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Stochastic Fractal Models for Image Processing

Béatrice Pesquet-Popescu! and Jacques Lévy Véhel?
L ENST, Signal and Image Processing Dept., 46, rue Barrault, 75634 Paris Cedex 13, France
2 INRIA, Projet Fractales, Domaine de Voluceau, 78153 Le Chesnay Cedex, France

I. ARE FRACTALS EVERYWHERE 7

A very often cited example of a fractal curve is the Brit-
tany coast in France. The view one has by looking at this
highly irregular coast at coarse scale is indeed quite simi-
lar to what can be observed by looking more precisely at
a small part of the sea shore. In a famous book [1], it was
further claimed that fractals are everywhere.

Actually, in the last years, image processing using frac-
tal models has represented an active research area stimu-
lated by the plethora of applications [2] (infographics [3],
geophysics [4], [5], turbulence phenomena [6], [7], satellite
imagery, texture modeling, classification and segmentation
[8], [9], compression, watermarking, ... ) where these con-
cepts are potentially interesting. Fractals correspond to
the general idea — that can be easily understood from an
intuitive point of view — that a given object, especially a
textured area, can be represented by similar characteris-
tics “repeated” at different scales. This versatile idea can
however be translated into different forms from a mathe-
matical point of view. In this tutorial, we will be mainly
interested in a stochastic view of fractals, which will focus
on more or less sophisticated models for describing image
textures. As will be shown in this paper, these models rely
on the notion of statistical “self-similarity”. This concept
is at the origin of relevant models for several natural phe-
nomena. In the meantime, the non-stationary structure
of self-similar processes put them at the core of the most
recent preoccupations in image and signal processing.

Our trip in fractal landscapes will depart from the sim-
plest but yet effective model of fractional Brownian motion,
and explore its two-dimensional extensions. We will focus
on the ability to introduce anisotropy in this model and
we will also be interested in considering its discrete-space
counterparts. We will then move towards recent multifrac-
tional and multifractal models providing more degrees of
freedom for fitting complex 2D fields.

We note in this introduction that many of the models and
processing described below are implemented in FracLab,
a software Matlab/Scilab toolbox for fractal processing of
signals and images. FracLab is available at the following
address: http://www-rocq.inria.fr/fractales/.

II. A SIMPLE EXAMPLE OF A FRACTAL FIELD: THE
FRACTIONAL BROWNIAN MOTION
A. Reminders about the 1D fBm

Fractional Brownian motion (fBm) is one of the most
popular stochastic fractal model for images. It was intro-
duced by Kolmogorov and studied by Mandelbrot and Van

Ness in 1968 [4]. It is a nonstationary process, but it has
stationary increments. In 1D, it is the only self-similar (i.e.
“fractal”) Gaussian process with stationary increments.

Let us briefly remind some of the most important prop-
erties of the one-dimensional fBm, in order to compare and
to extend it to two (or higher) dimensions. A process
{Bu(t),t € R} is a 1D fBm if it is Gaussian, zero-mean
and its autocorrelation function is given by

2
Rp, (t,s) =E{By(t)Bu(s)} = ‘% [mzH Fls2H 5‘2H] ,
(L
where 0 < H < 1 is the fractal scaling parameter, also
called the Hurst parameter. For H = 1/2 we obtain the
well known Brownian motion (or Wiener process), denoted
by B(t). One of the most important properties of the Brow-
nian motion is the independence of its increments.
The fBm is a random process which is continuous in the
mean-square sense. It admits several integral representa-
tions. The most popular one, as introduced in [4], is:

Bu(t) /000 [(t _ )12 (—s)H*W] dB(s)
+ /t(t —s)H7124B(s). (2)

(2) allows to interpret the fBm as a derivative of fractional
order 1/2 — H of Brownian motion. Another useful repre-
sentation is the “spectral representation” of the fBm [10].

The so-called ”power law” or T law” of the fBm states
that the variance of the increments of By (t) is given by
E{[Bu(t+7)—Bu(t)]*} = o?|7|*. We will call this quan-
tity the ”structure function” of the fBm. As will be seen in
Section ITI-A; it also plays an important role in the study
of more general processes with stationary increments. As
the fBm is nonstationary (and therefore one cannot de-
fine its power spectrum), but it has stationary increments,
it is more convenient to study the characteristics of this
process using the autocorrelation and the spectrum of its
increments. This approach was used in [11] to define the
”generalized power spectrum” of By (t), which is propor-
tional to |w|~CHA+D) 0 < H < 1.

The first order increment of the sampled fBm is the
fractional Gaussian noise (fGn): Gg(k) = ABg(k;1) =
By (k)—Bg(k—1), k € Z.1t is a stationary process, whose
autocorrelation function decays hyperbolically as |k|*# 2
(for H # 1/2), and therefore the discrete-time process ex-
hibits a short-range dependence for 0 < H < 1/2, inde-
pendence for H = 1/2 (Brownian motion) and long-range
dependence for 1/2 < H < 1 (see Section VI-A for more



details). Moreover, as all second order self-similar pro-
cesses with stationary increments have the same second-
order statistics as the fBm, it follows that their incre-
ments have all the same autocorrelation function as the
fGn. The power spectrum density (psd) of the fGn is given
by: S(w) x W%

Another important property of fBm is that its local reg-
ularity, as measured by the Holder exponent « [12], is
with probability one equal to H everywhere. Let us ex-
plain the geometrical meaning of this statement. Roughly
speaking, saying that a function f has exponent a at tg
means that, around tp, the graph of f “looks like” the
curve t — f(to) + c|t — to|® in the following sense: For any
positive g, there exists a neighbourhood of ty such that the
path of f inside this neighbourhood is included in the en-
velope defined by the two curves t — f(to) + c|t — to|* ¢
and t — f(to)—c|t—to|* ¢, while this property is no longer
true for any negative e (see figure 1). Thus, a “large” «
means that f is smooth at ¢y, while an irregular behaviour
of f at ty translates into a close to 0. For instance, in 2D,
pixels having an exponent smaller than 2 are “irregular”,
while an image is smooth in regions where all the pixels
have o > 2. In the case of {Bm, «a(ty) = H for all ¢, with
probability 1, and thus the larger H is, the smoother the
path of the process will look.
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Fig. 1. Graphical interpretation of the Holder regularity of a function
f at a point .

The classical one-dimensional fBm can be generalized
to images or multidimensional processes in several ways,
depending on the property one is looking for.

B. Multi-dimensional extensions of the fBm

Let us first keep in mind the Gaussianity assumption
in the original definition of the 1D fBm and describe
the corresponding processes by their correlation function.
The extension to two or higher dimensions is however not
unique. For example, a possible generalization is the multi-
parameter Wiener process, or Brownian sheet, denoted by
{Wu(z),z € RV}. It is an anisotropic extension, that may
have different Hurst parameters in each of the IV directions,
gathered in the vector parameter H = (Hy, ..., Hy). The
idea to generalize the definition of fBm in Eq. (1) is here to
set the covariance between the points x = (2;)1<i<n and
Y = (Yi)i<i<n in RN equal to the product of covariances
between the components of the two vectors. This is similar
to what is done for defining the Brownian sheet. We get
the fractional Brownian sheet, which is thus defined to be

the centered Gaussian process with covariance function

N
E{Fa(x)Fua(y)} x H (s |22+ |22 — |y — a2
i=1

This field also admits a harmonizable representation, which
is a separable extension of the 1D one.

Another generalization of an fBm for 2D surfaces, called
isotropic fractional Brownian field or Lévy fractional Brow-
nian field, is the Gaussian zero-mean field By with auto-
correlation function

Rp, (x,y) o (Ix[I* +[ly[** = llx = y[I*) . (3)

where 0 < H < 1 and || - || is the usual Euclidean norm
in R?2. Note that the one-dimensional process obtained by
“cutting” an isotropic 2D fBm with a line passing through
the origin of the plane is a 1D fBm with the same self-
similarity index. As said above, the interpretation of the
parameter H is related to the "roughness” of the fBm im-
age: the closer H to 0, the rougher the image (the more
similar to a white noise) and the closer H to 1, the smoother
the corresponding texture (cf Fig. 2).
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Fig. 2.
and 0.8.

Isotropic fBm’s with Hurst parameters respectively H = 0.2

The two (or n)-dimensional isotropic fBm can also be
defined, as in the 1D case, as a stochastic integral exist-
ing in the mean-square sense [11]. The basic interpreta-
tion of such a construction is that the increments of the
fBm are generated by passing a 2D white noise through
a bidimensional fractional filter. For an isotropic field,
the fractional filter is defined by its frequency response:
G(w) = |Jw||'"H=N/2 where N is the dimension of the
space (N = 2 for images). Using this construction, Reed
et al. [11] defined a generalized power spectrum of an n-
dimensional fBm as ®p,, (w) = [jw|| 724N,

Alternatively, one can give an interpretation of the
Fourier transform of the correlation function (3) in terms
of a “power spectrum density” defined as the Fourier trans-
form of a tempered distribution. Using this result, one can
establish a link between the so-obtained “power spectrum”
of the fBm and the expression of the averaged Wigner-Ville
spectrum of the fBm introduced by Flandrin [13]. One
shows [14] that the expected value of the Wigner-Ville dis-
tribution [15] of the 2D fBm is the inverse Fourier transform
of this “power spectrum”. Moreover, the averaged Wigner-
Ville spectrum being defined as a spatial mean of the av-
erage of the Wigner-Ville distribution, it follows that the



averaged power spectrum of the 2D fBm is, for all non-zero
frequencies, proportional to ||w|| =22, which is also for-
mally consistent with the previous expression of ®,, (w).

Another possibility for building multidimensional exten-
sions of the 1D fBm is to define self-similar fields with sta-
tionary 2D increments. The definition of the self-similarity
in the multidimensional case is analogous to the one in 1D:
Let F(x), © € R?, be a continuous-space random field. It
is called self-similar of parameter H > 0 if, for all a > 0 we
have F(ax) & aF(x), where L means the equality of all
its finite-dimensional probability distributions. This implies
that the statistical characteristics of the process are invari-
ant (up to a multiplicative constant) under scale changes.
The extension of the notion of stationary increments is a
little bit more tricky and, depending on the definition, one
can be led to fields with different properties. For example,
in 1D, one can see the (strict sense) stationarity of the in-
crements as the invariance of their probability distribution
to translations (which are the only rigid body motions in a
space with only one dimension). In two dimensions, the ex-
tension of this property can be seen as the invariance of the
probability distribution of the increments F'(x)— F(0) with
respect to all possible rigid body motions (translations, ro-
tations and compositions of these operations). In the sense
of this definition, the isotropic fractional Brownian motion
is the only self-similar Gaussian field with stationary incre-
ments. If we relax the Gaussianity constraint, there exist
several self-similar fields with (strict-sense) stationary in-
crements [10], [16]. In particular, they may have stable dis-
tributions. Even though the stable fields discussed in [10]
have not been used in many image processing applications,
the extension of Gaussian models to heavy-tailed distribu-
tions for images is a very promising research problem which
has received recently an increasing interest. Some hints on
the on-going developments will be given in Section VI-D.

Besides, if the stationarity is defined not w.r.t. all the
rigid body motion, but only w.r.t. translations, we come
up with another definition, discussed in Section III-A.

III. LOOKING AT ANISOTROPY

The extension from isotropic to anisotropic fractal im-
age models can be realized in several ways. A first method
is to build anisotropic fields by linear spatial transforms
of isotropic fractal fields. This approach is discussed in
Section III-B. Another possible construction is by spatial
filtering of fields with desired characteristics (see Section
III-B). Last, but not least, it is possible to adopt a direct
approach by building intrinsically anisotropic fields, as it
was done for building the fractional Brownian sheet. An-
other example of a direct construction will be discussed
in Section III-A. In all these constructions, the structure
function of the fields will play an important role in intro-
ducing and characterizing the anisotropy.

A. Fields with stationary increments of fractional order

As mentioned above, the manner of defining increments
in R? is important, as it leads to fields with different prop-
erties. By taking different orders of differencing along

two orthogonal directions of space, we are emphasizing the
anisotropy of the fields under study. This enables the con-
struction of self-similar Gaussian fields with stationary in-
crements other than the isotropic fBm [17].

Consider an arbitrary spatial direction (A;,A,). Ba-
sically, the increments A(D’DI)F(:C,y;AZ,Ay) of frac-
tional order (D,D') € R% of a 2D continuous (resp.
discrete) random field F'(x,y) are obtained by filtering
F(z,y) with a linear filter whose transfer function is

)D , V(p,s) € C2. In this frame-
work, a zero-mean field F(x,y) has (wide-sense) station-
ary increments of order (D,D’) if it is with finite vari-
ances and, for all (A;, Ay, A}, Al), the cross-correlation
of A(D’DI)F(J;,y;Ax,Ay) and A(D’D’)F(x',y';A'Z,A;)
is a function depending only on =z — z', ¥y — 3’ and
Az, Ay, AL, A} More properties of such fields are dis-
cussed in [17] and [18]. In particular, the isotropic 2D
fBm with parameter 0 < H < 1 has stationary fractional
increments of order (D,0)/(0,D) for all D e R, D > H.

A process F(z,y) with stationary increments of or-
der (1,0)/(0,1) is characterized by its structure function
©(Az, Ay), representing the variance of F(z,y) — F(x —
Ag,y — Ay) for all (A,;,A,). This function is also used
in geostatistics problems [19], and for characterizing the
roughness of mechanical surfaces, which are by their na-
ture anisotropic and non-stationary [20]. The structure
function is a fundamental concept, as it can be used to
express the autocorrelation function of the fields with sta-
tionary increments, which shows that zero-mean Gaussian
fields with stationary increments are entirely characterized
by this function. Moreover, one can determine explicitly
the form of the structure function of such a field having
self-similar properties. More precisely, its expression reads:
o(z,y) = p*H f(), where 0 < H < 1, p = /a2 + 42, 6 =
angle(z + yy) and f is a w-periodic function. For example,
the function f reduces to a constant in the case of isotropic
fBm.

(]_ _ e*PAm)D (]_ _ efsAy

B. Filtering and Linear Spatial Transforms

If we consider a second order random field F(x), x €
R?, with stationary increments of order (1,0)/(0,1) and
such that F(0) = 0, we can build the field G(x) =
Jg2 h(u)F(x — u)du, where h is the impulse response of the
considered real filter. Provided that h decays fast enough,
the existence of this field is guaranteed [14]. It has also
stationary increments of order (1,0)/(0,1) and its structure
function can be easily deduced from the structure function
of the field F'.

Another way of introducing the anisotropy is to observe
that, if o (A), A € R?, is the structure function of a field
F(z,y) with stationary increments of order (1,0)/(0,1),
then, for all 2 x 2 real matrix M, F(Mx) is a field with
stationary increments of order (1,0)/(0,1) with structure
function pr(M A). Moreover, by using polar coordinates
A = p(cosb,sinf), the structure function of an isotropic
2D fBm takes the form : g, (p) x p*H, whereas the struc-
ture function of any self-similar field with stationary incre-



ments of order (1,0)/(0,1) resulting from a linear spatial
transformation of the 2D fBm will be:

0 (MA) o p*H (1= acos [2(6 — 6)]) " (4)
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Fig. 3. Anisotropic fields with structure function given by Eq. (4),
having resp. the parameters H = 0.2, a = 0.9, 69 = 27/3 (left), and
H =08, a=09,0) = /3 (right).

The parameter a € [0, 1] controls the degree of anisotro-
py, while 6y € [0, 7] indicates the ”privileged” direction of
the field. More precisely, the increments have the smallest
(resp. largest) variation in the direction 6y (resp., 8p+7/2).
The two extreme cases, = 0 and o = 1, correspond, re-
spectively, to an isotropic fBm and to a completely oriented
field obtained by stacking 1D fBm’s along each line of di-
rection By + /2.

IV. IS STATIONARITY A REALISTIC ASSUMPTION?

The stationary-increments property of fBm is useful be-
cause it allows to simplify the analysis. However, most
real world images do not share this property. In order to
obtain realistic models, one must consider more complex
processes, which have non stationary increments of any or-
der. One of the simplest fractal models that falls into this
category is the multifractional Brownian motion (mBm).
The major difference between the two processes is that,
unlike fBm, the Holder exponent of mBm is allowed to
vary along the trajectory, a useful feature when one needs
to model processes whose regularity varies in space, as is
the case for most images. While all the properties of fBm
are governed by the unique number H, a function H(z,y)
is available in the case of mBm. Let us give two exam-
ples that explain why this is important. As we have seen,
the long term correlations of the increments of fBm de-
cay as kK27 ~2) where k is the lag, resulting in long range
dependence (LRD) when H > 1/2 and anti-persistent be-
havior when H < 1/2. In this respect, fBm is “degener-
ated”: Since H rules both ends of the Fourier spectrum,
i.e. the high frequencies related to the Holder regularity
and the low frequencies related to the long term depen-
dence structure, it is not possible to have at the same time
a very irregular local behavior (H close to 0) and LRD
(H > 1/2). fBm is thus not adapted to model processes
which display both those features, such as Internet traffic
or certain highly textured images with strong global orga-
nization, as are e.g. MR brain images. In contrast, mBm

is perfectly fitted in this case. Another example is image
synthesis: fBm has frequently been used for generating ar-
tificial mountains [3]. Such a modeling assumes that the
irregularity of the mountain is everywhere the same. This
is not realistic, since it does not take into account, e.g.,
erosion, which smoothes some parts of the mountains more
than others. To model these and other fine features of
landscapes, mBm is a much better candidate. We briefly
present below the 1D mBm, then move to its 2D isotropic
and non-isotropic extensions.

A. 1D mBm

The name “multifractional Brownian motion” was in-
troduced in [21] to designate the following generalization
of fBm: The mBm with functional parameter H(t) is the
zero-mean Gaussian process defined as

0

Wi (t) f [(t — 5)HO=1/2 _ (_g)HO=1/2]qp5)

— 00

t
_ O HM=1/24p(4
+ /0 (t—s) dB(s), (5)

where H is a C! function ranging in (0,1). A harmoniz-
able representation of mBm was introduced independently
in [22]. The increments of mBm are in general neither in-
dependent nor stationary. When H(t) = H V¢, mBm is an
fBm of exponent H. The covariance of mBm reads [23]:

Ruw,, (t,s) oc [t|HOFH) 4 |g|HOFH() g HO)FH(s)

One can show that, contrarily to fBm, the increments of
mBm display LRD for all admissible functions H(t) (of
course, the notion of long range dependence must be re-
defined carefully for non-stationary increments, see [23]).

The main feature of mBm is that its Holder exponent
varies in time: At each point tg, it equals H (to) with prob-
ability one. This is in sharp contrast with fBm, where the
almost sure Holder exponent is constant: As announced
above, mBm allows to describe phenomena whose regular-
ity evolves in time/space. Equally with probability one,
the Hausdorff and box dimensions [¢, d] are both equal to
2 —min{H(t),t € [c,d]}. Another important property of
mBm is that it is asymptotically locally self-similar. Basi-
cally, this means that, at each ¢, there exists an fBm with
exponent H(t) which is “tangent” to the mBm: A path of
an mBm is thus a “lumping” of infinitesimal portions of
fBm-s with well-chosen exponents [22].

Let us finally mention that one can define a generalized
mBm where the function H is no longer restricted to be C!
but may be very irregular. This allows to model Gaussian
processes with arbitrary local regularity, and is a useful
tool for applications such as image segmentation [24].

B. Two-dimensional extensions of mBm

One can imagine various extensions of mBm in higher
dimensions. We describe two versions that are direct gen-
eralizations of the ones considered in Section II-A for fBm.

An isotropic multifractional Brownian field Wy () is a
centered Gaussian process, whose covariance function de-



pends on a deterministic function H(x),x € R? and reads:

WH(y) )} o
) 4 |y |[HOOHH®) 1% — y||H(x)+H(y)}

E{Wgx)(x
{1100

It admits a moving average representation extending in
the obvious way (5) to several dimensions.

An anisotropic version called multifractional Brownian
sheet (mBs) is obtained by extending the definition of the
Brownian sheet. For H : RV — (0,1)N a smooth enough
function, the mBs is the centered Gaussian field Fpy () with
autocorrelation function:

E{Fryx) (%) Friy) ()}

N

H“xl +|y )+H;i(y |$ _ i(x)+Hi(Y)}
=1

with x = (xi)lgigN and Yy = (yi)lgigN (N = 2 for im-
ages). As in 1D, one can study the regularity properties
of these two fields, and show that their Holder exponents
are controlled by the function H. Multifractional Brown-
ian fields have been used in [25] for the modeling of X-ray
images of bones in view of early detection of osteoporosis.
Another application is fine terrain modeling ([26]).

V. How TO ANALYZE AND SYNTHESIZE FRACTAL
SURFACES

A. Analysis

One of the most popular method for estimating the Hurst
parameter of a fractal field is based on the wavelet analy-
sis (WA). Being scaled and translated versions of a single
oscillating function, wavelets [27] perform a mathematical
zooming into signals. In the two-dimensional case, wavelets
(and wavelet packets) also provide an appropriate tool for
characterizing fields with fractal features. The most usual
way to extend WA to 2 (or higher) dimensions is to consider
separable wavelet bases. The underlying notion of scale in-
variance in the WA naturally relates it to nonstationary
self-similar processes, whose statistical properties are in-
variant under scale changes. This special relation was first
pointed out for the 1D fBm [28]: wavelet coefficients of
fBm form stationary sequences at a given scale and satisfy
a “power-law” property. Applied to the 2D isotropic {Bm,
this means that the variance of its wavelet coefficients at
resolution level j is proportional to 2/(2#+2) [29]. Written
in logarithmic scale, this leads to a simple method for es-
timating the Hurst parameter of an isotropic fBm. In the
case of 2D separable wavelets, we have three different re-
gression lines allowing to estimate H, corresponding to the
horizontal, vertical and diagonal details. A more precise
estimation of H can be obtained by making a joint linear
regression on all the subbands.

Under some assumptions on the number of vanishing mo-
ments of the WA, the same property of stationarization was
shown to be consistent with the properties of more general
1D random processes with stationary increments [30], [31],

[32] and the results have also been extended to fields with
stationary increments of arbitrary fractional order [18].

Other classical methods for estimating the Hurst param-
eter include the box-counting and the variation method
[33], [34], maximum likelihood estimates [35], [36], [37],
least squares regression in the spectral domain [38], meth-
ods based on the log-periodogram [39], or estimators based
on the moments of the increments [40], [41]. The fractal
dimension has also been measured by morphological cov-
ers [42] or by algorithms adapted to a specific application,
but derived from existing methods (e.g., the “reticular cell
counting” method [43], related to spectral algorithms or
the “fractal interpolation function models” [44]).

B. Synthesis

Several methods have been proposed for synthesizing
fractional Brownian fields. Synthesizing fBm’s is by no
means an easy process, especially if one needs to build large
images. The problem lies mainly in the non-Markovian na-
ture of fBm. The Choleski method allows exact synthesis,
but a plain implementation requires a large computational
time and a large amount of memory. Under some minor re-
strictions, it is possible to use fast and efficient algorithms
for Choleski decomposition, but various approximate meth-
ods have also been designed that allow reasonable computer
time/memory requirements.

We first describe the steps involved in the Choleski
method. We wish to generate samples of an index-H
fBm By at N equidistant points of [0,1]. The dis-
crete increments ABg(k/N) = Bp(k/N) — Bu((k —
1)/N) form a stationary Gaussian sequence with zero
mean, and the statistical properties of the vector ABy =
(ABy(1/N),ABy(2/N),...,ABg(1)) are determined by
its autocovariance matrix Ay. Since Ay is positive def-
inite, it may be written using its Choleski decomposition
as Ay =L NL% where Ly is an invertible lower triangular
matrix. Let AYxy be an N-sample realization of a unit vari-
ance centered white Gaussian noise. Then it is clear that
the autocovariance matrix of the random vector LyAYy
is exactly An. Setting ABy = LyAYy, we thus generate
a realization of By as By (k/N) = 22:1 ABy(p/N). The
synthesis of an fBm is now reduced to the computation
of Ly from Ay. Note that the procedure above may be
applied for synthesizing any discrete Gaussian process. A
direct method for general Choleski factorization has com-
plexity O(N?) and cannot be used for building large traces.
Fortunately, when the process is stationary (this is why we
work with ABp rather than By) and when the samples
are equi-spaced, the considered matrix is Toeplitz and one
can use fast algorithms, such as the Schur or Levinson ones,
which have complexity O(N?) and need O(N) memory. It
is possible to do even better if one forces IV to be a power
of 2. Such a requirement is common to many methods (e.g.
FFT or dyadic wavelet-based algorithms). Then, the dou-
bling Schur algorithm ([45]) allows the complexity to be
reduced to O(N (log,(N))?). This method was used in [46]
to synthesize 1D fBm’s with 131072 sample points and 2D
fBm’s with 2048 x 2048 sample points.



Let us now briefly comment on some approximate meth-
ods. The oldest one is the midpoint displacement algo-
rithm. In the case of Brownian motion, this is the origi-
nal construction by P. Lévy of the Wiener process. This
method has a linear complexity [47]. When H # 1/2, how-
ever, the resulting process has second order properties that
differ significantly from those of fBm. In [48], [37], an im-
provement of this scheme is proposed, which allows to re-
cover approximately the right covariance function with a
low computational burden. The algorithm is based on the
notion of a multiscale process, and improves on the classical
method by using statistical descriptions of the interpolation
and displacement steps.

Wavelet based methods [49] rely mainly on the fact that
the wavelet transform acts as a ‘whitening filter’ on frac-
tional Brownian motion. This allows easy synthesis of the
wavelet coefficients of fBm. However, the problem of build-
ing the low frequency non-stationary approximation of the
signal remains. Other wavelet methods ([50], [29]) assume
that the detail coefficients are uncorrelated, thus leading
to “1/f-type” fields rather than 2D-fBm.

A spectral method for generating an approximation of
a two dimensional N x N fBm is the incremental Fourier
synthesis described in [51]. The idea is to create first a
periodic random field of size 2N x 2N with statistics close
to those of the increments of the 2D-fBm over half the
spatial period. Such random fields are easy to generate
because their Karhunen-Loeve transform is simply the two
dimensional discrete Fourier transform. The approximate
2D-fBm is then obtained by adding up the increments. The
complexity of this method is O(N? log,(N)). This method
can also be used to generate anisotropic fields with station-
ary increments [52]. Other approximate Fourier methods
include the ones described in [3] and [53].

Finally, while methods based on differential models are
interesting because they have a physical meaning, they do
not yield correct approximations to fBm. In fact, these
methods are used to study generic ‘1/ f’ noises ([54]).

Let us now discuss the synthesis of mBm. The usual
technique is based on the property that a path of an mBm
with function H(t) is “tangent” at each ¢y to the one of
an fBm with exponent Hy = H(ty) (see [21]). This al-
lows to generate a sample path of an mBm By (t) at the
N points (t;) by generating first N plain {Bm-s B; with
exponents H; = H(t;). One then lumps together the ap-
propriate points B;(t;). The complexity of the procedure is
O(N?(log,(N))?). An alternate method is to make use of
the Choleski decomposition to generate directly the sam-
ples of an mBm. The complexity is now O(N?3): This sec-
ond method is thus more complex than the first one, but
it is exact, whereas the previous one is approximate.

VI. DISCRETE FRACTIONAL MODELS FOR A DIGITIZED
WORLD

Continuous fields, and in particular fractal fields, have
to be sampled in order to be processed. Another ap-
proach, which may appear much easier to apply in prac-
tice, is to define directly discrete-space models. This

idea is also supported by the fact that the increments of
continuous-space self-similar fields present long-range de-
pendence (LRD) properties. They can be modeled by 2D
extensions of fractionally integrated auto-regressive moving
average (FARIMA) processes, which have been successfully
used in finance, hydrology and other applications. The 2D
FARIMA fields can be built in an isotropic or anisotropic
manner, the latter being much more flexible in taking into
account the characteristics of natural scenes. These models
also constitute a discrete alternative to the 2D fractional
Gaussian noise. Another argument in favor of discrete-
space models is that the parameter estimation methods will
be directly derived from the classical approaches existing
in the literature for time-series analysis.

A. Long-range dependence and fractal processes

For a stationary second-order random process, (X (k)), .z,
the LRD is defined by the non summability of its auto-
correlation function I'(k). In particular, a condition of
LRD is the existence of a parameter d € (0,1/2) such
that: limg_,o k' 2T'(k) = K, with K, € R} or, equiv-
alently, the power spectrum density is divergent at the
origin: lim, ¢ |w|*?S(w) = Ks with Ks € R, . Defining
H =1/2+d, the LRD appears for H € (1/2,1). A typical
example of an LRD process is the (discrete-time) fractional
Gaussian noise (fGn) described in Section II-A.

Another example of LRD processes are FARIMA pro-
cesses, also called fractionally differenced noises, which
have been introduced by Hosking [55]. The psd of a
FARIMA(0,d,0) process is S (w) = o?|sin(w/2)| 2%. It can
be remarked that, for w — 0, it is equivalent to that of the
fGn. The constraint d > 0 leads to LRD, whereas d < 1/2
is necessary for finite variance.

B. Gaussian FARIMA models and related anisotropic
fields

A possible bidimensional extension of the fractional
Gaussian noise [11] is an isotropic field with 2D psd
Swe,wy) o (w2 +w2) ™", 0 < d < 1/2. The link be-
tween d and the Hurst parameter is then: 2d = H. Its
discrete-space equivalent is an isotropic 2D FARIMA. This
is a zero-mean Gaussian field with psd:

—2d
S(wg,wy) (sin2 Yo 4 gin? ﬂ) .
2 2
When w, — 0 and w, — 0, the psd of the 2D FARIMA
process tends towards that of the isotropic fGn.

As already pointed out, it is often useful to dispose of
an anisotropic model for LRD fields. It can be built in
the same way as the isotropic 2D fractionally differenced
Gaussian noise, taking into account jointly the long-range
dependence properties, the anisotropy and the directional-
ity in the image. A form for the spectral density answering
to these requirements is:

2(1—d

S(wg,wy) = 02I(w$,wy) )Ao{,@(w,},wy)*2

where A, ,(wy,wy) = (1 — acosy)sin® £ + (1 + acosp)

gin? % 1

5 — jasingsinw; sinw,. This expression is able, on



the one hand, to model an isotropic part: I(wg,wy) =
sin? =+ sin? w—;‘, depending only on the fractional co-
efficient d and capturing the LRD behaviour, and, on
the other hand, an anisotropic part Aq,,(ws,wy) depend-
ing only on @ > 0 and ¢ € [0,1). A polar coordi-
nates change (wy,wy) = wr(cosweg,sinwy) in the previ-
ous expression helps in studying the psd in the neigh-
borhood of the origin of the spatial frequency plane.
Indeed, for w, — 0, we get S(w,coswy,w,sinwy) ~
w14 a —2acos® (wg — £)] ~" For an LRD field, this
spectral density diverges at the frequency (w,,w,) = (0,0),
for d > 0. Another constraint comes from the fact that,
in order to define the correlation function of the field, the
integral of its psd has to be finite, and this leads to d < %
The form of the psd near the origin also suggest the inter-
pretation of the parameters characterizing the model (see
Fig. 4). The parameter ¢/2 € [0,7) determines the ori-
entation of the resulting field: the psd is maximum in the
neighborhood of the origin for wy = /2 and therefore the
privileged direction in the field is ¢/2 4+ 7/2. The param-
eter a € [0,1) characterizes the dispersion of the psd of
the field around this privileged direction and is called the
anisotropy coefficient. In particular, we remark that, for
a = 0, we find an isotropic model. The fractional parame-
ter d determines the degree of “roughness” of the field. The
closer d to 1/2, the “smoother” the field. Note also that
the LRD and the anisotropy terms being separated when
wy — 0, the orientation and the roughness of the field can
be tuned independently. The influence of these parameters
on the generated texture are illustrated in Fig. (5).
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Fig. 4. Level sets of the psd of the anisotropic fractional Gaussian
noise, for: ¢ = —7w/5,a = 0.97,d = 0.3 (left) ¢ = 7/5,a = 0.17,d =
0.3 (right). The angle ¢/2 is measured clockwise w.r.t. the vertical
axis.

The four parameters of the model: o2, d, a, ¢, can

be easily estimated in the noise-free case, either by a least
mean squares approach, or by maximum likelihood [14].
The first method relies on the fact that an asymptotically
unbiased estimator of log S(wa, wy) is, for (wa,wy) # (0,0),
log Pn (wg,wy) + v (v 2 0.57721), where Py (wy,wy) is the
periodogram of the observed image. In the second case,
one can use the Whittle spectral approximation to derive
an explicit form for the log-likelihood [56], [57]. When the
realizations of the anisotropic FARIMA are corrupted by
an additive Gaussian noise, the direct estimation of pa-
rameters from the log-likelihood expression leads to a com-
plex non-linear optimization. This can be alleviated by
an “expectation-maximization” (EM) approach [58]. At

each iteration of the algorithm, an optimization of the same
complexity as that of the noiseless model is performed.

C. Non stationary extensions

It is also important to note that it is possible to propose
nonstationary extensions of the FARIMA 2D fields [14]. A
construction of such fields has been detailed in [59]: start-
ing from a stationary field (U(n,m)), ,)ezz2, we first filter
it by the filters with frequency responses

—1/2

Go(wg,wy) = (1 —e =) [sin2 (%) + sin? (%)] /
and Gy (wg, wy) = G4 (wy,wy). The resulting fields B, and
B, are stationary and can be considered as the increments
of a non-stationary field F'(n,m) with stationary incre-
ments of order (1,0)/(0,1). This one can be constructed by
summing up in an appropriate way B, and B,. Moreover,
if the original field U(n,m) is the anisotropic FARIMA
field defined in Section VI-B, then (F(n,m)), ) ez2 18
a field with stationary increments of order («,0)/(0, ),
for all @ € R, a > 2d. Therefore, these fields are the
discrete-space equivalent of the continuous-space models
with stationary increments of fractional order discussed in
Section III-A. In particular, for isotropic fields, they rep-
resent discrete-space counterparts of the isotropic 2D fBm.

Fig. 5. Left: discrete-space fractional noise with ¢ = 7/3,a =
0.97,d = 0.3. Right: non-stationary field with stationary increments,
having the above realization as first-order increment.

D. Non-Gaussian Fractional Fields

The driving noise in the discrete anisotropic model dis-
cussed so far has a Gaussian distribution. A large class of
distributions can be approximated by Gaussian mixtures
and texture models combining such distributions with LRD
characteristics have been proposed in [60]. However, in
some applications (e.g. SAR, ultrasound or astronomical
imaging), the analyzed fields may be highly variable and
it may be interesting to use “heavy” tail probability dis-
tributions. In particular, stable processes have turned out
to be good models for many impulsive signals and noises.
Alpha-stable distributions have infinite variance, undefined
higher-order moments and, in general, there does not ex-
ist an explicit form for their probability densities [61], [10].
They are however interesting in linear modeling, as linear
transforms preserve the distribution of any linear combina-
tion of i.i.d. a-stable random variables. Alpha-stable 2D
discrete-space processes having LRD properties have been
studied in [62].



VII. MULTIFRACTAL SURFACES

Multifractal analysis is concerned with the study of the
regularity structure of functions or processes, both from a
local and global point of view. More precisely, one starts
by measuring in some way the pointwise regularity, usually
with some kind of Holder exponents (see Section II-A or
[12]). The second step is to give a global description of
this regularity. This can be done in a geometric fashion,
using Hausdorff dimension, or in a statistical one through
a large deviation analysis. We describe below a simplified
version of multifractal analysis in the framework of image
processing. Let X (t), t € T = [0, 1]* denote the image.

The Hausdorff spectrum fr(«) describes the structure
of the function ¢ — «a(t) (where a(t) is the Holder ex-
ponent at t) by evaluating the size, as measured by the
Hausdorff dimension, of its level sets. In other words, one
sets fr(a) = dimg{t € T,a(t) = a}, where dimgy(E) de-
notes the Hausdorff dimension [63] of the set E. Since each
E, is included in T', f5 takes values in [0,2] U {—oo} (the
value —oo occurs when E, is empty, while f5(ap) = 2 in-
dicates that a whole region in the image has exponent «p).
JFrom a heuristic point of view, the Hausdorff multifractal
spectrum thus describes the “size” of the set of pixels in
the image which have a given regularity. For instance, if
fr(ap) = 2 for some ap > 2 and fr(a) < 2 for all a # ay,
then we know that almost all points in the image have reg-
ularity ap and thus that the image is almost everywhere
smooth, because ag > 2.

Another global description of the local regularity is pro-
vided by the large deviation multifractal spectrum, fq(c).
A heuristic way to introduce f, is as follows. Fix an inte-
ger n and partition the image into n? boxes of size 1/n?.
Now pick a box at random. One defines f,(a) by writing
that the probability that the chosen box has a regularity
« behaves as n~(2~79(®)) when n is large. Thus, roughly
speaking, f,(a) measures the rate of decay, when n tends
to infinity, of the probability that a randomly picked re-
gion of size 1/n? has regularity a. In particular, if f,(a) is
strictly smaller than 2, then the probability of observing a
regularity a goes to 0 exponentially fast, with exponential
rate 2 — fy(a): when n is “large”, “most” pixels have an «
such that fy(«) = 2. We mention that it is natural to in-
terpret f, as a rate function in a large deviation principle.
The theory of Large Deviations provides conditions under
which such rate functions may be calculated as Legendre
transforms of moment generating functions. When applica-
ble, this procedure yields a more robust estimation than a
direct computation. In general, this allows to define a new
spectrum, the Legendre spectrum, not considered here.

Multifractal analysis has been the subject of numerous
studies both in the deterministic and random cases. A very
partial list of references is [64], [65], [66], [67], [68]. Many
works have been devoted to the comparison of the spectra
and their computation in various cases. In particular, it
is shown for instance in [69] that the inequality fr, < f,
holds in full generality. The spectra have been determined
most notably in the case of multiplicative cascades [70],
for which one has equality between f, and f, (one then

says that the multifractal formalism holds). The Hausdorff
spectrum of Lévy processes was computed in [71], and the
fn and f, spectra of a large class of Gaussian processes
are given in [72]. Multifractal analysis has a number of
important applications in image processing, some of which
are described in the next section.

VIII. APPLICATIONS

Some application of the fractal modeling of surfaces have
already been mentioned, like texture analysis and synthe-
sis, others will be discussed in this section.

A. Geophysical fields simulation

A popular way to synthesize various geophysical phe-
nomena is to use multifractals. The starting point of the
method is based on the remark that the simplest mod-
els leading to processes with non-trivial spectra (i.e. not
reduced to a point) are the so-called multiplicative cas-
cades, and that these kinds of cascades are believed to oc-
cur commonly in many natural phenomena. To construct
the crudest cascade, choose a real number my in (0,1) and
set m; = 1 — myg (these are called the “weights”). Split
the unit interval into two halves, and assign measure my
to [0,1/2] and measure m; to [1/2,1]. Iterate this pro-
cess so that at step n we are dealing with dyadic intervals
[k27™, (k+1)27"], each having a given measure p,, ;. Then
split each of these interval into two halves, and put measure
Mon,; on the left one and measure mqpu, ; on the right
one. One shows that this procedure allows to define a lim-
iting measure when n tends to infinity, called the binomial
measure. The binomial measure has a multifractal spec-
trum looking like the mathematical symbol (). More com-
plex versions of these multiplicative processes are expected
to be good models in a wide variety of fields including tur-
bulence [68], [67], DLA [73], financial data modeling [74],
Internet traffic [75], [76], geophysics [77], ...In particular,
random multiplicative cascades with a continuous scale pa-
rameter (i.e. defined on a continuum of scales rather than
dyadic ones) and a Lévy stable distribution for the weights
were used in a series of works [78] to model various multi-
dimensional geophysical phenomena, including clouds and
oceans.

Let us finally mention another method for synthesizing
clouds based on a wavelet model called TAON [79]. Images
obtained with this model are displayed on Fig. 6.

Fig. 6. Cloud images obtained using TAON.



B. Medical applications

Fractal Brownian fields have been early used to model
textures and the Hurst parameter has been estimated in
view of segmentation and classification [80], [81], [82]. Re-
cently, isotropic and non-isotropic 2D fBm and multifrac-
tional Brownian fields have been used for early detection
of osteoporosis from X-ray images [25], [83].

C. Satellite imaging

An isotropic FARIMA model with a non-Gaussian (one-
sided exponential) white noise driving sequence was used
in radar [84] to simulate the texture in synthetic aperture
radar (SAR) imagery for ocean surveillance. The isotropy
of the model was established based on the symmetry of
the periodogram for the RADARSAT clutter. This model,
combining a LRD part with an ARMA short-range depen-
dence part, was shown to better fit the experimental clutter
power spectral density than both a MA model and a sim-
ple fractional differencing field. Other applications in SAR
imagery concern radar image data classification [85], [86]
and the characterization and segmentation of hydrological
basins [87], both based on the fractal dimension.

D. Image segmentation

In many applications, the information contained in the
local regularity of images is more important than the ac-
tual values of the grey levels. A typical example is edge
detection: edges are not modified by an affine transforma-
tion of the grey levels, while they always correspond to low
regularity pixels. It thus seems reasonable to expect that
estimating the Holder exponents of the image will yield rel-
evant information for segmentation. In the specific case of
edge detection, one needs an additional, global, informa-
tion. Indeed, the property of being an edge point is not
only local: by definition, the set of the edges in the im-
age has the geometry of a set of lines (as opposed to 2D
regions or isolated points), and thus must be of dimension
1. From a different, statistical, point of view, one also has
that the probability that a randomly chosen pixel in an im-
age of size n? pixels is an edge point should be of the order
of 1/n. We may then characterize edges as points which
have specific, low regularities (this is a local criterion, mea-
sured through the Holder exponent «) and such that the
associated spectra value are f,(a) = 1 (because edges are
1D objects) and f,(a) = 1 (because they have a given,
resolution-dependent, probability to occur). Multifractal
edge detection thus consists in first estimating f, and then
classifying as edge points those pixels whose Holder ex-
ponent « is such that fy;(a) = 1 (one assumes that the
multifractal formalism is valid, i.e. fp = f;). An example
of a multifractal segmentation is displayed on figure 7. See
[8] for more on this topic.

E. Image denoising

The problem of image denoising may also be treated with
multifractal methods. Intuitively, it seems clear that most
points in a scene whose overall appearance is noisy (as

Fig. 7. Original image (left) and edges obtained through multifractal
segmentation (right).

for instance SAR images) will have a low regularity. To
the contrary, “smooth” images contain mostly points with
high values of a. In terms of the multifractal spectrum,
noisy images have a “large” f,(a) for “small” values of
a, and have f;(a) < 2 for a > 2. For “clean” images,
SUPy < fg(a) < 2, and the maximum of f, is reached for
exponents larger than 2. In order to denoise an image, a
natural idea is then to modify it so that its multifractal
spectrum is translated towards large values of a: in this
way, the regularity of each point is increased, but the shape
of the spectrum is left unchanged. As a consequence, the
image becomes more readable while the respective strength
of each singularity remains the same (i.e. a noisy point on
a contour will still be, after processing, more irregular than
a noisy point in a smooth zone). From a practical point of
view, the shift in H6lder regularity is obtained through a
non linear manipulation of the wavelet coefficients of the
image (see [88] for a detailed explanation). This method al-
lows in particular to process efficiently certain SAR images
which resist most other techniques, as shown in Fig. 8.

Fig. 8. Original SAR image (left) and its multifractal denoising
(right): the multifractal spectrum of the image is shift through a non
linear manipulation of its wavelet coefficients.

F. Interpolation of fractal surfaces

In missing data problems, one can be interested in real-
izing a linear interpolation of a field exhibiting fractal fea-
tures. The statistical interpolation of nonstationary fields
(as those we have seen so far) does not enter the classical
framework of mean-square prediction problems for station-
ary processes [89]. However, if we restrict our analysis to
fields having stationary increments, it is possible to extend



the existing methods, by exploiting the properties of the
structure function [90]. Indeed, let F'(n) be the value of the
field to be estimated and S be a finite subset of Z™ \ {0}
which defines a finite neighbourhood {n — p, p € S} of the
point n. Remark that we do not impose any constraint on
the neighbourhood, which can be symmetric or not. The
filter is shift-invariant (i.e. its coefficients do not depend on
the position n of the estimated sample) if s hn(p) = 1.
The interpolation coefficients are estimated by minimizing
the mean square estimation error, and the problem reduces
to a linear mean square estimation. As the increments of F'
are stationary, we can express the normal equations, using
the structure function. Together with the shift invariance
constraint, we obtain a set of linear equations allowing to
determine the impulse response of the interpolation filter.
This method has been applied to the interpolation of un-
derwater terrain maps in [90]. Note that the described
approach is strongly related to kriging methods [19].

IX. CONCLUSIONS

Resulting from more than a century of theoretical works
realized in mathematics and physics, the idea of fractals
has emerged in the early 1970’s. As we have shown in
the paper, this concept provides new sophisticated anal-
ysis and synthesis tools for image processing. An impor-
tant question that could be raised at this point is whether
fractals constitute adequate models for real scenes. Recent
advances [91] have shown that even though few natural im-
ages are actually fractal, methods inherited from the fractal
and multifractal formalisms can be successfully applied to
a wide range of textures and images.
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