
HAL Id: inria-00581156
https://inria.hal.science/inria-00581156v2

Submitted on 24 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Asymmetric Fingerprinting Scheme based on Tardos
Codes

Ana Charpentier, Caroline Fontaine, Teddy Furon, Ingemar Cox

To cite this version:
Ana Charpentier, Caroline Fontaine, Teddy Furon, Ingemar Cox. An Asymmetric Fingerprinting
Scheme based on Tardos Codes. IH’11 - 13th International Conference Information Hiding, May 2011,
Prague, Czech Republic. �10.1007/978-3-642-24178-9_4�. �inria-00581156v2�

https://inria.hal.science/inria-00581156v2
https://hal.archives-ouvertes.fr

An Asymmetric Fingerprinting Scheme based on
Tardos Codes

Ana Charpentier(a), Caroline Fontaine(b), Teddy Furon(a), Ingemar Cox(c)

(a)INRIA-Rennes research center, Campus de Beaulieu, Rennes, France?
(b)CNRS/Lab-STICC/CID, Télécom Bretagne/ITI, Brest, France

(c)University College London, Dpt. of Computer Science, London, United Kingdom

Abstract. Asymmetric fingerprinting protocols are designed to prevent
an untrustworthy Provider incriminating an innocent Buyer. These pro-
tocols enable the Buyer to generate their own fingerprint by themself,
and ensure that the Provider never has access to the Buyer’s copy of
the Work. Until recently, such protocols were not practical because the
collusion-resistant codes they rely on were too long. However, the advent
of Tardos codes means that the probabilistic collusion-resistant codes
are now sufficiently short that asymmetric fingerprint codes should, in
theory, be practical.
Unfortunately, previous asymmetric fingerprinting protocols cannot be
directly applied to Tardos codes, because generation of the Tardos codes
depends on a secret vector that is only known to the Provider. This
knowledge allows an untrustworthy Provider to attack traditional asym-
metric fingerprinting protocols. We describe this attack, and then pro-
pose a new asymmetric fingerprinting protocol, specifically designed for
Tardos codes.

1 Introduction

This paper considers a problem arising in the fingerprinting of digital content.
In this context, a fingerprint is a binary code that is inserted into a Work for
the purpose of protecting it from unauthorized use, or, more precisely, for the
purpose of identifying individuals responsible for its unauthorized use. In such a
scenario, it is assumed that two or more users may collude in order to try to hide
their identities. Under the marking assumption [2], colluders cannot alter those
bits of the code that are identical for all colluders. However, where bits differ
across colluders, these bits may be assigned arbitrary values. A key problem
is resistance to collusion, i.e. if c users create a pirated copy of the Work, its
tampered fingerprint (i) should not implicate innocent users, and (ii) should
identify at least one of the colluders.

This problem has received considerable attention since Boneh and Shaw [2]
discussed it. They introduced the concept of a c-secure code such that the prob-
ability of framing an innocent user is lower than ε. Unfortunately, the length of

? Supported by National Project MEDIEVALS ANR-07-AM-005.

their codes, O(c4 log(nε) log(1
ε)) where n is the number of users, was too long

to be practical. Following Boneh and Shaw’s paper, there has been considerable
effort to design shorter codes. In 2003, Tardos [19] proposed an efficient code
construction that, for the first time, reduced the code length to the theoretical
lower bound, O(c2 log(nε)), thereby making such codes practical. Tardos codes
are currently the state-of-the-art for collusion-resistant fingerprinting.

Contemporaneously, some papers considered the scenario where the Provider
is untrustworthy. Given knowledge of a Buyer’s fingerprint, the Provider creates
a pirated copy of a Work, implicating the innocent Buyer. To prevent this, Pfitz-
man and Schunter [16] first introduced the concept of asymmetric fingerprinting
in which the Provider does not need to know the Buyer’s fingerprint. The Buyer
first commits to a secret (the fingerprint) that only he/she knows. The Buyer
and Provider then follow a protocol which results in the Buyer receiving a copy
of the Work with his/her secret fingerprint (and some additional information
coming from the Provider) embedded within it. The Provider does not learn the
Buyer’s secret, and cannot therefore create a forgery. Unfortunately, the early
implementations of this concept were not practical due to the very long length
of the collusion resistant codes. The advent of Tardos codes has reduced the
length of the collusion resistant codes to a practical size. However, generation of
these codes depends on a probability distribution based on a secret vector that
is only known to the Provider. This knowledge is sufficient for the Provider to
circumvent traditional asymmetric fingerprinting protocols.

In the next Section, we briefly summarize the design of Tardos codes. We
then describe how an untrustworthy Provider, with knowledge of the secret vec-
tor needed to generate the Tardos codes, can false accuse an innocent Buyer.
Section 3 then describes a new asymmetric fingerprinting protocol specific to the
use of Tardos codes, that prevents both the Buyer and the Provider from cheat-
ing. Practical aspects of the fingerprints embedding and accusation are discussed
in Section 4, while security and efficiency of the whole scheme are discussed in
Section 6.

2 Untrustworthy Provider with the Tardos code

For readers unfamiliar with Tardos codes, we now provide a brief introduction.
Further details can be found in [18].

2.1 Introduction to Tardos codes

Let n denote the number of buyers, and m the length of the collusion-resistant
codes. The fingerprints can then be arranged as a binary n × m matrix X,
where Buyer j’s binary fingerprint is the jth row of the matrix, i.e. Xj =
(Xj1, Xj2, . . . , Xjm).

To generate this matrix, m real numbers pi ∈ [t, 1 − t] are generated, each
of them being randomly and independently drawn according to the probability
density function f : [t, 1− t]→ R+ with f(z) = κ(t)(z(1− z))−1/2 and κ(t)−1 =

∫ 1−t
t

(z(1 − z))−1/2dz. The parameter t � 1 is referred to as the cutoff whose
value is around 1/300c. The resulting vector, p = (p1, . . . , pm) is a secret only
known by the Provider. Each element of the matrix X is then independently
randomly drawn, such that the probability that the element Xji is set to symbol
‘1’ is P(Xji = 1) = pi. The collusion-resistant fingerprint, Xj , is then embedded
into Buyer j’s copy of the Work. This embedding can be accomplished by a
variety of watermarking techniques.

When an unauthorized copy is found, a binary sequence, Y, is extracted from
the copy thanks to the watermark decoder. Due to collusion and possible distor-
tions such as transcoding, this binary sequence is unlikely to exactly match one
of the fingerprints in the matrix X. To determine if Buyer j is involved in the
creation of the unauthorized copy, a score, referred to as an accusation score, Sj
is computed. If this score is greater than a given threshold Z, then Buyer j is
considered to have colluded. The value of the threshold Z theoretically guaran-
tees that the probability of accusing an innocent person is below a significance
level, ε.

The scores are computed according to an accusation function g, reflecting
the impact of the correlation between the fingerprint Xj , associated with Buyer
j, and the decoded sequence Y:

Sj = G(Y,Xj ,p) =

m∑
i=1

g(Yi, Xji, pi). (1)

In the usual symmetric codes [18], the function g is constrained (for example,
for an innocent person, the expectation of the score is zero and its variance is

m), giving g(1, 1, p) = g(0, 0, 1− p) = −g(0, 1, p) = −g(1, 0, 1− p) =
√

1−p
p .

2.2 Untrustworthy content provider

We now consider the case where the Provider is no longer trusted, and wishes
to frame Buyer j. There are a number of scenarios, depending on the knowl-
edge available to the Provider. We briefly outline these and discuss our specific
scenario in detail.

The Provider knows the Buyer’s fingerprint and how to embed the cor-
responding watermark. This scenario provides no protection to the Buyer.
The Provider can simply watermark a Work with the fingerprint of Buyer j,
place the Work in an incriminating location and then accuse Buyer j.

The Provider knows the Buyer’s fingerprint. In this scenario the Provider
does not have the ability to watermark a Work. Instead, upon a Provider’s
request, a trusted Technology Provider embeds the fingerprint into a Work and
sends the fingerprinted Work to the Buyer. We emphasize that the Technology
Provider is trusted, and as such, the Provider cannot embed the same fingerprint

into a Work and have it delivered to two different users, one of which is colluding
with the Provider to frame the other user. If the Technology Provider were not
trusted, we would be back to the previous scenario.

All the Provider needs is fingerprinted copies from c ≥ 3 fake users or collud-
ers. There is nothing special about the particular fingerprints. For a given Buyer
j, whom the Provider wishes to frame, the Provider knows where the elements
of the Buyer’s fingerprint Xji = 1. This happens with probability pi. At least
one of the accomplices has the same symbol as the Buyer with a probability of
1− (1− pi)c. Therefore, given that the Provider knows the Buyer’s fingerprint,
Xj , the accomplices can forge a sequence very similar to the fingerprint of Buyer
j. More specifically, if Yi = Xji whenever the marking assumption allows it, then
the forgery is such that, in expectation, the score of Buyer j becomes:

Sj = m

∫ 1−t

t

f(p) [p(1− (1− p)c)g(1, 1, p) + (1− p)(1− pc)g(0, 0, p)

+ p(1− p)cg(0, 1, p) + (1− p)pcg(1, 0, p)] dp

= 2mκ(t)

(
(1− 2t)− 2

(1− t)c+1 − tc+1

c+ 1

)
≈ 2mκ(t)(1− 2

c+ 1
) (2)

In comparison, the colluders have scores equalling 2mκ(t)c−1 in expectation.
This means that with only c = 3 accomplices, the score of Buyer j is bigger than
the ones of the colluders, which are bigger than Z if the code is long enough
to face a collusion of size 3 (depending on the parameters (n, ε)). The Provider
sends (Xj ,Y,p, Z) to the Judge as an evidence to accuse Buyer j. This attack
is just an example, there certainly exists a better way to frame an innocent.

The Provider knows the bias vector p. The previous two scenarios demon-
strate that the Provider must not know the fingerprints of the Buyers, if the
Buyers are to be protected. This is well known in the literature of asymmetric
fingerprinting. However, another threat occurs when dealing with Tardos codes.
In this scenario, the Provider has no knowledge of the Buyer’s fingerprint, nor
the underlying watermark method. We therefore assume that the Provider can-
not forge an unauthorized copy, either on his/her own or with accomplices. On
receipt of a pirated copy, the sequence is extracted by the trusted Technology
Provider. Given the extracted sequence Y, the scores of all Buyers are computed
using Equation (1). It is here that the Provider can lie, since the probabilities
in p are only known by the Provider.

Specifically, an untrustworthy Provider can create a fake vector of probabili-
ties p̂ that implicates Buyer j. However, the distribution f(p) is publicly known,
so the question becomes how to generate a p̂ that (i) implicates Buyer j, and (ii)
has an arbitrarily high probability of been drawn from the distribution f(p)?

The following method shows that it is simple to do so. However, we do not
claim that this attack is unique or optimal. Let us focus on a column where
pi = p and Yi = Xj,i. The true summand in Equation (1) is g(1, 1, p) or g(0, 0, p)
(with equal probability). Suppose that the content provider replaces the secret

value p by a fake secret p̂ which is drawn independently according to f . On
average, this summand takes the new value:

∆(t) =

∫ 1−t

t

f(p̂)
g(1, 1, p̂) + g(0, 0, p̂)

2
dp̂ = κ(t) ln

1− t
t

.

For a cutoff t = 1/900 (recommended by G. Tardos to fight against 3 colluders),
κ(t) ≈ π−1 and the numerical value is surprisingly high: ∆(1/900) ≈ 2.16.
Suppose now that the content provider applies the same strategy on an index
i where Yi 6= Xj,i. Then the expectation is the opposite. However, in a Tardos
code, even for an innocent Buyer j, the proportion α of indices where symbols Yi
and Xj,i agree is above 1/2 for common collusion strategies. For instance, with
an interleaving collusion attack [18], α = 3/4 whatever the collusion size c.

Based on this fact, we propose the following attack. The Provider com-
putes the score for all Buyers, which on average equals 0 for innocent Buyers
and 2mκ(t)c−1 for the colluders [18]. The Provider initializes p̂ = p. Then,
he/she randomly selects a column i and randomly draws a fake secret p̂i ∼ f .
He/She re-computes the score of Buyer j with this fake secret and iterates
selecting a different column until Sj is above the threshold Z. On average,
m(cκ(t)−1∆(t)(α − 1/2))−1 secret values pi need to be changed in this way,
e.g. only 20% of the code length if the copy has been made using an interleaving
attack.

Figure 1 illustrates this attack for the case where the code length is m =
1000 and the number of colluders is c = 3. The solid coloured lines depict the
accusation scores of 10 randomly selected innocent buyers. We observe that after
20 to 30% of the elements of p have been altered, the accusation scores of the
innocent Buyers exceed the original scores of the colluders. In fact, the colluders’
accusation scores also increase. However, we are not concerned by the highest
score, but rather by the fact that the Provider is able to exhibit a couple (p̂,Xj)
such that Sj > Z. Thus, it is sufficient to raise the score of the innocent Buyer,
even if this raises all other Buyers’ scores as well.

Randomly selecting some pi’s (independently from Xj and Y) and re-drawing
them according to the same law ensures that p̂i ∼ f , ∀i. Therefore, the Judge
observing p̂ cannot distinguish the forgery. For this reason, the Judge might
request to see the matrix X to statistically test whether the elements of X
are drawn from the distribution p̂. In this case, the Provider can give a fake
matrix X̂ where the columns whose pi have been modified are re-drawn such
that P(Xki = 1) = p̂i, ∀k 6= j. The only way to prevent this deception would be
for the Judge to randomly asked an innocent Buyer k 6= j for his copy in order
to verify the authenticity of X̂. This latter step seems somewhat odd. We arrive
at the strange situation where the Judge has to contact innocent buyers when
Buyer j is accused.

3 An asymmetric Tardos code construction

The previous section underlines the difficulty of constructing an asymmetric
fingerprinting protocol using Tardos codes. The constraints are:

Fig. 1. Accusation score as a function of the number of changed elements of the vector
p for the case where m = 1000 and c = 3. The solid coloured lines show how the accu-
sation scores of 10 randomly selected innocent buyers increases. The dotted horizontal
lines show the original scores for the colluders before the modification.

– The Provider should not know the fingerprints.
– The Provider should not change the secret p used for the code construction

during the accusation score computation.
– The Buyer should know neither the secret p nor the fingerprint of any other

user.
– His fingerprint must be drawn according to the statistical distribution in-

duced by p.
– The Buyer should not be able to modify his fingerprint.

These constraints prevent the application of previous asymmetric fingerprint-
ing schemes to a Tardos code. This section proposes a solution to this problem,
which consists of two phases: the generation of the fingerprint and the disclosure
of a halfword. Both phases rely on a primitive which we present first.

3.1 Pick a card, any card!

What we need is a scheme that enables a receiver R to pick k elements at random
in a list of N elements provided by a sender S, in such a way that:

1. R gets elements that belong to the list;
2. R does not get any information on the elements he did not pick;
3. S does not know which elements have been picked.

Functionally speaking, this is precisely what is called Oblivious Transfer by
cryptographers. A k-out-of-N Oblivious Transfer protocol is denoted by OTNk .
In the literature we can find OT 2

1 , OTN1 and OTNk protocols. When k ≥ 1, if the
k elements are picked one-by-one adaptively, we speak of adaptive OT protocols,
denoted by OTNk×1; if they are picked simultaneously, we speak of non-adaptive

OT protocols, simply denoted OTNk .

Technically speaking, the oblivious transfer problem has been independently
tackled by two communities. First, Cryptographers have been working on it since
1981. We will refer to this quite long and mature framework as “traditional”
OT. Second, in 2001 other researchers proposed a different approach based on
Commutative Encryption and Two-lock Cryptosystems. Both are considered and
discussed in Sec. 4, according to their respective advantages. We provide more
details on the use of OT protocols based on Commutative Encryption or Two-
lock crypto-systems, as they are less known but particularly interesting in our
case.

3.2 Phase 1: Generation of the fingerprint

Fingerprint generation consists of two steps. During Step 1, the Provider gener-
ates lists from the secret p, and commits them in order to avoid any a posteriori
cheating. During Step 2, the Buyer picks elements in the lists to generate his
own fingerprint. This step is addressed by oblivious transfer protocols.

Step 1. We use the commutative encryption protocol m times to generate the
fingerprint of the j-th Buyer Xj = (Xj,1, . . . , Xj,m). S is the Provider, and R is
Buyer j. The Provider generates a secret vector p for a Tardos code. Each pi is
quantized such that pi = Li/N with Li ∈ [N − 1].

For a given index i, the objects are the concatenation of a binary symbol and
a text string. There are only two versions of an object in list Ci. For Li objects,
Ok,i = (1‖ref1,i), and Ok,i = (0‖ref0,i) for the N − Li remaining ones. The
use of the text strings {refX,i} depends on the content distribution mode as
detailed in Sec. 4.3. The object Ok,i is committed with key Kk,i and stored in
the list Ci = {Ck,i}Nk=1. There are thus as many different lists Ci as the length m
of the fingerprint. These lists are the same for all buyers, and are published in a
public Write Once Read Many (WORM) directory [15] whose access is granted
to all users. As the name, nobody can modify or erase what is initially written
in a WORM directory, but anyone can read from it.

p1
Quantize−→ (0‖ref0,1, 1‖ref1,1, . . . , 1‖ref1,1)

Commit−→ C1 = (C1,1, . . . , CN,1)
p2 −→ (0‖ref0,2, 0‖ref0,2, . . . , 0‖ref0,2) −→ C2 = (C1,2, . . . , CN,2)

...
pm −→ (1‖ref1,m, 0‖ref0,m, . . . , 1‖ref1,m) −→ Cm = (C1,m, . . . , CN,m)

Fig. 2. The lists Ci = {Ck,i}Nk=1 are stored in a WORM

Step 2. If we use a traditional Oblivious Transfer protocol, the Buyer and
Provider run it to get the corresponding key Kind(j,i),i: the Provider proposes
the list of the keys {πj(k)‖Kπj(k),i} and the Buyer picks one with an OTN1 . This

key allows him to open one of the commitments Cπj(k),i. Provider and Buyer
will have to keep in a log file some elements of the exchange in order to run the
Phase 2. It is specific to the OT protocol and we have not studied this problem
in detail.

Let us now describe how to solve the problem with a Commutative Encryp-
tion scheme. Contrary to the C-lists, the D-lists are made specific to a given
Buyer j. The Provider picks a secret key Sj and a permutation πj(.) over [N].
The Buyer is given a list Dj,i = {Dj,i,k = CE(Sj , (πj(k)‖Kπj(k),i))}Nk=1. There-
fore, the lists {Ci}mi=1 are common for all users, whereas the lists {Dj,i}mi=1 are
specific to Buyer j. We have introduced here a slight change with respect to pro-
tocol 4.1, i.e. the permutation πj whose role is explained below. Buyer j chooses
one object in the list, say the k(j, i)-th object. He/she sends the corresponding
ciphertext Uk(j,i),i = CE(Rj,i, Dj,i,k(j,i)) decrypted by the provider with Sj and
sent back to the Buyer who, at the end, gets the index ind(j, i) = πj(k(j, i)) and
the key Kind(j,i),i, which grants him/her the access to the object Oind(j,i),i, stored
in encrypted form in the WORM. It contains the symbol bind(j,i),i. This becomes
the value of the i-th bit of his/her fingerprint, Xj,i = bind(i,j),i, which equals ‘1’
with probability pi. The provider keeps in a log file the values of Sj and Uk(j,i),i,
and the user keeps Rj,i in his/her records.

P B
1. Commit Cπj(k),i = Com(Kπj(k),i, Oπj(k),i)

Only one time for all users and all bits

2. Dj,i,k = CE(Sj , (πj(k)‖Kπj(k),i))

3. ←− Uk(j,i),i = CE(Rj,i, Dj,i,k(j,i))
4. V = CE−1(Sj , Uk(j,i),i) −→
5. πj(k)‖Kπj(k),i = CE−1(Rj,i, V)

6. Oπj(k),i = E−1(Kπj(k),i, Cπj(k),i)

Fig. 3. Generation of a fingerprint bit using the Commutative Encryption Scheme.

3.3 Phase 2: Disclosure of the halfword

The accusation process detailed in Sec. 4.4 allows the Provider to list a set of
suspected users to be forwarded to the judge for verification. After phase 1 is
completed, the Provider orders Buyer j to reveal mh < m bits of his fingerprint.
These disclosed symbols compose the so-called halfword [16]. The following facts
must be enforced: Buyer j does not know which bits of his/her fingerprint are
disclosed even if the Provider asks for the same bit indices to all the users. The
Provider discloses mh bits of the fingerprints without revealing any knowledge
about the others. Of course, Buyer j refuses to follow the protocol for more than
mh objects.

Commutative Encryption. Again, we propose to use the double-blind random
selection protocol of Sec. 3.1. Now, Buyer j plays the role of S, and the Provider
the role of R, N = m, and object Oi = (Ri,j‖aleai,j). These items are the
m secret keys selected by Buyer j during phase 1 (Sec. 3.2) concatenated with
random strings aleai,j to be created by Buyer j. This alea finds its use during
the personalization of the content (see Sec. 4.3). Following the protocol, the
Provider selects mh such object. The decryption of message Uk(i,j),j received
during phase 1 thanks to the disclosure of the key Ri,j yields Di,j,k(i,j) which
in turn is decrypted with key Sj , provides the index of the selected object,
otherwise the protocol stops. This prevents a colluder from denying the symbol
of his fingerprint and from copying the symbol of an accomplice. At the end, the
Provider learns which item was picked by Buyer j at index i. Therefore, he/she
ends up with mh couples (Xj,i, aleak(i,j),i) associated to a given Buyer j.

Generic Oblivious Transfer protocols. At phase 2, any OTNk×1 can be used to
allow the Provider to get mh objects from the list of the Oi = (Ri,j‖aleai,j)
owned by the Buyer. The problem is if another OT scheme was used at the
precedent step, there is no such things as the Ri,j values. In order to prevent
the Buyer from denying the symbol of his fingerprint, the Ri,j values have to be
replaced by a number which was part of the exchange during the generation of
the fingerprint. This element is specific to the OT protocol.

4 Implementation details

The previous section has detailed the core of our scheme which is the construction
of the codewords based on oblivious transfer. This section deals with the details
of this primitive and the remaining elements, namely the watermarking of video
content, the distribution and the accusation process.

4.1 Details of the oblivious transfer protocol

This protocol can be implemented by two approaches, ‘classical’ Oblivious trans-
fer and Commutative encryption, which have been studied with different security
models. Both are interesting for us, and we will now summarize them and discuss
their usefulness

Traditional Oblivious Transfer protocols. Oblivious Transfer Protocols have been
introduced by cryptographers in [17] and led to a huge number of papers in the
cryptographic community, e.g. [13, 5, 10]. These protocols are studied in the same
framework as multi-party computation. Their security is studied under different
models below, listed from the weakest to the strongest: honest-but-curious model
(where no one cheats during the protocol execution), half simulation (introduced
by [14], cheating sender or cheating receiver studied separately; local security
study), full simulation (introduced in [3], studying cheating sender and receiver

globally; global security study). In addition, the UC (Universally Composable)
model has been introduced in [4] to study the behavior and security of protocols
that are based on concurrent and composable cryptographic primitives.

Oblivious Transfer based on Commutative Encryption. An encryption primitive
CE is said to be a Commutative Encryption if for any two keys kR and kS and
any plaintext m, we have (usual definition in the literature)

CE(kR,CE(kS ,m)) = CE(kS ,CE(kR,m)). (3)

Based on such a primitive, a Commutative Encryption Scheme (CES) can be
defined as follows [1].

1. Let m1, m2, . . . ,mN be the N inputs of the Sender S. S chooses N secret
keys K1, K2, . . . , KN for a symmetric cryptosystem E (e.g. AES, DES) and
a key kS for the commutative encryption primitive CE. S provides

C1 = E(K1,m1) , D1 = CE(kS ,K1)

C2 = E(K2,m2) , D2 = CE(kS ,K2)

.

CN = E(KN ,mN) , DN = CE(kS ,KN)

Note that the couples 〈Cj , Dj〉 can be publicly accessed.

2. Now, let us assume that the receiver R wants to pick the i-th element of the
list. R loads 〈Ci, Di〉 and chooses a secret key kR for CE. He encrypts Di

with it and sends the result U = CE(kR, Di) to S.
3. S decrypts U with S and sends W = CE−1(kS , U) to R. R computes Ki,

and can get to mi = E−1(Ki, Ci).

A Two-lock Cryptosystem is a variant that uses two different primitives CE1
and CE2 instead of CE:

CE1(kR,CE2(kS ,m)) = CE2(kS ,CE1(kR,m)). (4)

Both approaches are interesting for us, as we will discuss now. First of all, the
security of Oblivious Transfer Protocols has been much stronger studied than
the one of the Commutative Encryption Schemes. Hence, we will use them each
time it is possible, leaning on well known protocols.

But, at some steps of the protocol we prefer to use Commutative Encryption
Schemes, as its structure fits really well to our purpose. It is for example the case
during fingerprint generation, as we also want the Provider to commit on the
lists elements, which correspond to the secret vector Tardos accusation will rely
on. This ensures that the same secret vector will be used during the accusation
process. Such commitments are easily included in a Commutative Encryption
Scheme, it is more difficult in a traditional Oblivious Transfer protocol. In addi-
tion, we use some elements exchanged during the course of the protocol in phase
1 (Sec. 3.2) to ensure the correct conduct of the Phase 2 (Sec. 3.3).

Designing the right Commutative Encryption Scheme is not so easy, as the
literature does not provide us a scheme that fulfill our requirements. First of all,
notice that using a symmetric or asymmetric encryption primitive as CE, or in
the variant scheme CE1 and CE2, does not matter here, functionally speaking,
as encryption and decryption will be performed by the same person. Hence, only
security and eventually efficiency may guide our choice. Of course, we would like
to use the most secure encryption primitives. The highest security level, uncon-
ditional security is only reached by the One-Time Pad, and cannot be achieved
here because it would require to use a different key for each encryption whereas
here the same key kS is used to encrypt all the keys Ki. Hence, semantic security
is the best security class we might achieve [9, 20, 7]. Moreover, semantic security
is necessary in our case, because we have to encrypt binary symbols and do not
want the Receiver to be able to distinguish encrypted 0’s from encrypted 1’s dur-
ing both the fingerprint generation or the halfword disclosure steps. This implies
the use of a probabilistic encryption scheme. Unfortunately, semantic security
has not yet been tackled in the Commutative Encryption literature [1, 11, 21].
Nevertheless, semantic security should be achieved in a near future, making this
kind of OT particularly interesting for us.

Concerning the variant called Two-lock Cryptosystem, a few implementations
have been proposed: a first one based on the Knapsack problem [21], which has
been broken [22], a second one based on the discrete logarithm problem [21], and
a third one based on RSA [11]. None of them achieve semantic security at the
moment.

4.2 Watermarking

A nowadays trend is the application of fingerprinting to premium video contents.
Premium means movies in very high quality available for home cinema shortly
after their release in theaters. Personalization of the copies are usually done as
follows: Before distribution, the content is divided into sequential blocks (e.g.
Group of Pictures of few seconds of a video). Offline, a robust watermarking
technique creates two versions of some blocks embedding the symbol ‘0’ and
respectively ‘1’. This is done by the Technology Provider. Quality is very impor-
tant for premium movies and watermarking under that constraint involves a lot
of processing. This motivates this offline preprocessing.

In some scenarios (screeners for jurys, marketing, blu-ray discs, premium
downloads), the physical medium storage or bandwitth is so large that both
versions of the blocks are encrypted and transmitted to the software client or
the device of the Buyers. This latter is trusted and the strings {refX,i} it got
from phase 1 are parameters needed to get access to the i-th block watermarked
with symbol X.

4.3 Content personalization at the server side

As for Video On Demand where the client is not trusted, personalization of the
content is usually made at the server side, which raises an issue since the Provider

doesn’t know user fingerprints. There exist Buyer-Seller protocols for embedding
a sequence Xj into a content co without disclosing Xj to the Seller and co to
the Buyer. They are based on homomorphic encryption scheme and work with
some specific implementations of spread spectrum [12] or Quantization Index
Modulation watermarking [6]. In other words, not any watermarking technique
can be used, and this is not the route we have chosen so far. Due to space
limitations, a brief sketch of the adaptation of [6] is presented hereafter.

Let c
(0)
i = (c

(0)
i,1 , . . . , c

(0)
i,Q) be the Q quantized components (like pixels, DCT

coefficients, portion of streams etc) of the i-th content block watermarked with

symbol ‘0’ (resp. c
(1)
i with symbol ‘1’). Denote di = c

(1)
i − c

(0)
i . Assume as in [6,

Sect. 5], an additive homomorphic and probabilistic encryption E[.] such as the
Pallier cryptosystem. Buyer j has a pair of public/private keys (pkj , skj) and
sends (Epkj [Xj,1], . . . , Epkj [Xj,m]). The provider sends him/her the ciphers

Epkj [c
(0)
i,`].Epkj [Xj,i]

di,` , ∀(i, `) ∈ [m]× [Q]. (5)

Thanks to the homomorphism, Buyer j decrypts this with skj into c
(0)
i,` if Xj,i =

0, c
(1)
i,` if Xj,i = 1. Since Xj,i is constant for the Q components of the i-th block,

a lot of bandwidth and computer power will be saved with a composite signal
representation as detailed in [6, Sect. 3.2.2].

A crucial step in this kind of Buyer-Seller protocols is to prove to the Provider
that what is sent by the Buyer is indeed the encryption of bits, and moreover
bits of the Buyer’s fingerprint. This usually involves complex zero-knowledge
subprotocols [12, 6]. Here, we avoid this complexity by taking advantage of the
fact that the Provider already knows some bits of the fingerprint Xj , i.e. those
belonging to the halfword (see Sec. 3.3), and the Buyers do not know the indices
of these bits. Therefore, inmv < mh random indices of the halfword, the Provider
asks Buyer j to open his/her commitment. For one such index iv, Buyer j reveals
the random value riv of the probabilistic Pallier encryption (with the notation
of [6]). The Provider computes gXj,ivhriv mod N and verifies it equals the iv-th
cipher, which Buyer j pretended to be Epkj [Xj,i].

One drawback of this simple verification scheme is that the Buyer discovers
mv indices of the halfword. This may give rise to more elaborated collusion
attacks. For example, Buyer j, as a colluder, could try to enforce Yiv 6= Xj,iv

when attempting to forge a pirated copy. Further discussion of this is beyond
the scope of this paper.

This approach may also introduce a threat to the Buyer. An untrustworthy
Provider can ask to open the commitments of non-halfword bits in order to dis-
close bits he/she is not supposed to know. For this reason, the Provider needs to
send aleak(iv,j),iv as defined in Sec. 3.3 to show Buyer j that his/her verification
duly occurs on a halfword bit.

4.4 The accusation procedure

The accusation is straightforward and similar to other fingerprinting protocols.
A Scouting Agency is in charge of catching a forgery. The Technology Provider

decodes the watermark and extracts sequence Y from the pirated content. The
Provider computes the halfscores by applying Eq. (1) only on the halfwords. This
produces a list of suspects, e.g. those users whose score is above a threshold, or
those users with the highest scores.

Of course, this list cannot be trusted, since the Provider may be untrust-
worthy. The list is therefore sent to a third party, referred to as the Judge, who
first verifies the computation of the halfscores. If different values are found, the
Provider is black-listed. Otherwise, the Judge computes the scores of the full
fingerprint.

To do so, the Judge needs the secret p: he/she asks the Provider for the
keys {Kk,i}, ∀(k, i) ∈ [N] × [m] and thereby obtains from the WORM all the
objects {Ok,i}, and the true values of (p1, . . . , pm). The Judge must also request
suspected Buyer j for the keys Rj,i in order to decrypt the messages Uk(j,i),i
in Di,j,k(i,j) which reveal which object Buyer j picked during the i-th round of
Sec. 3.2 and whence Xj,i. Finally, the Judge accuses the user whose score over
the full length fingerprint is above a given threshold (related to a probability of
false alarm).

5 Discussion

5.1 Security

Suppose first that the Provider is honest and denote by c the collusion size.
A reliable tracing capability on the halfwords is needed to avoid false alarms.
Therefore, as proven by G. Tardos, mh = O(c2 log nε−1), where ε is the prob-
ability of suspecting some innocent Buyers. Moreover, successful collusions are
avoided if there are secret values such that pi < c−1 or pi > 1 − c−1(see [8]).
Therefore, N should be sufficiently big, around a hundred, to resist against col-
lusion of size of some tens. During the generation of the fingerprint in Sec. 3.2,
permutation πj(.) makes sure that Buyer j randomly picks up a bit ‘1’ with
probability pi = Li/N as needed in the Tardos code. In particular, a colluder
cannot benefit from the discoveries made by his accomplices.

We now analyze why colluders would cheat during the watermarking of their
version of the Work described in Sec. 4.3. By comparing their fingerprints, they
see indices where they all have the same symbols, be it ‘0’ or ‘1’. As explained in
the introduction, they won’t be able to alter those bits in the tampered finger-
print except if they cheat during the watermarking: If their fingerprint bits at
index i all equal ‘1’, one of them must pretend he/she has a ‘0’ in this position.
If they succeed to do so for all these positions, they will able to forge a pirated
copy with a null fingerprint for instance.

How many times do the colluders need to cheat? With probability pci (resp.
(1− pi)c), they all have bit ‘1’ (resp. ‘0’) at index i. Thus, there are on average

mc(c) = m
∫ 1−t
t

(pc + (1 − p)c)f(p)dp such indices. The Provider asks for a bit
verification with probability mv/mh. The probability of a successful attack for
a collusion of size c is therefore (1 − mv/mh)mc(c). Our numerical simulations

(see figure 4 (a)) show that mv shouldn’t be more than 50 bits for typical code
length and collusion size below a hundred. Thus, mv is well below mh.

Number of colluders

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss
fu

ll
at

ta
ck

Verification of the correct transmission of the halfword. Number of colluders

10
15
20
25
30
35
40
45
50

Number of colluders

M
ea

n
of

 th
e

sc
or

es
 o

f t
he

 c
ol

lu
de

rs

Scores of the colluders depending of the quantization value N

10
20
30
40
50
60
70
80
90
100

Fig. 4. (a) mv goes from 10 to 50 by 5, m = 3000 and mh = 1500. (b) N goes from 10
to 100 and m = 1500. The gray curve with crosses is for the unquantified Tardos code.

Suppose now that the Provider is dishonest. The fact that the m lists Ci, ∀i ∈
[m] are public and not modifiable prevents the Provider from altering them for a
specific Buyer in order to frame him/her afterwards. Moreover, it will raise the
Judge’s suspicion if the empirical distribution of the pi is not close to the pdf f .
Yet, biases can be introduced on the probabilities for the symbols of the collud-
ers’ fingerprint only if there is a coalition between them and the untrustworthy
Provider. For instance, the Provider can choose a permutation such that by se-
lecting the first item (resp. the last one) in the list Dj,i an accomplice colluder
is sure to pick up a symbol ‘1’ (resp. ‘0’). This ruins the tracing property of
the code, but this does not allow the Provider to frame an innocent. First, it is
guaranteed that p used in Eq. (1) is the one which generated the code. Second,
the Provider and his accomplices colluders must ignore a significant part of the
fingerprints of innocent Buyers. To this end, m −mh must also be in order of
O(c2 log nε−1). If this holds, the Judge is able to take a reliable decision while
discarding the halfword part of the fingerprint. Consequently, m ≈ 2mh, our
protocol has doubled the typical code length, which is still in O(c2 log nε−1).

5.2 Efficiency

Parameters The parameters of the Tardos code are chosen according to the
formulas linking length, number of colluders, and number of users. We have
found out that the value mv doesn’t need to be more than 50, see Sec. 4. We
consider the value N , the quantization parameter, with the interleaving collusion
attack. In the figure 4 (b), we can see that up to a small value of N (around
20), there is no gain of efficiency. The red line shows that the results with the
unquantized Tardos parameters remain better.

Complexity The cost of phase 1 is m×N commitments for the lists that will
be stored in the Worm file, and mn× (N +4) exponentiations for the OT phase.

Regarding the use of a non specific OT , still m×N commitments, plus the cost
of mn 1-out-of-N Oblivious Transfers. This cost depends of course of the chosen
protocol, it is in O(N) for a lot of protocols. For Phase 2, the cost is that of
an mh-out-of-m Oblivious transfer. If this OT is performed with the use of a
Commutative Encryption, the cost is 2m+4mh for the communication, and 4mh

rounds, for another OT scheme, the communication is in O(m) and the number
of rounds depends of the protocol, it is usually in O(mh).

6 Conclusion

Tardos codes are currently the state-of-the-art in collusion-resistant fingerprint-
ing. However, the previous asymmetric fingerprint protocols cannot be applied to
this particular construction. There are mainly two difficulties. First, the Buyer
has to generate his/her secret fingerprint but according to vector p, which is
kept secret by the Provider. Second, the secret p used in the accusation process
must be the same as the one which generated the fingerprints.

We have proposed the first asymmetric fingerprinting protocol dedicated to
Tardos codes. The construction of the fingerprints and their embedding within
pieces of Work do not need a trusted third party. Note, however, that during
the accusation stage, a trusted third party is necessary like in any asymmetric
fingerprinting scheme we are aware of. Further work is needed to determine if
such a third party can be eliminated. In particular, we anticipate that some form
of secure multi-party computation can be applied.

We considered two forms of oblivious transfer protocols, the first based on
traditional cryptographic techniques and the second based on less well known
Commutative Encryption or Two-Lock crypto-systems. These latter techniques
are less mature than traditional Oblivious Transfer protocols in terms of security,
but offers interesting properties that are convenient to our application. Further
work is needed to improve their semantic security, so that their advantages do
not come at the cost of decreased security.

7 Acknowledgement

We would like to thank Boris Škorić, and the three anonymous reviewers for
their useful comments, which helped to improve the presentation of our results.

References

1. Bao, F., Deng, R., Feng, P.: An efficient and practical Scheme for Privacy Protec-
tion in the E-Commerce of Digital Goods. In: ICISC 2000. LNCS, vol. 2015, pp.
162–170. Springer-Verlag (2001)

2. Boneh, D., J.Shaw.: Collusion-secure fingerprinting for digital data. IEEE Trans.
Inform. Theory (1998)

3. Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. Ad-
vances in Cryptology – EUROCRYPT 2007 4515, 573–590 (2007)

4. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: Foundations of Computer Science, 2001. Proceedings. 42nd IEEE
Symposium on. pp. 136–145. IEEE (2002)

5. Chu, C., Tzeng, W.: Efficient k-out-of-n oblivious transfer schemes with adaptive
and non-adaptive queries. In: Public Key Cryptography – PKC 2005. LNCS, vol.
3386, pp. 172–183. Springer-Verlag (2005)

6. Deng, M., Bianchi, T., Piva, A., Preneel, B.: An efficient Buyer-Seller watermarking
protocol based on composite signal representation. In: ACM MM&Sec’09. pp. 9–18
(2009)

7. Fontaine, C., Galand, F.: A survey of homomorphic encryption for nonspecialists.
EURASIP Journal on Information Security 2007, 15 (2007)

8. Furon, T., Pérez-Freire, L.: Worst case attack against binary probabilistic traitor
tracing codes. In: IEEE WIFS 2009. pp. 46–50 (2009)

9. Goldreich, O.: Foundations of cryptography: Basic applications. Cambridge Univ
Pr (2004)

10. Green, M., Hohenberger, S.: Blind identity-based encryption and simulatable obliv-
ious transfer. In: Advances in Crypotology – ASIACRYPT 2007. LNCS, vol. 4833,
pp. 265–282. Springer-Verlag (2007)

11. Huang, H., Chang, C.: A new design for efficient t-out-n oblivious transfer scheme
(2005)

12. Kuribayashi, M.: On the Implementation of Spread Spectrum Fingerprinting in
Asymmetric Cryptographic Protocol. EURASIP Journal on Inf. Security (2010)

13. Naor, M., Pinkas, B.: Oblivious transfer with adaptive queries. In: Advances in
Cryptology – CRYPTO99. LNCS, vol. 1666, pp. 791–791. Springer-Verlag (1999)

14. Naor, M., Pinkas, B.: Computationally secure oblivious transfer. Journal of Cryp-
tology 18(1), 1–35 (2005)

15. Oprea, A., Bowers, K.D.: Authentic Time-Stamps for Archival Storage. In: ES-
ORICS 2009. LNCS, vol. 5789, pp. 136–151. Springer-Verlag (2009)

16. Pfitzmann, B., Schunter, M.: Asymmetric fingerprinting. In: EUROCRYPT 96.
LNCS, vol. 1070, pp. 84–95. Springer-Verlag (1996)

17. Rabin, M.: How to exchange secrets by oblivious transfer. Tech. rep., Technical
Report TR-81, Harvard Aiken Computation Laboratory, 1981 (1981)

18. Skoric, B., Katzenbeisser, S., Celik, M.: Symmetric Tardos fingerprinting codes for
arbitrary alphabet sizes. Designs, Codes and Cryptography 46(2), 137–166 (2008)

19. Tardos, G.: Optimal probabilistic fingerprint codes. In: STOC 2003. pp. 116–125.
ACM (2003), http://www.renyi.hu/~tardos/publications.html

20. van Tilborg, H.: Encyclopedia of cryptography and security. Springer Verlag (2005)
21. Wu, Q., Zhang, J., Wang, Y.: Practical t-out-n oblivious transfer and its applica-

tions. In: Information and Communications Security. LNCS, vol. 2936, pp. 226–237.
Springer-Verlag (2003)

22. Zhang, B., Wu, H., Feng, D., Bao, F.: Cryptanalysis of a knapsack based two-
lock cryptosystem. In: Applied Cryptography and Network Security. pp. 303–309.
Springer-Verlag (2004)

