Clzg — Tyl (23)

or equivalently, replacing j, and &, ; by their values,
27].”% S O|.Z'0 - kn,i27jn|.
We know that v < g, and f(xzg) < M by construction, thus Yy € [0,1],

f(zo) = 30

and for every 7 and n,

273."%%?)) < Clag — kni277").
This is equivalent to
9—JnGjn (Tn,i) < Clag — knyiQ*jn|f(fB0)7
which implies
9= Ingjn (Tn,i) 02_jnf(x0)(2jn|x0 _ kn,iQ_j"Df(m),
C2 I @) (1 4 2n |3y — ky, ;2797 |)F (@0,
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But dj, r, . = 2~9n9in(@ni) hence, for any z¢ € Fyy, there exists a constant C
such that . ' .
|djnykn,i| < O2-f(d?0)Jn(1 + 2]n|x0 _ kn,i2_]n|)f(x0)- (24)

This shows that, if 2o € Ey N[0, 1], Vn > N,, Vp, one has (24), which en-
sures a,(xg) = f(xp). The large coefficients, those which are rescaled, are
not “seen” by the pointwise Holder exponent at xy.

To end the proof, it is sufficient to measure the size of F;;. We prove
in Section 6 that the complementary set D, of the set Ej; has Hausdorff
dimension 0. Moreover, any rational number x = p/q belongs to E)y;.

Remark 5.1 One cannot say anything about the x’s that are in Dy =
[0, 1]\Ew, except that for such points x, g(x) = a(x) < au(z). Never-
theless some of them must satisfy ay,(v) = oy(z) even if the functions f and
g satisfy f(y) > g(y) for all y in [0, 1].

Remark 5.2 Combining the construction we used with the construction due
to S. Jaffard in [6], one can certainly prescribe, outside a set of Hausdorff
dimension 1 but of Lebesque measure 0, three different reqularity exponents
at the same time: the local Holder exponent, the pointwise Holder exponent,
and the chirp exponent (cf [10]). This is a first step towards a more complete
prescription of the regularity of a function. See [9] for more on this topic.

6 Study of the set E),

We begin by computing the Hausdorff dimension of the complementary set
of EM

Proposition 6.1 For all M > 0, the Hausdorff dimension of the set Dy,
defined by
Dy =1[0,1\Ey (25)

15 0.
Proof: Let M >0, C > 0, and define £, by

;i
ES = {x € [0,1] : IN,,Vn > Ny, Vi, |& — —

- ]_ n
2n | Z 02_2 V}? (26)
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or equivalently,

ES ={ze[0,1]:3IN, € N, & & Upsn, FC}, (27)
where
F'n,c = U?:1 Br?,z'
and 9 _ 1 92 — 1
Br?,i = 12; - C272n%7 22; +C2 2.

Let DY, = [0,1]\E$;. D$; obviously satisfies
D](\} — ﬂNeﬂ\r UnZN FT?

Let € > 0. One has

2n71
oM BYIC < Y o202 2" |
n>N =1 n>N

19—2N Letr N—1
< 0277w ;

which goes to zero when N goes to infinity (C’ is a constant independent
of N). Since for all N, U,>nFY is obviously a cover of D, by balls of size
2’2N7?4L, one has exactly shown that the e-dimensional Hausdorff measure of
DS, is 0, Ve > 0. We conclude that the Hausdorff dimension of DY is 0.

Remark now that Dy, C N,en- Djl\é". D, is thus also of Hausdorff di-
mension 0. u

In Theorem 4.1, one may choose, for all z, f(x) = M > v = g(x) > 0.
Using Proposition 4.3, we deduce that Dy, = [0, 1]\ Ey must be dense and
uncountable, otherwise oy would be different from «, on a too large set. This
implies

Corollary 6.1 D), is uncountable and dense in [0, 1].

We remark finally that our construction also allows to prescribe the point-
wise Holder exponent at any rational point (even at dyadic ones). Indeed,

Proposition 6.2 Q N[0,1] C Ey.
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Proof: Let x = £ be a rational number.
For every n € IN,

2p—1, _p 2p—1 _ 2'p—(2p—1)q
|z — |—|5— | = -

2n q2"

Let us decompose the integer ¢ as ¢ = 2"#q,, where ¢; is an odd integer.
Thus, for n > n, + 1,

2"p— (2p—1)g=2"(2"""p— (2p — 1)q1) # O,

since 2" "= p is an even integer and (2p—1)¢; is an odd integer. Consequently,
Vn such that 2" > ¢,

2p—1 2"p—(2p—1 1
2n q2" q2"
Thus z € Ej; and Proposition 6.2 is proved. "
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