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1Sto
hasti
 Fra
tal Models for Image Pro
essingB�eatri
e Pesquet-Popes
u1 and Ja
ques L�evy V�ehel21 ENST, Signal and Image Pro
essing Dept., 46, rue Barrault, 75634 Paris Cedex 13, Fran
e2 INRIA, Projet Fra
tales, Domaine de Volu
eau, 78153 Le Chesnay Cedex, Fran
eI. Are fra
tals everywhere ?A very often 
ited example of a fra
tal 
urve is the Brit-tany 
oast in Fran
e. The view one has by looking at thishighly irregular 
oast at 
oarse s
ale is indeed quite simi-lar to what 
an be observed by looking more pre
isely ata small part of the sea shore. In a famous book [1℄, it wasfurther 
laimed that fra
tals are everywhere.A
tually, in the last years, image pro
essing using fra
-tal models has represented an a
tive resear
h area stimu-lated by the plethora of appli
ations [2℄ (infographi
s [3℄,geophysi
s [4℄, [5℄, turbulen
e phenomena [6℄, [7℄, satelliteimagery, texture modeling, 
lassi�
ation and segmentation[8℄, [9℄, 
ompression, watermarking, ... ) where these 
on-
epts are potentially interesting. Fra
tals 
orrespond tothe general idea { that 
an be easily understood from anintuitive point of view { that a given obje
t, espe
ially atextured area, 
an be represented by similar 
hara
teris-ti
s \repeated" at di�erent s
ales. This versatile idea 
anhowever be translated into di�erent forms from a mathe-mati
al point of view. In this tutorial, we will be mainlyinterested in a sto
hasti
 view of fra
tals, whi
h will fo
uson more or less sophisti
ated models for des
ribing imagetextures. As will be shown in this paper, these models relyon the notion of statisti
al \self-similarity". This 
on
eptis at the origin of relevant models for several natural phe-nomena. In the meantime, the non-stationary stru
tureof self-similar pro
esses put them at the 
ore of the mostre
ent preo

upations in image and signal pro
essing.Our trip in fra
tal lands
apes will depart from the sim-plest but yet e�e
tive model of fra
tional Brownian motion,and explore its two-dimensional extensions. We will fo
uson the ability to introdu
e anisotropy in this model andwe will also be interested in 
onsidering its dis
rete-spa
e
ounterparts. We will then move towards re
ent multifra
-tional and multifra
tal models providing more degrees offreedom for �tting 
omplex 2D �elds.We note in this introdu
tion that many of the models andpro
essing des
ribed below are implemented in Fra
Lab,a software Matlab/S
ilab toolbox for fra
tal pro
essing ofsignals and images. Fra
Lab is available at the followingaddress: http://www-ro
q.inria.fr/fra
tales/.II. A simple example of a fra
tal field: thefra
tional Brownian motionA. Reminders about the 1D fBmFra
tional Brownian motion (fBm) is one of the mostpopular sto
hasti
 fra
tal model for images. It was intro-du
ed by Kolmogorov and studied by Mandelbrot and Van

Ness in 1968 [4℄. It is a nonstationary pro
ess, but it hasstationary in
rements. In 1D, it is the only self-similar (i.e.\fra
tal") Gaussian pro
ess with stationary in
rements.Let us brie
y remind some of the most important prop-erties of the one-dimensional fBm, in order to 
ompare andto extend it to two (or higher) dimensions. A pro
essfBH(t); t 2 Rg is a 1D fBm if it is Gaussian, zero-meanand its auto
orrelation fun
tion is given byRBH (t; s) = E fBH(t)BH (s)g = �22 hjtj2H + jsj2H � jt� sj2Hi ;(1)where 0 < H < 1 is the fra
tal s
aling parameter, also
alled the Hurst parameter. For H = 1=2 we obtain thewell known Brownian motion (or Wiener pro
ess), denotedby B(t). One of the most important properties of the Brow-nian motion is the independen
e of its in
rements.The fBm is a random pro
ess whi
h is 
ontinuous in themean-square sense. It admits several integral representa-tions. The most popular one, as introdu
ed in [4℄, is:BH(t) / Z 0�1 h(t� s)H�1=2 � (�s)H�1=2i dB(s)+ Z t0 (t� s)H�1=2dB(s): (2)(2) allows to interpret the fBm as a derivative of fra
tionalorder 1=2�H of Brownian motion. Another useful repre-sentation is the \spe
tral representation" of the fBm [10℄.The so-
alled "power law" or "TH law" of the fBm statesthat the varian
e of the in
rements of BH(t) is given byEf[BH(t+�)�BH(t)℄2g = �2j� j2H . We will 
all this quan-tity the "stru
ture fun
tion" of the fBm. As will be seen inSe
tion III-A, it also plays an important role in the studyof more general pro
esses with stationary in
rements. Asthe fBm is nonstationary (and therefore one 
annot de-�ne its power spe
trum), but it has stationary in
rements,it is more 
onvenient to study the 
hara
teristi
s of thispro
ess using the auto
orrelation and the spe
trum of itsin
rements. This approa
h was used in [11℄ to de�ne the"generalized power spe
trum" of BH(t), whi
h is propor-tional to j!j�(2H+1); 0 < H < 1.The �rst order in
rement of the sampled fBm is thefra
tional Gaussian noise (fGn): GH(k) = �BH(k; 1) =BH(k)�BH(k�1); k 2 Z: It is a stationary pro
ess, whoseauto
orrelation fun
tion de
ays hyperboli
ally as jkj2H�2(for H 6= 1=2), and therefore the dis
rete-time pro
ess ex-hibits a short-range dependen
e for 0 < H < 1=2, inde-penden
e for H = 1=2 (Brownian motion) and long-rangedependen
e for 1=2 < H < 1 (see Se
tion VI-A for more



2details). Moreover, as all se
ond order self-similar pro-
esses with stationary in
rements have the same se
ond-order statisti
s as the fBm, it follows that their in
re-ments have all the same auto
orrelation fun
tion as thefGn. The power spe
trum density (psd) of the fGn is givenby: S(!) / 1j!j2H�1 .Another important property of fBm is that its lo
al reg-ularity, as measured by the H�older exponent � [12℄, iswith probability one equal to H everywhere. Let us ex-plain the geometri
al meaning of this statement. Roughlyspeaking, saying that a fun
tion f has exponent � at t0means that, around t0, the graph of f \looks like" the
urve t 7! f(t0) + 
jt� t0j� in the following sense: For anypositive ", there exists a neighbourhood of t0 su
h that thepath of f inside this neighbourhood is in
luded in the en-velope de�ned by the two 
urves t 7! f(t0) + 
jt � t0j��"and t 7! f(t0)�
jt�t0j��", while this property is no longertrue for any negative " (see �gure 1). Thus, a \large" �means that f is smooth at t0, while an irregular behaviourof f at t0 translates into � 
lose to 0. For instan
e, in 2D,pixels having an exponent smaller than 2 are \irregular",while an image is smooth in regions where all the pixelshave � > 2. In the 
ase of fBm, �(t0) = H for all t0 withprobability 1, and thus the larger H is, the smoother thepath of the pro
ess will look.
Fig. 1. Graphi
al interpretation of the H�older regularity of a fun
tionf at a point t0.The 
lassi
al one-dimensional fBm 
an be generalizedto images or multidimensional pro
esses in several ways,depending on the property one is looking for.B. Multi-dimensional extensions of the fBmLet us �rst keep in mind the Gaussianity assumptionin the original de�nition of the 1D fBm and des
ribethe 
orresponding pro
esses by their 
orrelation fun
tion.The extension to two or higher dimensions is however notunique. For example, a possible generalization is the multi-parameter Wiener pro
ess, or Brownian sheet, denoted byfWH(x);x 2 RN g. It is an anisotropi
 extension, that mayhave di�erent Hurst parameters in ea
h of theN dire
tions,gathered in the ve
tor parameter H = (H1; : : : ; HN). Theidea to generalize the de�nition of fBm in Eq. (1) is here toset the 
ovarian
e between the points x = (xi)1�i�N andy = (yi)1�i�N in RN equal to the produ
t of 
ovarian
esbetween the 
omponents of the two ve
tors. This is similarto what is done for de�ning the Brownian sheet. We getthe fra
tional Brownian sheet, whi
h is thus de�ned to be

the 
entered Gaussian pro
ess with 
ovarian
e fun
tionE fFH(x)FH(y)g / NYi=1 �jxij2Hi + jyij2Hi � jxi � yij2Hi� :This �eld also admits a harmonizable representation, whi
his a separable extension of the 1D one.Another generalization of an fBm for 2D surfa
es, 
alledisotropi
 fra
tional Brownian �eld or L�evy fra
tional Brow-nian �eld, is the Gaussian zero-mean �eld BH with auto-
orrelation fun
tionRBH (x;y) / �kxk2H + kyk2H � kx� yk2H� ; (3)where 0 < H < 1 and k � k is the usual Eu
lidean normin R2 . Note that the one-dimensional pro
ess obtained by\
utting" an isotropi
 2D fBm with a line passing throughthe origin of the plane is a 1D fBm with the same self-similarity index. As said above, the interpretation of theparameter H is related to the "roughness" of the fBm im-age: the 
loser H to 0, the rougher the image (the moresimilar to a white noise) and the 
loserH to 1, the smootherthe 
orresponding texture (
f Fig. 2).
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250Fig. 2. Isotropi
 fBm's with Hurst parameters respe
tively H = 0:2and 0:8.The two (or n)-dimensional isotropi
 fBm 
an also bede�ned, as in the 1D 
ase, as a sto
hasti
 integral exist-ing in the mean-square sense [11℄. The basi
 interpreta-tion of su
h a 
onstru
tion is that the in
rements of thefBm are generated by passing a 2D white noise througha bidimensional fra
tional �lter. For an isotropi
 �eld,the fra
tional �lter is de�ned by its frequen
y response:G(!) = k!k1�H�N=2 where N is the dimension of thespa
e (N = 2 for images). Using this 
onstru
tion, Reedet al. [11℄ de�ned a generalized power spe
trum of an n-dimensional fBm as �BH (!) = k!k�2H�N .Alternatively, one 
an give an interpretation of theFourier transform of the 
orrelation fun
tion (3) in termsof a \power spe
trum density" de�ned as the Fourier trans-form of a tempered distribution. Using this result, one 
anestablish a link between the so-obtained \power spe
trum"of the fBm and the expression of the averagedWigner-Villespe
trum of the fBm introdu
ed by Flandrin [13℄. Oneshows [14℄ that the expe
ted value of the Wigner-Ville dis-tribution [15℄ of the 2D fBm is the inverse Fourier transformof this \power spe
trum". Moreover, the averaged Wigner-Ville spe
trum being de�ned as a spatial mean of the av-erage of the Wigner-Ville distribution, it follows that the



3averaged power spe
trum of the 2D fBm is, for all non-zerofrequen
ies, proportional to k!k�2H�2, whi
h is also for-mally 
onsistent with the previous expression of �BH (!).Another possibility for building multidimensional exten-sions of the 1D fBm is to de�ne self-similar �elds with sta-tionary 2D in
rements. The de�nition of the self-similarityin the multidimensional 
ase is analogous to the one in 1D:Let F (x), x 2 R2 , be a 
ontinuous-spa
e random �eld. Itis 
alled self-similar of parameter H > 0 if, for all a > 0 wehave F (ax) d= aHF (x); where d= means the equality of allits �nite-dimensional probability distributions. This impliesthat the statisti
al 
hara
teristi
s of the pro
ess are invari-ant (up to a multipli
ative 
onstant) under s
ale 
hanges.The extension of the notion of stationary in
rements is alittle bit more tri
ky and, depending on the de�nition, one
an be led to �elds with di�erent properties. For example,in 1D, one 
an see the (stri
t sense) stationarity of the in-
rements as the invarian
e of their probability distributionto translations (whi
h are the only rigid body motions in aspa
e with only one dimension). In two dimensions, the ex-tension of this property 
an be seen as the invarian
e of theprobability distribution of the in
rements F (x)�F (0) withrespe
t to all possible rigid body motions (translations, ro-tations and 
ompositions of these operations). In the senseof this de�nition, the isotropi
 fra
tional Brownian motionis the only self-similar Gaussian �eld with stationary in
re-ments. If we relax the Gaussianity 
onstraint, there existseveral self-similar �elds with (stri
t-sense) stationary in-
rements [10℄, [16℄. In parti
ular, they may have stable dis-tributions. Even though the stable �elds dis
ussed in [10℄have not been used in many image pro
essing appli
ations,the extension of Gaussian models to heavy-tailed distribu-tions for images is a very promising resear
h problem whi
hhas re
eived re
ently an in
reasing interest. Some hints onthe on-going developments will be given in Se
tion VI-D.Besides, if the stationarity is de�ned not w.r.t. all therigid body motion, but only w.r.t. translations, we 
omeup with another de�nition, dis
ussed in Se
tion III-A.III. Looking at AnisotropyThe extension from isotropi
 to anisotropi
 fra
tal im-age models 
an be realized in several ways. A �rst methodis to build anisotropi
 �elds by linear spatial transformsof isotropi
 fra
tal �elds. This approa
h is dis
ussed inSe
tion III-B. Another possible 
onstru
tion is by spatial�ltering of �elds with desired 
hara
teristi
s (see Se
tionIII-B). Last, but not least, it is possible to adopt a dire
tapproa
h by building intrinsi
ally anisotropi
 �elds, as itwas done for building the fra
tional Brownian sheet. An-other example of a dire
t 
onstru
tion will be dis
ussedin Se
tion III-A. In all these 
onstru
tions, the stru
turefun
tion of the �elds will play an important role in intro-du
ing and 
hara
terizing the anisotropy.A. Fields with stationary in
rements of fra
tional orderAs mentioned above, the manner of de�ning in
rementsin R2 is important, as it leads to �elds with di�erent prop-erties. By taking di�erent orders of di�eren
ing along

two orthogonal dire
tions of spa
e, we are emphasizing theanisotropy of the �elds under study. This enables the 
on-stru
tion of self-similar Gaussian �elds with stationary in-
rements other than the isotropi
 fBm [17℄.Consider an arbitrary spatial dire
tion (�x;�y). Ba-si
ally, the in
rements �(D;D0)F (x; y; �x;�y) of fra
-tional order (D;D0) 2 R2+ of a 2D 
ontinuous (resp.dis
rete) random �eld F (x; y) are obtained by �lteringF (x; y) with a linear �lter whose transfer fun
tion is�1� e�p�x�D �1� e�s�y�D0 ; 8(p; s) 2 C 2 . In this frame-work, a zero-mean �eld F (x; y) has (wide-sense) station-ary in
rements of order (D;D0) if it is with �nite vari-an
es and, for all (�x;�y;�0x;�0y), the 
ross-
orrelationof �(D;D0)F (x; y; �x;�y) and �(D;D0)F (x0; y0; �0x;�0y)is a fun
tion depending only on x � x0, y � y0 and�x;�y;�0x;�0y. More properties of su
h �elds are dis-
ussed in [17℄ and [18℄. In parti
ular, the isotropi
 2DfBm with parameter 0 < H < 1 has stationary fra
tionalin
rements of order (D; 0)/(0; D) for all D 2 R; D > H .A pro
ess F (x; y) with stationary in
rements of or-der (1,0)/(0,1) is 
hara
terized by its stru
ture fun
tion'(�x;�y), representing the varian
e of F (x; y) � F (x ��x; y � �y) for all (�x;�y). This fun
tion is also usedin geostatisti
s problems [19℄, and for 
hara
terizing theroughness of me
hani
al surfa
es, whi
h are by their na-ture anisotropi
 and non-stationary [20℄. The stru
turefun
tion is a fundamental 
on
ept, as it 
an be used toexpress the auto
orrelation fun
tion of the �elds with sta-tionary in
rements, whi
h shows that zero-mean Gaussian�elds with stationary in
rements are entirely 
hara
terizedby this fun
tion. Moreover, one 
an determine expli
itlythe form of the stru
ture fun
tion of su
h a �eld havingself-similar properties. More pre
isely, its expression reads:'(x; y) = �2Hf(�); where 0 < H < 1; � = px2 + y2; � =angle(x+ |y) and f is a �-periodi
 fun
tion. For example,the fun
tion f redu
es to a 
onstant in the 
ase of isotropi
fBm.B. Filtering and Linear Spatial TransformsIf we 
onsider a se
ond order random �eld F (x); x 2R2 , with stationary in
rements of order (1,0)/(0,1) andsu
h that F (0) = 0, we 
an build the �eld G(x) =RR2 h(u)F (x� u)du, where h is the impulse response of the
onsidered real �lter. Provided that h de
ays fast enough,the existen
e of this �eld is guaranteed [14℄. It has alsostationary in
rements of order (1,0)/(0,1) and its stru
turefun
tion 
an be easily dedu
ed from the stru
ture fun
tionof the �eld F .Another way of introdu
ing the anisotropy is to observethat, if 'F (�); � 2 R2 , is the stru
ture fun
tion of a �eldF (x; y) with stationary in
rements of order (1,0)/(0,1),then, for all 2 � 2 real matrix M ; F (Mx) is a �eld withstationary in
rements of order (1,0)/(0,1) with stru
turefun
tion 'F (M�). Moreover, by using polar 
oordinates� = �(
os �; sin �), the stru
ture fun
tion of an isotropi
2D fBm takes the form : 'BH (�) / �2H , whereas the stru
-ture fun
tion of any self-similar �eld with stationary in
re-



4ments of order (1; 0)/(0; 1) resulting from a linear spatialtransformation of the 2D fBm will be:' (M�) / �2H�1� � 
os [2(� � �0)℄�H : (4)
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 �elds with stru
ture fun
tion given by Eq. (4),having resp. the parameters H = 0:2, � = 0:9, �0 = 2�=3 (left), andH = 0:8, � = 0:9, �0 = �=3 (right).The parameter � 2 [0; 1℄ 
ontrols the degree of anisotro-py, while �0 2 [0; �℄ indi
ates the "privileged" dire
tion ofthe �eld. More pre
isely, the in
rements have the smallest(resp. largest) variation in the dire
tion �0 (resp., �0+�=2).The two extreme 
ases, � = 0 and � = 1, 
orrespond, re-spe
tively, to an isotropi
 fBm and to a 
ompletely oriented�eld obtained by sta
king 1D fBm's along ea
h line of di-re
tion �0 + �=2.IV. Is stationarity a realisti
 assumption?The stationary-in
rements property of fBm is useful be-
ause it allows to simplify the analysis. However, mostreal world images do not share this property. In order toobtain realisti
 models, one must 
onsider more 
omplexpro
esses, whi
h have non stationary in
rements of any or-der. One of the simplest fra
tal models that falls into this
ategory is the multifra
tional Brownian motion (mBm).The major di�eren
e between the two pro
esses is that,unlike fBm, the H�older exponent of mBm is allowed tovary along the traje
tory, a useful feature when one needsto model pro
esses whose regularity varies in spa
e, as isthe 
ase for most images. While all the properties of fBmare governed by the unique number H , a fun
tion H(x; y)is available in the 
ase of mBm. Let us give two exam-ples that explain why this is important. As we have seen,the long term 
orrelations of the in
rements of fBm de-
ay as k(2H�2), where k is the lag, resulting in long rangedependen
e (LRD) when H > 1=2 and anti-persistent be-havior when H < 1=2. In this respe
t, fBm is \degener-ated": Sin
e H rules both ends of the Fourier spe
trum,i.e. the high frequen
ies related to the H�older regularityand the low frequen
ies related to the long term depen-den
e stru
ture, it is not possible to have at the same timea very irregular lo
al behavior (H 
lose to 0) and LRD(H > 1=2). fBm is thus not adapted to model pro
esseswhi
h display both those features, su
h as Internet traÆ
or 
ertain highly textured images with strong global orga-nization, as are e.g. MR brain images. In 
ontrast, mBm

is perfe
tly �tted in this 
ase. Another example is imagesynthesis: fBm has frequently been used for generating ar-ti�
ial mountains [3℄. Su
h a modeling assumes that theirregularity of the mountain is everywhere the same. Thisis not realisti
, sin
e it does not take into a

ount, e.g.,erosion, whi
h smoothes some parts of the mountains morethan others. To model these and other �ne features oflands
apes, mBm is a mu
h better 
andidate. We brie
ypresent below the 1D mBm, then move to its 2D isotropi
and non-isotropi
 extensions.A. 1D mBmThe name \multifra
tional Brownian motion" was in-trodu
ed in [21℄ to designate the following generalizationof fBm: The mBm with fun
tional parameter H(t) is thezero-mean Gaussian pro
ess de�ned asWH(t)(t) / Z 0�1[(t� s)H(t)�1=2 � (�s)H(t)�1=2℄dB(s)+ Z t0 (t� s)H(t)�1=2dB(s); (5)where H is a C1 fun
tion ranging in (0; 1). A harmoniz-able representation of mBm was introdu
ed independentlyin [22℄. The in
rements of mBm are in general neither in-dependent nor stationary. When H(t) = H 8t, mBm is anfBm of exponent H . The 
ovarian
e of mBm reads [23℄:RWH (t; s) / jtjH(t)+H(s)+jsjH(t)+H(s)�jt�sjH(t)+H(s):One 
an show that, 
ontrarily to fBm, the in
rements ofmBm display LRD for all admissible fun
tions H(t) (of
ourse, the notion of long range dependen
e must be re-de�ned 
arefully for non-stationary in
rements, see [23℄).The main feature of mBm is that its H�older exponentvaries in time: At ea
h point t0, it equals H(t0) with prob-ability one. This is in sharp 
ontrast with fBm, where thealmost sure H�older exponent is 
onstant: As announ
edabove, mBm allows to des
ribe phenomena whose regular-ity evolves in time/spa
e. Equally with probability one,the Hausdor� and box dimensions [
; d℄ are both equal to2 � minfH(t); t 2 [
; d℄g. Another important property ofmBm is that it is asymptoti
ally lo
ally self-similar. Basi-
ally, this means that, at ea
h t, there exists an fBm withexponent H(t) whi
h is \tangent" to the mBm: A path ofan mBm is thus a \lumping" of in�nitesimal portions offBm-s with well-
hosen exponents [22℄.Let us �nally mention that one 
an de�ne a generalizedmBm where the fun
tion H is no longer restri
ted to be C1but may be very irregular. This allows to model Gaussianpro
esses with arbitrary lo
al regularity, and is a usefultool for appli
ations su
h as image segmentation [24℄.B. Two-dimensional extensions of mBmOne 
an imagine various extensions of mBm in higherdimensions. We des
ribe two versions that are dire
t gen-eralizations of the ones 
onsidered in Se
tion II-A for fBm.An isotropi
 multifra
tional Brownian �eld WH(x) is a
entered Gaussian pro
ess, whose 
ovarian
e fun
tion de-



5pends on a deterministi
 fun
tion H(x);x 2 R2 and reads:E �WH(x)(x)WH(y)(y)	 /nkxkH(x)+H(y) + kykH(x)+H(y) � kx� ykH(x)+H(y)oIt admits a moving average representation extending inthe obvious way (5) to several dimensions.An anisotropi
 version 
alled multifra
tional Browniansheet (mBs) is obtained by extending the de�nition of theBrownian sheet. For H : RN ! (0; 1)N a smooth enoughfun
tion, the mBs is the 
entered Gaussian �eld FH(x) withauto
orrelation fun
tion:E �FH(x)(x)FH(y)(y)	 /NYi=1�jxijHi(x)+Hi(y)+jyijHi(x)+Hi(y)�jxi�yijHi(x)+Hi(y)	with x = (xi)1�i�N and y = (yi)1�i�N (N = 2 for im-ages). As in 1D, one 
an study the regularity propertiesof these two �elds, and show that their H�older exponentsare 
ontrolled by the fun
tion H . Multifra
tional Brown-ian �elds have been used in [25℄ for the modeling of X-rayimages of bones in view of early dete
tion of osteoporosis.Another appli
ation is �ne terrain modeling ([26℄).V. How to Analyze and Synthesize Fra
talSurfa
esA. AnalysisOne of the most popular method for estimating the Hurstparameter of a fra
tal �eld is based on the wavelet analy-sis (WA). Being s
aled and translated versions of a singleos
illating fun
tion, wavelets [27℄ perform a mathemati
alzooming into signals. In the two-dimensional 
ase, wavelets(and wavelet pa
kets) also provide an appropriate tool for
hara
terizing �elds with fra
tal features. The most usualway to extendWA to 2 (or higher) dimensions is to 
onsiderseparable wavelet bases. The underlying notion of s
ale in-varian
e in the WA naturally relates it to nonstationaryself-similar pro
esses, whose statisti
al properties are in-variant under s
ale 
hanges. This spe
ial relation was �rstpointed out for the 1D fBm [28℄: wavelet 
oeÆ
ients offBm form stationary sequen
es at a given s
ale and satisfya \power-law" property. Applied to the 2D isotropi
 fBm,this means that the varian
e of its wavelet 
oeÆ
ients atresolution level j is proportional to 2j(2H+2) [29℄. Writtenin logarithmi
 s
ale, this leads to a simple method for es-timating the Hurst parameter of an isotropi
 fBm. In the
ase of 2D separable wavelets, we have three di�erent re-gression lines allowing to estimate H , 
orresponding to thehorizontal, verti
al and diagonal details. A more pre
iseestimation of H 
an be obtained by making a joint linearregression on all the subbands.Under some assumptions on the number of vanishing mo-ments of the WA, the same property of stationarization wasshown to be 
onsistent with the properties of more general1D random pro
esses with stationary in
rements [30℄, [31℄,

[32℄ and the results have also been extended to �elds withstationary in
rements of arbitrary fra
tional order [18℄.Other 
lassi
al methods for estimating the Hurst param-eter in
lude the box-
ounting and the variation method[33℄, [34℄, maximum likelihood estimates [35℄, [36℄, [37℄,least squares regression in the spe
tral domain [38℄, meth-ods based on the log-periodogram [39℄, or estimators basedon the moments of the in
rements [40℄, [41℄. The fra
taldimension has also been measured by morphologi
al 
ov-ers [42℄ or by algorithms adapted to a spe
i�
 appli
ation,but derived from existing methods (e.g., the \reti
ular 
ell
ounting" method [43℄, related to spe
tral algorithms orthe \fra
tal interpolation fun
tion models" [44℄).B. SynthesisSeveral methods have been proposed for synthesizingfra
tional Brownian �elds. Synthesizing fBm's is by nomeans an easy pro
ess, espe
ially if one needs to build largeimages. The problem lies mainly in the non-Markovian na-ture of fBm. The Choleski method allows exa
t synthesis,but a plain implementation requires a large 
omputationaltime and a large amount of memory. Under some minor re-stri
tions, it is possible to use fast and eÆ
ient algorithmsfor Choleski de
omposition, but various approximate meth-ods have also been designed that allow reasonable 
omputertime/memory requirements.We �rst des
ribe the steps involved in the Choleskimethod. We wish to generate samples of an index-HfBm BH at N equidistant points of [0; 1℄. The dis-
rete in
rements �BH(k=N) = BH(k=N) � BH((k �1)=N) form a stationary Gaussian sequen
e with zeromean, and the statisti
al properties of the ve
tor �BH =(�BH(1=N);�BH(2=N); : : : ;�BH(1)) are determined byits auto
ovarian
e matrix AN . Sin
e AN is positive def-inite, it may be written using its Choleski de
ompositionas AN = LNLTN where LN is an invertible lower triangularmatrix. Let �YN be an N -sample realization of a unit vari-an
e 
entered white Gaussian noise. Then it is 
lear thatthe auto
ovarian
e matrix of the random ve
tor LN�YNis exa
tly AN . Setting �BH = LN�YN , we thus generatea realization of BH as BH(k=N) =Pkp=1�BH(p=N). Thesynthesis of an fBm is now redu
ed to the 
omputationof LN from AN . Note that the pro
edure above may beapplied for synthesizing any dis
rete Gaussian pro
ess. Adire
t method for general Choleski fa
torization has 
om-plexity O(N3) and 
annot be used for building large tra
es.Fortunately, when the pro
ess is stationary (this is why wework with �BH rather than BH) and when the samplesare equi-spa
ed, the 
onsidered matrix is Toeplitz and one
an use fast algorithms, su
h as the S
hur or Levinson ones,whi
h have 
omplexity O(N2) and need O(N) memory. Itis possible to do even better if one for
es N to be a powerof 2. Su
h a requirement is 
ommon to many methods (e.g.FFT or dyadi
 wavelet-based algorithms). Then, the dou-bling S
hur algorithm ([45℄) allows the 
omplexity to beredu
ed to O(N(log2(N))2). This method was used in [46℄to synthesize 1D fBm's with 131072 sample points and 2DfBm's with 2048 � 2048 sample points.



6Let us now brie
y 
omment on some approximate meth-ods. The oldest one is the midpoint displa
ement algo-rithm. In the 
ase of Brownian motion, this is the origi-nal 
onstru
tion by P. L�evy of the Wiener pro
ess. Thismethod has a linear 
omplexity [47℄. When H 6= 1=2, how-ever, the resulting pro
ess has se
ond order properties thatdi�er signi�
antly from those of fBm. In [48℄, [37℄, an im-provement of this s
heme is proposed, whi
h allows to re-
over approximately the right 
ovarian
e fun
tion with alow 
omputational burden. The algorithm is based on thenotion of a multis
ale pro
ess, and improves on the 
lassi
almethod by using statisti
al des
riptions of the interpolationand displa
ement steps.Wavelet based methods [49℄ rely mainly on the fa
t thatthe wavelet transform a
ts as a `whitening �lter' on fra
-tional Brownian motion. This allows easy synthesis of thewavelet 
oeÆ
ients of fBm. However, the problem of build-ing the low frequen
y non-stationary approximation of thesignal remains. Other wavelet methods ([50℄, [29℄) assumethat the detail 
oeÆ
ients are un
orrelated, thus leadingto \1=f -type" �elds rather than 2D-fBm.A spe
tral method for generating an approximation ofa two dimensional N �N fBm is the in
remental Fouriersynthesis des
ribed in [51℄. The idea is to 
reate �rst aperiodi
 random �eld of size 2N � 2N with statisti
s 
loseto those of the in
rements of the 2D-fBm over half thespatial period. Su
h random �elds are easy to generatebe
ause their Karhunen-Lo�eve transform is simply the twodimensional dis
rete Fourier transform. The approximate2D-fBm is then obtained by adding up the in
rements. The
omplexity of this method is O(N2 log2(N)). This method
an also be used to generate anisotropi
 �elds with station-ary in
rements [52℄. Other approximate Fourier methodsin
lude the ones des
ribed in [3℄ and [53℄.Finally, while methods based on di�erential models areinteresting be
ause they have a physi
al meaning, they donot yield 
orre
t approximations to fBm. In fa
t, thesemethods are used to study generi
 `1=f ' noises ([54℄).Let us now dis
uss the synthesis of mBm. The usualte
hnique is based on the property that a path of an mBmwith fun
tion H(t) is \tangent" at ea
h t0 to the one ofan fBm with exponent H0 = H(t0) (see [21℄). This al-lows to generate a sample path of an mBm BH(t)(t) at theN points (ti) by generating �rst N plain fBm-s Bi withexponents Hi = H(ti). One then lumps together the ap-propriate points Bi(ti). The 
omplexity of the pro
edure isO(N2(log2(N))2). An alternate method is to make use ofthe Choleski de
omposition to generate dire
tly the sam-ples of an mBm. The 
omplexity is now O(N3): This se
-ond method is thus more 
omplex than the �rst one, butit is exa
t, whereas the previous one is approximate.VI. Dis
rete Fra
tional Models for a DigitizedWorldContinuous �elds, and in parti
ular fra
tal �elds, haveto be sampled in order to be pro
essed. Another ap-proa
h, whi
h may appear mu
h easier to apply in pra
-ti
e, is to de�ne dire
tly dis
rete-spa
e models. This

idea is also supported by the fa
t that the in
rements of
ontinuous-spa
e self-similar �elds present long-range de-penden
e (LRD) properties. They 
an be modeled by 2Dextensions of fra
tionally integrated auto-regressive movingaverage (FARIMA) pro
esses, whi
h have been su

essfullyused in �nan
e, hydrology and other appli
ations. The 2DFARIMA �elds 
an be built in an isotropi
 or anisotropi
manner, the latter being mu
h more 
exible in taking intoa

ount the 
hara
teristi
s of natural s
enes. These modelsalso 
onstitute a dis
rete alternative to the 2D fra
tionalGaussian noise. Another argument in favor of dis
rete-spa
e models is that the parameter estimation methods willbe dire
tly derived from the 
lassi
al approa
hes existingin the literature for time-series analysis.A. Long-range dependen
e and fra
tal pro
essesFor a stationary se
ond-order random pro
ess, (X(k))k2Z,the LRD is de�ned by the non summability of its auto-
orrelation fun
tion �(k). In parti
ular, a 
ondition ofLRD is the existen
e of a parameter d 2 (0; 1=2) su
hthat: limk!1 k1�2d�(k) = K
 ; with K
 2 R�+ or, equiv-alently, the power spe
trum density is divergent at theorigin: lim!!0 j!j2dS(!) = KS with KS 2 R+ : De�ningH = 1=2+ d, the LRD appears for H 2 (1=2; 1). A typi
alexample of an LRD pro
ess is the (dis
rete-time) fra
tionalGaussian noise (fGn) des
ribed in Se
tion II-A.Another example of LRD pro
esses are FARIMA pro-
esses, also 
alled fra
tionally di�eren
ed noises, whi
hhave been introdu
ed by Hosking [55℄. The psd of aFARIMA(0,d,0) pro
ess is S (!) = �2j sin(!=2)j�2d. It 
anbe remarked that, for ! ! 0; it is equivalent to that of thefGn. The 
onstraint d > 0 leads to LRD, whereas d < 1=2is ne
essary for �nite varian
e.B. Gaussian FARIMA models and related anisotropi
�eldsA possible bidimensional extension of the fra
tionalGaussian noise [11℄ is an isotropi
 �eld with 2D psdS(!x; !y) / �!2x + !2y��2d ; 0 < d < 1=2: The link be-tween d and the Hurst parameter is then: 2d = H . Itsdis
rete-spa
e equivalent is an isotropi
 2D FARIMA. Thisis a zero-mean Gaussian �eld with psd:S(!x; !y) / �sin2 !x2 + sin2 !y2 ��2d :When !x ! 0 and !y ! 0, the psd of the 2D FARIMApro
ess tends towards that of the isotropi
 fGn.As already pointed out, it is often useful to dispose ofan anisotropi
 model for LRD �elds. It 
an be built inthe same way as the isotropi
 2D fra
tionally di�eren
edGaussian noise, taking into a

ount jointly the long-rangedependen
e properties, the anisotropy and the dire
tional-ity in the image. A form for the spe
tral density answeringto these requirements is:S(!x; !y) = �2I(!x; !y)2(1�d)A�;'(!x; !y)�2where A�;'(!x; !y) = (1� � 
os') sin2 !x2 + (1 + � 
os')sin2 !y2 � 12� sin' sin!x sin!y. This expression is able, on



7the one hand, to model an isotropi
 part: I(!x; !y) =sin2 !x2 + sin2 !y2 , depending only on the fra
tional 
o-eÆ
ient d and 
apturing the LRD behaviour, and, onthe other hand, an anisotropi
 part A�;'(!x; !y) depend-ing only on � � 0 and ' 2 [0; 1). A polar 
oordi-nates 
hange (!x; !y) = !r(
os!�; sin!�) in the previ-ous expression helps in studying the psd in the neigh-borhood of the origin of the spatial frequen
y plane.Indeed, for !r ! 0, we get S(!r 
os!�; !r sin!�) �!�4dr �1 + �� 2� 
os2 �!� � '2 ���1 For an LRD �eld, thisspe
tral density diverges at the frequen
y (!x; !y) = (0; 0),for d > 0. Another 
onstraint 
omes from the fa
t that,in order to de�ne the 
orrelation fun
tion of the �eld, theintegral of its psd has to be �nite, and this leads to d < 12 .The form of the psd near the origin also suggest the inter-pretation of the parameters 
hara
terizing the model (seeFig. 4). The parameter '=2 2 [0; �) determines the ori-entation of the resulting �eld: the psd is maximum in theneighborhood of the origin for !� = '=2 and therefore theprivileged dire
tion in the �eld is '=2 + �=2. The param-eter � 2 [0; 1) 
hara
terizes the dispersion of the psd ofthe �eld around this privileged dire
tion and is 
alled theanisotropy 
oeÆ
ient. In parti
ular, we remark that, for� = 0, we �nd an isotropi
 model. The fra
tional parame-ter d determines the degree of \roughness" of the �eld. The
loser d to 1=2, the \smoother" the �eld. Note also thatthe LRD and the anisotropy terms being separated when!r ! 0, the orientation and the roughness of the �eld 
anbe tuned independently. The in
uen
e of these parameterson the generated texture are illustrated in Fig. (5).
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Fig. 4. Level sets of the psd of the anisotropi
 fra
tional Gaussiannoise, for: ' = ��=5; � = 0:97; d = 0:3 (left) ' = �=5; � = 0:17; d =0:3 (right). The angle '=2 is measured 
lo
kwise w.r.t. the verti
alaxis.The four parameters of the model: �2; d; �, ', 
anbe easily estimated in the noise-free 
ase, either by a leastmean squares approa
h, or by maximum likelihood [14℄.The �rst method relies on the fa
t that an asymptoti
allyunbiased estimator of logS(!x; !y) is, for (!x; !y) 6= (0; 0),logPN (!x; !y) + 
 (
 �= 0:57721), where PN (!x; !y) is theperiodogram of the observed image. In the se
ond 
ase,one 
an use the Whittle spe
tral approximation to derivean expli
it form for the log-likelihood [56℄, [57℄. When therealizations of the anisotropi
 FARIMA are 
orrupted byan additive Gaussian noise, the dire
t estimation of pa-rameters from the log-likelihood expression leads to a 
om-plex non-linear optimization. This 
an be alleviated byan \expe
tation-maximization" (EM) approa
h [58℄. At

ea
h iteration of the algorithm, an optimization of the same
omplexity as that of the noiseless model is performed.C. Non stationary extensionsIt is also important to note that it is possible to proposenonstationary extensions of the FARIMA 2D �elds [14℄. A
onstru
tion of su
h �elds has been detailed in [59℄: start-ing from a stationary �eld (U(n;m))(n;m)2Z2, we �rst �lterit by the �lters with frequen
y responsesGx(!x; !y) = (1� e�|!x) hsin2 �!x2 �+ sin2 �!y2 �i�1=2and Gy(!x; !y) = Gx(!y; !x). The resulting �elds Bx andBy are stationary and 
an be 
onsidered as the in
rementsof a non-stationary �eld F (n;m) with stationary in
re-ments of order (1,0)/(0,1). This one 
an be 
onstru
ted bysumming up in an appropriate way Bx and By. Moreover,if the original �eld U(n;m) is the anisotropi
 FARIMA�eld de�ned in Se
tion VI-B, then (F (n;m))(n;m)2Z2 isa �eld with stationary in
rements of order (�; 0)/(0; �),for all � 2 R; � > 2d. Therefore, these �elds are thedis
rete-spa
e equivalent of the 
ontinuous-spa
e modelswith stationary in
rements of fra
tional order dis
ussed inSe
tion III-A. In parti
ular, for isotropi
 �elds, they rep-resent dis
rete-spa
e 
ounterparts of the isotropi
 2D fBm.
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250Fig. 5. Left: dis
rete-spa
e fra
tional noise with ' = �=3; � =0:97; d = 0:3. Right: non-stationary �eld with stationary in
rements,having the above realization as �rst-order in
rement.D. Non-Gaussian Fra
tional FieldsThe driving noise in the dis
rete anisotropi
 model dis-
ussed so far has a Gaussian distribution. A large 
lass ofdistributions 
an be approximated by Gaussian mixturesand texture models 
ombining su
h distributions with LRD
hara
teristi
s have been proposed in [60℄. However, insome appli
ations (e.g. SAR, ultrasound or astronomi
alimaging), the analyzed �elds may be highly variable andit may be interesting to use \heavy" tail probability dis-tributions. In parti
ular, stable pro
esses have turned outto be good models for many impulsive signals and noises.Alpha-stable distributions have in�nite varian
e, unde�nedhigher-order moments and, in general, there does not ex-ist an expli
it form for their probability densities [61℄, [10℄.They are however interesting in linear modeling, as lineartransforms preserve the distribution of any linear 
ombina-tion of i.i.d. �-stable random variables. Alpha-stable 2Ddis
rete-spa
e pro
esses having LRD properties have beenstudied in [62℄.



8VII. Multifra
tal Surfa
esMultifra
tal analysis is 
on
erned with the study of theregularity stru
ture of fun
tions or pro
esses, both from alo
al and global point of view. More pre
isely, one startsby measuring in some way the pointwise regularity, usuallywith some kind of H�older exponents (see Se
tion II-A or[12℄). The se
ond step is to give a global des
ription ofthis regularity. This 
an be done in a geometri
 fashion,using Hausdor� dimension, or in a statisti
al one througha large deviation analysis. We des
ribe below a simpli�edversion of multifra
tal analysis in the framework of imagepro
essing. Let X(t), t 2 T = [0; 1℄2 denote the image.The Hausdor� spe
trum fh(�) des
ribes the stru
tureof the fun
tion t 7! �(t) (where �(t) is the H�older ex-ponent at t) by evaluating the size, as measured by theHausdor� dimension, of its level sets. In other words, onesets fh(�) = dimHft 2 T; �(t) = �g, where dimH(E) de-notes the Hausdor� dimension [63℄ of the set E. Sin
e ea
hE� is in
luded in T , fh takes values in [0; 2℄ [ f�1g (thevalue �1 o

urs when E� is empty, while fh(�0) = 2 in-di
ates that a whole region in the image has exponent �0).>From a heuristi
 point of view, the Hausdor� multifra
talspe
trum thus des
ribes the \size" of the set of pixels inthe image whi
h have a given regularity. For instan
e, iffh(�0) = 2 for some �0 > 2 and fh(�) < 2 for all � 6= �0,then we know that almost all points in the image have reg-ularity �0 and thus that the image is almost everywheresmooth, be
ause �0 > 2.Another global des
ription of the lo
al regularity is pro-vided by the large deviation multifra
tal spe
trum, fg(�).A heuristi
 way to introdu
e fg is as follows. Fix an inte-ger n and partition the image into n2 boxes of size 1=n2.Now pi
k a box at random. One de�nes fg(�) by writingthat the probability that the 
hosen box has a regularity� behaves as n�(2�fg(�)), when n is large. Thus, roughlyspeaking, fg(�) measures the rate of de
ay, when n tendsto in�nity, of the probability that a randomly pi
ked re-gion of size 1=n2 has regularity �. In parti
ular, if fg(�) isstri
tly smaller than 2, then the probability of observing aregularity � goes to 0 exponentially fast, with exponentialrate 2� fg(�): when n is \large", \most" pixels have an �su
h that fg(�) = 2. We mention that it is natural to in-terpret fg as a rate fun
tion in a large deviation prin
iple.The theory of Large Deviations provides 
onditions underwhi
h su
h rate fun
tions may be 
al
ulated as Legendretransforms of moment generating fun
tions. When appli
a-ble, this pro
edure yields a more robust estimation than adire
t 
omputation. In general, this allows to de�ne a newspe
trum, the Legendre spe
trum, not 
onsidered here.Multifra
tal analysis has been the subje
t of numerousstudies both in the deterministi
 and random 
ases. A verypartial list of referen
es is [64℄, [65℄, [66℄, [67℄, [68℄. Manyworks have been devoted to the 
omparison of the spe
traand their 
omputation in various 
ases. In parti
ular, itis shown for instan
e in [69℄ that the inequality fh � fgholds in full generality. The spe
tra have been determinedmost notably in the 
ase of multipli
ative 
as
ades [70℄,for whi
h one has equality between fh and fg (one then

says that the multifra
tal formalism holds). The Hausdor�spe
trum of L�evy pro
esses was 
omputed in [71℄, and thefh and fg spe
tra of a large 
lass of Gaussian pro
essesare given in [72℄. Multifra
tal analysis has a number ofimportant appli
ations in image pro
essing, some of whi
hare des
ribed in the next se
tion.VIII. Appli
ationsSome appli
ation of the fra
tal modeling of surfa
es havealready been mentioned, like texture analysis and synthe-sis, others will be dis
ussed in this se
tion.A. Geophysi
al �elds simulationA popular way to synthesize various geophysi
al phe-nomena is to use multifra
tals. The starting point of themethod is based on the remark that the simplest mod-els leading to pro
esses with non-trivial spe
tra (i.e. notredu
ed to a point) are the so-
alled multipli
ative 
as-
ades, and that these kinds of 
as
ades are believed to o
-
ur 
ommonly in many natural phenomena. To 
onstru
tthe 
rudest 
as
ade, 
hoose a real number m0 in (0; 1) andset m1 = 1 � m0 (these are 
alled the \weights"). Splitthe unit interval into two halves, and assign measure m0to [0; 1=2℄ and measure m1 to [1=2; 1℄. Iterate this pro-
ess so that at step n we are dealing with dyadi
 intervals[k2�n; (k+1)2�n℄, ea
h having a given measure �n;k. Thensplit ea
h of these interval into two halves, and put measurem0�n;k on the left one and measure m1�n;k on the rightone. One shows that this pro
edure allows to de�ne a lim-iting measure when n tends to in�nity, 
alled the binomialmeasure. The binomial measure has a multifra
tal spe
-trum looking like the mathemati
al symbol T. More 
om-plex versions of these multipli
ative pro
esses are expe
tedto be good models in a wide variety of �elds in
luding tur-bulen
e [68℄, [67℄, DLA [73℄, �nan
ial data modeling [74℄,Internet traÆ
 [75℄, [76℄, geophysi
s [77℄, . . . In parti
ular,random multipli
ative 
as
ades with a 
ontinuous s
ale pa-rameter (i.e. de�ned on a 
ontinuum of s
ales rather thandyadi
 ones) and a L�evy stable distribution for the weightswere used in a series of works [78℄ to model various multi-dimensional geophysi
al phenomena, in
luding 
louds ando
eans.Let us �nally mention another method for synthesizing
louds based on a wavelet model 
alled TAON [79℄. Imagesobtained with this model are displayed on Fig. 6.
Fig. 6. Cloud images obtained using TAON.



9B. Medi
al appli
ationsFra
tal Brownian �elds have been early used to modeltextures and the Hurst parameter has been estimated inview of segmentation and 
lassi�
ation [80℄, [81℄, [82℄. Re-
ently, isotropi
 and non-isotropi
 2D fBm and multifra
-tional Brownian �elds have been used for early dete
tionof osteoporosis from X-ray images [25℄, [83℄.C. Satellite imagingAn isotropi
 FARIMA model with a non-Gaussian (one-sided exponential) white noise driving sequen
e was usedin radar [84℄ to simulate the texture in syntheti
 apertureradar (SAR) imagery for o
ean surveillan
e. The isotropyof the model was established based on the symmetry ofthe periodogram for the RADARSAT 
lutter. This model,
ombining a LRD part with an ARMA short-range depen-den
e part, was shown to better �t the experimental 
lutterpower spe
tral density than both a MA model and a sim-ple fra
tional di�eren
ing �eld. Other appli
ations in SARimagery 
on
ern radar image data 
lassi�
ation [85℄, [86℄and the 
hara
terization and segmentation of hydrologi
albasins [87℄, both based on the fra
tal dimension.D. Image segmentationIn many appli
ations, the information 
ontained in thelo
al regularity of images is more important than the a
-tual values of the grey levels. A typi
al example is edgedete
tion: edges are not modi�ed by an aÆne transforma-tion of the grey levels, while they always 
orrespond to lowregularity pixels. It thus seems reasonable to expe
t thatestimating the H�older exponents of the image will yield rel-evant information for segmentation. In the spe
i�
 
ase ofedge dete
tion, one needs an additional, global, informa-tion. Indeed, the property of being an edge point is notonly lo
al: by de�nition, the set of the edges in the im-age has the geometry of a set of lines (as opposed to 2Dregions or isolated points), and thus must be of dimension1. From a di�erent, statisti
al, point of view, one also hasthat the probability that a randomly 
hosen pixel in an im-age of size n2 pixels is an edge point should be of the orderof 1=n. We may then 
hara
terize edges as points whi
hhave spe
i�
, low regularities (this is a lo
al 
riterion, mea-sured through the H�older exponent �) and su
h that theasso
iated spe
tra value are fh(�) = 1 (be
ause edges are1D obje
ts) and fg(�) = 1 (be
ause they have a given,resolution-dependent, probability to o

ur). Multifra
taledge dete
tion thus 
onsists in �rst estimating fg and then
lassifying as edge points those pixels whose H�older ex-ponent � is su
h that fg(�) = 1 (one assumes that themultifra
tal formalism is valid, i.e. fh = fg). An exampleof a multifra
tal segmentation is displayed on �gure 7. See[8℄ for more on this topi
.E. Image denoisingThe problem of image denoising may also be treated withmultifra
tal methods. Intuitively, it seems 
lear that mostpoints in a s
ene whose overall appearan
e is noisy (as
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250Fig. 7. Original image (left) and edges obtained through multifra
talsegmentation (right).for instan
e SAR images) will have a low regularity. Tothe 
ontrary, \smooth" images 
ontain mostly points withhigh values of �. In terms of the multifra
tal spe
trum,noisy images have a \large" fg(�) for \small" values of�, and have fg(�) < 2 for � � 2. For \
lean" images,sup�<2 fg(�) < 2, and the maximum of fg is rea
hed forexponents larger than 2. In order to denoise an image, anatural idea is then to modify it so that its multifra
talspe
trum is translated towards large values of �: in thisway, the regularity of ea
h point is in
reased, but the shapeof the spe
trum is left un
hanged. As a 
onsequen
e, theimage be
omes more readable while the respe
tive strengthof ea
h singularity remains the same (i.e. a noisy point ona 
ontour will still be, after pro
essing, more irregular thana noisy point in a smooth zone). From a pra
ti
al point ofview, the shift in H�older regularity is obtained through anon linear manipulation of the wavelet 
oeÆ
ients of theimage (see [88℄ for a detailed explanation). This method al-lows in parti
ular to pro
ess eÆ
iently 
ertain SAR imageswhi
h resist most other te
hniques, as shown in Fig. 8.
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250Fig. 8. Original SAR image (left) and its multifra
tal denoising(right): the multifra
tal spe
trum of the image is shift through a nonlinear manipulation of its wavelet 
oeÆ
ients.F. Interpolation of fra
tal surfa
esIn missing data problems, one 
an be interested in real-izing a linear interpolation of a �eld exhibiting fra
tal fea-tures. The statisti
al interpolation of nonstationary �elds(as those we have seen so far) does not enter the 
lassi
alframework of mean-square predi
tion problems for station-ary pro
esses [89℄. However, if we restri
t our analysis to�elds having stationary in
rements, it is possible to extend



10the existing methods, by exploiting the properties of thestru
ture fun
tion [90℄. Indeed, let F (n) be the value of the�eld to be estimated and S be a �nite subset of Zn n f0gwhi
h de�nes a �nite neighbourhood fn� p; p 2 Sg of thepoint n. Remark that we do not impose any 
onstraint onthe neighbourhood, whi
h 
an be symmetri
 or not. The�lter is shift-invariant (i.e. its 
oeÆ
ients do not depend onthe position n of the estimated sample) ifPp2S hn(p) = 1.The interpolation 
oeÆ
ients are estimated by minimizingthe mean square estimation error, and the problem redu
esto a linear mean square estimation. As the in
rements of Fare stationary, we 
an express the normal equations, usingthe stru
ture fun
tion. Together with the shift invarian
e
onstraint, we obtain a set of linear equations allowing todetermine the impulse response of the interpolation �lter.This method has been applied to the interpolation of un-derwater terrain maps in [90℄. Note that the des
ribedapproa
h is strongly related to kriging methods [19℄.IX. Con
lusionsResulting from more than a 
entury of theoreti
al worksrealized in mathemati
s and physi
s, the idea of fra
talshas emerged in the early 1970's. As we have shown inthe paper, this 
on
ept provides new sophisti
ated anal-ysis and synthesis tools for image pro
essing. An impor-tant question that 
ould be raised at this point is whetherfra
tals 
onstitute adequate models for real s
enes. Re
entadvan
es [91℄ have shown that even though few natural im-ages are a
tually fra
tal, methods inherited from the fra
taland multifra
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an be su
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