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Abstract. We consider distributed systems modeled as communicating finite state
machines with reliable unbounded FIFO channels. As an essential sub-routine for
control, monitoring and diagnosis applications, we provide an algorithm that com-
putes, during the execution of the system, an estimate of the current global state
of the distributed system for each local subsystem. This algorithm does not change
the behavior of the system; each subsystem only computes and records a symbolic
representation of the state estimates, and piggybacks some extra information to the
messages sent to the other subsystems in order to refine their estimates. Our algo-
rithm relies on the computation of reachable states. Since the reachability problem is
undecidable in our model, we use abstract interpretation techniques to obtain regular
overapproximations of the possible FIFO channel contents, and hence of the possi-
ble current global states. An implementation of this algorithm provides an empirical
evaluation of our method.

1 Introduction

During the execution of a computer system, the knowledge of its global state may be cru-
cial information, for instance to control which action can or must be done, to monitor its
behavior or perform some diagnostic. Distributed systems, are generally divided into two
classes, depending on whether the communication between subsystems is synchronous or
not. When the synchrony hypothesis [1] can be made, each local subsystem can easily
know, at each step of the execution, the global state of the system (assuming that there
is no internal action). When considering asynchronous distributed systems, this knowl-
edge is in general impossible, since the communication delays between the components of
the system must be taken into account. Therefore, each local subsystem can a priori not
immediately know either the local state of the other subsystems or the messages that are
currently in transfer.

In this paper, we are interested in the asynchronous framework where we consider that
the system is composed of n subsystems that asynchronously communicate through reli-
able unbounded FIFO channels. These subsystems are modeled by communicating finite
state machines (CFSM) [4] that explicitly express the work and communications of a dis-
tributed system. This model appears to be essential for concurrent systems in which com-
ponents cooperate via asynchronous message passing through unbounded buffers (they are
e.g. widely used to model communication protocols). We thus assume that the distributed
system is already built and the architecture of communication between the different sub-
systems is fixed. Our aim is to provide an algorithm that allows us to compute, in each
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subsystem of a distributed system T , an estimate of the current state of T . More precisely,
each subsystem or a local associated estimator computes a set of possible global states,
including the contents of the channels, in which the system T can be; it can be seen as a
particular case of monitoring with partial observation. In our framework, we assume that
the subsystems (or associated estimators) can record their own state estimate and that some
extra information can be piggybacked to the messages normally exchanged by the subsys-
tems. Indeed, without this additional information, since a local subsystem cannot observe
the other subsystems nor the FIFO channel contents, the computed state estimates might
be too rough. Our computation is based on the use of the reachability operator, which
cannot always be done in the CFSM model for undecidability reasons. To overcome this
obstacle, we rely on the abstract interpretation techniques we presented previously in [14].
They ensure the termination of the computations of our algorithm by overapproximating
in a symbolic way the possible FIFO channel contents (and hence the state estimates) by
regular languages. Computing state estimates is useful in many applications. For exam-
ple, this information can be used to locally control the system in order to prevent it from
reaching some given forbidden global states [5], or to perform some diagnosis to detect
some faults in the system [8, 20]. For these two potential applications, a more precise state
estimate allows the controller or the diagnoser to take better decisions.

This problem differs from the synthesis problem (see e.g. [16, 10, 6]) which consists in
synthesizing a distributed system (together with its architecture of communication) equiv-
alent to a given specification. It also differs from the methodology described in [11] in
the sense that in their framework, the authors try to infer from a distributed observation
of a distributed system (modeled by a High Level Message Sequence Chart) the set of se-
quences that explains this observation. It is also different from model checking techniques
[2, 3, 9, 12] that proceed to a symbolic exploration of all the possible states of the system,
without running it. We however use the same symbolic representation of queue contents
as in [2, 12]. In [22], Kumar and Xu propose a distributed algorithm which computes an
estimate of the current state of a system. More precisely, local estimators maintain and
update local state estimates from their own observation of the system and information re-
ceived from the other estimators. In their framework, the local estimators communicate
between them through reliable FIFO channels with delays, whereas the system is mono-
lithic and therefore in their case, a global state is simpler than for our distributed systems
composed of several subsystems together with communicating FIFO channels. In [21],
Tripakis studies the decidability of the existence of controllers such that a set of respon-
siveness properties is satisfied in a decentralized framework with communication delays
between the controllers. He shows that the problem is undecidable when there is no com-
munication or when the communication delays are unbounded. He conjectures that the
problem is decidable when the communication delays are bounded. Other works dealing
with communication (with or without delay) between agents can be found in [19, 15].

Below, in section 2, we define the formalism of communicating finite state machines,
that we use. We formally define, in section 3, the state estimate mechanisms and the notion
of state estimators. In section 4, we provide an algorithm to compute an estimate of the
current state of a distributed system and prove its correctness. We explain, in section 5,
how we can ensure the termination of this algorithm by using abstract interpretation tech-
niques. Finally, section 6 gives some experimental results. Technical proofs are given in
Appendix A.



2 Communicating Finite State Machines as a Model of the System

We model a distributed system by the standard formalism of communicating finite state
machines [4] which use reliable unbounded FIFO channels (also called queues) to com-
municate. A global state in this model is given by the local state of each subsystem to-
gether with the content of each FIFO queue. Therefore, since no bound is given either in
the transmission delay, or on the length of the FIFO queues, the global state space of the
distributed system is a priori infinite.

Definition 1 (Communicating Finite State Machines). A communicating finite state
machine (CFSM) T is defined as a 6-tuple 〈L, `0, Q,M,Σ,∆〉, where (i) L is a finite
set of locations, (ii) `0 ∈ L is the initial location, (iii) Q is a set of queues that T can
use, (iv)M is a finite set of messages, (v) Σ ⊆ Q× {!, ?} ×M is a finite set of actions,
that are either an output a!m to specify that the message m ∈ M is written on the queue
a ∈ Q or an input a?m to specify that the message m ∈ M is read on the queue a ∈ Q,
(vi)∆ ⊆ L×Σ × L is a finite set of transitions.

An output transition 〈`, i!m, `′〉 indicates that when the system moves from the location
` to `′, a message m is added at the end of the queue i. An input transition 〈`, i?m, `′〉
indicates that, when the system moves from ` to `′, a message m must be present at the
beginning of the queue i and is removed from this queue. Moreover, throughout this paper,
we assume that T is deterministic, meaning that for all ` ∈ L and σ ∈ Σ, there exists
at most one location `′ ∈ L such that 〈`, σ, `′〉 ∈ ∆. For σ ∈ Σ, Trans(σ) denotes the
set of transitions of T labeled by σ. The occurrence of a transition will be called an event
and given an event e, δe denotes the corresponding transition. Note that the model could
also have included internal events; but, since it does not bring any particular difficulty, to
simplify the presentation, we have not integrated them here. The semantics of a CFSM is
defined as follows:

Definition 2 (Semantics). The semantics of a CFSM T = 〈L, `0, Q,M,Σ,∆〉 is given

by an infinite Labeled Transition System (LTS) [[T ]] = 〈X,x0, Σ,→〉, where (i) X
def
=

L× (M∗)|Q| is the set of states, (ii) x0
def
= 〈`0, ε, . . . , ε〉 is the initial state, (iii) Σ is the

set of actions, and (iv)→def
=

⋃
δ∈∆

δ−→⊆ X ×Σ ×X is the transition relation where δ−→
is defined by:

δ = 〈`, i!m, `′〉 ∈ ∆ w′i = wi ·m
〈`, w1, . . . , wi, . . . , w|Q|〉 δ→ 〈`′, w1, . . . , w

′
i, . . . , w|Q|〉

δ = 〈`, i?m, `′〉 ∈ ∆ wi = m · w′i
〈`, w1, . . . , wi, . . . , w|Q|〉 δ→ 〈`′, w1, . . . , w

′
i, . . . , w|Q|〉

A global state of a CFSM T is thus a tuple 〈`, w1, ..., w|Q|〉 ∈ X = L × (M∗)|Q| where
` is the current location of T and w1, ..., w|Q| are finite words on M∗ which give the
content of the queues in Q. At the beginning, all queues are empty, so the initial state is
x0 = 〈`0, ε, · · · , ε〉. Given a CFSM T , two states x,x′ ∈ X and an event e, to simplify

the notations we sometimes denote x
δe→ x′ by x

e→ x′. An execution of T is a sequence
x0

e1−→ x1
e2−→ . . .

em−−→ xm where xi
ei+1−−−→ xi+1 ∈−→ ∀i ∈ [0,m−1]. Given a set of states



Y ⊆ X , ReachT∆′(Y ) corresponds to the set of states that are reachable in [[T ]] from Y only
firing transitions of ∆′ ⊆ ∆ in T . It is defined by ReachT∆′(Y )

def
=

⋃
n≥0(Post

T
∆′(Y ))n

where (PostT∆′(Y ))n is the nth functional power of PostT∆′(Y ), defined by: PostT∆′(Y )
def
=

{x′ ∈ X|∃x ∈ Y,∃δ ∈ ∆′ : x δ→ x′}. Although there is no general algorithm that can
exactly compute the reachability set in our setting [4], there exist some techniques that
allow us to compute an overapproximation of this set (see section 5). Given a sequence of
actions σ = σ1 · · ·σm ∈ Σ∗ and two states x, x′ ∈ X , x σ→ x′ denotes that the state x′ is
reachable from x by executing σ.

Asynchronous Product. A distributed system T is generally composed of several subsys-
tems Ti (∀i ∈ [1, n]) acting in parallel. In fact, T is defined by a CFSM resulting from the
asynchronous (interleaved) product of the n subsystems Ti, also modeled by CFSMs. This
can be defined through the asynchronous product of two subsystems.

Definition 3. Given 2 CFSMs Ti = 〈Li, `0,i, Qi,Mi, Σi, ∆i〉 (i = 1, 2), their asyn-
chronous product, denoted by T1||T2, is defined by a CFSM T = 〈L, `0, Q,M,Σ,∆〉,
where L

def
= L1 × L2, `0

def
= `0,1 × `0,2, Q def

= Q1 ∪ Q2, M def
= M1 ∪ M2,

Σ
def
= Σ1 ∪ Σ2, and ∆ def

= {〈〈`1, `2〉, σ1, 〈`′1, `2〉〉|(〈`1, σ1, `′1〉 ∈ ∆1) ∧ (`2 ∈ L2)}
∪ {〈〈`1, `2〉, σ2, 〈`1, `′2〉〉|(〈`2, σ2, `′2〉 ∈ ∆2) ∧ (`1 ∈ L1)}.

Note that in the previous definition, Q1 and Q2 are not necessarily disjoint; this allows the
subsystems to communicate between them via common queues. Composing the various
subsystems Ti (∀i ∈ [1, n]) two-by-two in any order and again for their results gives the
global distributed system T whose semantics (up to state isomorphism) does not depend
on the order of grouping.

Definition 4 (Distributed system). A distributed system T = 〈L, `0, Q,M,Σ,∆〉 is de-
fined by the asynchronous product of n CFSMs Ti = 〈Li, `0,i, Qi,M,Σi, ∆i〉 (∀i ∈ [1, n])
acting in parallel and exchanging information through FIFO channels.

Note that a distributed system is also modeled by a CFSM, since the asynchronous product
of several CFSMs is a CFSM. To avoid the confusion between the model of one process
and the model of the whole system, in the sequel, a CFSM Ti always denotes the model
of a single process, and a distributed system T = 〈L, `0, Q,M,Σ,∆〉 always denotes
the model of the global system, as in Definition 4. Below, unless stated explicitly, T =
T1|| . . . ||Tn is the considered distributed system.

Communication Architecture of the System. We consider an architecture for the sys-
tem T = T1|| . . . ||Tn defined in Definition 4 with point-to-point communication i.e., any
subsystem Ti can send messages to any other subsystem Tj through a queue4 Qi,j . Thus,
only Ti can write a message m on Qi,j (this is denoted by Qi,j !m) and only Tj can read
a message m on this queue (this is denoted by Qi,j?m). Moreover, we suppose that the
queues are unbounded, that the message transfers between the subsystems are reliable and
may suffer from arbitrary non-zero delays, and that no global clock or perfectly synchro-
nized local clocks are available. With this architecture, the set Qi of Ti (∀i ∈ [1, n]) can be

4 To simplify the presentation of our method, we suppose there is one queue from Ti to Tj . But, our
implementation is more permissive: there can be zero, one or more queues from Ti to Tj .



rewritten as Qi = {Qi,j , Qj,i | (1 ≤ j ≤ n) ∧ (j 6= i)} and ∀j 6= i ∈ [1, n], Σi ∩Σj = ∅.
Let δi = 〈`i, σi, `′i〉 ∈ ∆i be a transition of Ti, global(δi) def

= {〈〈`1, . . . , `i−1, `i, `i+1,
. . . , `n〉, σi, 〈`1, . . . , `i−1, `′i, `i+1, . . . , `n〉〉 ∈ ∆ |∀j 6= i ∈ [1, n] : `j ∈ Lj} is the set
of transitions of ∆ that can be built from δi in T . We extend this definition to sets of tran-
sitions D ⊆ ∆i of the subsystem Ti : global(D)

def
=

⋃
δi∈D global(δi). We abuse notation

and write ∆ \∆i instead of ∆ \ global(∆i) to denote the set of transitions of ∆ that are
not built from ∆i. Given the set Σi of Ti (∀i ∈ [1, n]) and the set Σ of T , the projection
Pi of Σ onto Σi is standard: Pi(ε) = ε and ∀w ∈ Σ∗, ∀a ∈ Σ, Pi(wa) = Pi(w)a if
a ∈ Σi, and Pi(w) otherwise. The inverse projection P−1i is defined, for each L ⊆ Σ∗i ,
by P−1i (L) = {w ∈ Σ∗ | Pi(w) ∈ L}.

B0

B1

B2

B3

C0 C1

A1 A2

A0 Aer

Q2,1?bQ2,1?b

Q2,1?b

Q2,1!b
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T2
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Q2,1?a
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Example 1. Let us illustrate the concepts of distributed sys-
tem and CFSM with our running example depicted on the
right hand side. It models a factory composed of three com-
ponents T1, T2 and T3. The subsystem T2 produces two kinds
of items, a and b, and sends these items to T1 to finish the
job. At reception, T1 must immediately terminate the process
of each received item. T1 can receive and process b items at
any time, but must be in a turbo mode to receive and process
a items. The subsystem T1 can therefore be in normal mode
modeled by the location A0 or in turbo mode (locations A1

and A2). In normal mode, if T1 receives an item a, an error
occurs (transition in location Aer). Since T1 cannot always be
in turbo mode, a protocol between T1 and T2 is imagined. At

the beginning, T1 informs (connect action, modeled by
Q1,2!c→ )

T2 that it goes in a turbo mode, then T2 sends a and b items.
At the end of a working session, T2 informs T1 (disconnect

action, modeled by
Q2,3!d→ ) that it has completed its session, so that T1 can go back in nor-

mal mode. However, this information has to transit through T3 via queues Q2,3 and Q3,1,
as T3 must also record this end of session. Since the message d can be transmitted faster
than some items a and b, one can easily find a scenario where T1 decides to go back to
A0 and ends up in the Aer location by reading the message a. It is due to the fact that the
subsystems cannot observe the content of the queues and thus T1 does not know whether
there is a message a in queue Q2,1 when it arrives in A0. This motivates the interest of
computing good state estimates of the current state of the system. Indeed, if each subsys-
tem maintains good estimates of the current state of the system, then T1 can know whether
there is a message a in Q2,1, and reach the location A0 only if it is not the case. �

3 State Estimates of Distributed Systems

We introduce here the framework and the problem we are interested in.

Local View of the Global System. A global state of T = T1|| . . . ||Tn is given by a tuple
of locations (one for each subsystem) and the content of all the FIFO queues. Informally
our problem consists in defining one local estimator per subsystem, knowing that each of



them can only observe the occurrences of actions of its own local subsystem, such that
these estimators compute online (i.e., during the execution of the system) estimates of
the global state of T . We assume that each local estimator Ei has a precise observation
of subsystem Ti, and that the model of the global system is known by all the estimators
(i.e., the structure of each subsystem and the architecture of the queues between them).
Each estimator Ei must determine online the smallest possible set of global states Ei that
contains the actual current global state. Note that if Ei observes that the location of Ti is
`i, a very rough state estimate is L1× . . .×{`i}× · · ·×Ln× (M∗)|Q|. In other words all
the global states of the system such that location of Ti is `i; however, this rough estimate
does not provide a very useful information.

Online State Estimates. The estimators must compute the state estimates online. Since
each estimator Ei is local to its subsystem, we suppose that Ei synchronously observes
the actions fired by its subsystem; hence since each subsystem is deterministic, each time
an event occurs in the local subsystem, it can immediately infer the new location of Ti
and use this information to define its new state estimate. In order to have better state
estimates, we also assume that the estimators can communicate with each other by adding
some information (some timestamps and their state estimates) to the messages exchanged
by the subsystems. Notice that, due to the communication delay, the estimators cannot
communicate synchronously, and therefore the state estimate attached to a message might
be out-of-date. A classical way to reduce this uncertainty is to timestamp the messages,
e.g., by means of vector clocks (see section 4.1).

Estimates Based on Reachability Sets. Each local estimator maintains a symbolic rep-
resentation of all global states of the distributed system that are compatible with its ob-
servation and with the information it received previously from the other estimators. In
section 4.2, we detail the algorithms which update these symbolic representations when-
ever an event occurs. But first, let us explain the intuition behind the computation of an
estimate. We consider the simplest case: the initial state estimate before the system be-
gins its execution. Each FIFO channel is empty, and each subsystem Ti is in its initial
location `i,0. So the initial global state is known by every estimator Ei. A subsystem Tj
may however start its execution, while Ti is still in its initial location, and therefore Ei
must thus take into account all the global states that are reachable by taking the transitions
of the other subsystems Tj . The initial estimate Ei is this set of reachable global states.
This computation of reachable global states also occurs in the update algorithms which
take into account any new local event occurred or message received (see section 4.2). The
reachability problem is however undecidable for distributed FIFO systems. In section 5,
we explain how we overcome this obstacle by using abstract interpretation techniques.
Properties of the Estimators. Estimators may have two important properties: soundness
and completeness. Completeness refers to the fact that the current state of the global system
is always included in the state estimates computed by each state estimator. Soundness
refers to the fact that all states included in the state estimate of Ei (∀i ∈ [1, n]) can be
reached by one of the sequences of actions that are compatible with the observation of Ti
performed by Ei.
Definition 5 (Completeness and Soundness). The estimators (Ei)i≤n are (i) complete if
and only if, for any execution x0

e1−→ x1
e2−→ . . .

em−−→ xm of T , xm ∈
⋂n
i=1Ei, and (ii)

sound if and only if, for any execution x0
e1−→ x1

e2−→ . . .
em−−→ xm of T , Ei ⊆ {x′ ∈



X|∃σ ∈ P−1i (Pi(σe1 .σe2 . . . σem)) : x0
σ→ x′} (∀i ≤ n) where σek (∀k ∈ [1,m]) is the

action that labels the transition corresponding to ek.

4 Algorithm to Compute the State Estimates

We now present our algorithm that computes estimates of the current state of a distributed
system. But first, we recall the notion of vector clocks [13], a standard concept that we
shall use to compute a more precise state estimates.

4.1 Vector Clocks

To allow the estimators to have a better understanding of the concurrent execution of the
distributed system, it is important to determine the causal and temporal relationship be-
tween the events that occur in its execution. In a distributed system, events emitted by
the same process are ordered, while events emitted by different processes are generally
not. When the concurrent processes communicate, additional ordering information can
however be obtained. In this case, the communication scheme can be used to obtain a
partial order on the events of the system. In practice, vectors of logical clocks, called vec-
tor clocks [13], can be used to time-stamp the events of the distributed system. The order
of two events can then be determined by comparing the value of their respective vector
clocks. When these vector clocks are incomparable, the exact order in which the events
occur cannot be determined. Vector clocks are formally defined as follows:

Definition 6 (Vector Clocks). Let 〈D,v〉 be a partially ordered set, a vector clock map-
ping of width n is a function V : D → Nn such that ∀d1, d2 ∈ D : (d1 v d2) ⇔
(V (d1) ≤ V (d2)).

In general, for a distributed system composed of n subsystems, the partial order on events
is represented by a vector clock mapping of width n. The method for computing this vector
clock mapping depends on the communication scheme of the distributed system. For CF-
SMs, this vector clock mapping can be computed by the Mattern’s algorithm [17], which
is based on the causal and thus temporal relationship between the sending and reception
of any message transferred through any FIFO channel. This information is then used to
determine a partial order, called causality (or happened-before) relation ≺c, on the events
of the distributed system. This relation is actually the smallest transitive relation satisfying
the following conditions: (i) if the events ei 6= ej occur in the same subsystem Ti and
if ei comes before ej in the execution, then ei ≺c ej , and (ii) if ei is an output event
occurring in Ti and if ej is the corresponding input event occurring in Tj , then ei ≺c ej .
In Mattern’s algorithm [17], each process Ti (∀i ∈ [1, n]) has a vector clock Vi ∈ Nn of
width n and each element Vi[j] (∀j ∈ [1, n]) is a counter which represents the knowl-
edge of Ti regarding Tj and which means that Ti knows that Tj has executed at least Vi[j]
events. Each time an event occurs in a subsystem Ti, the vector clock Vi is updated to take
into account the occurrence of this event (see [17] for details). When Ti sends a message
to some subsystem Tj , this vector clock is piggybacked and allows Tj , after reception, to
update its own vector clock. Our state estimate algorithm uses vector clocks and follows
Mattern’s algorithm, which ensures the correctness of the vector clocks that we use (see
section 4.2).



4.2 Computation of State Estimates
Our state estimate algorithm computes, for each estimator Ei and for each event occurring
in the subsystem Ti, a vector clock Vi and a state estimateEi that contains the current state
of T and any future state that can be reached from this current state by firing actions that do
not belong to Ti. This computation obviously depends on the information that Ei receives.
As a reminder, Ei observes the last action fired by Ti and can infer the fired transition. Ti
also receives from the other estimators Ej their state estimate Ej and their vector clock Vj .
Our state estimate algorithm proceeds as follows :

– When the subsystem Ti sends a message m to Tj , Ti attaches the vector clock Vi and
the state estimate Ei of Ei to this message. Next, Ei receives the action fired by Ti, and
infers the fired transition. It then uses this information to update its state estimate Ei.

– When the subsystem Ti receives a message m from Tj , Ei receives the action fired by
Ti and the information sent by Tj i.e., the state estimate Ej and the vector clock Vj of
Ej . It computes its new state estimate from these elements.

In both cases, the computation of the new state estimate Ei depends on the computation
of reachable states. In this section, we assume that we have an operator that can compute
an approximation of the reachable states (which is undecidable is the CFSM model). We
will explain in section 5 how such an operator can be computed effectively.
State Estimate Algorithm. Our algorithm, called SE-algorithm, computes estimates of
the current state of a distributed system. It is composed of three sub-algorithms: (i) the
initialization algorithm, which is only used when the system starts its execution, computes,
for each estimator, its initial state estimate (ii) the outputTransition algorithm computes
online the new state estimate of Ei after an output of Ti, and (iii) the inputTransition
algorithm computes online the new state estimate of Ei after an input of Ti.

INITIALIZATION Algorithm: According to the Mattern’s algorithm [17], each component
of the vector Vi is set to 0. To take into account that, before the execution of the first action
of Ti, the other subsystems Tj (∀j 6= i ∈ [1, n]) could perform inputs and outputs, the
initial state estimate of Ei is given by Ei = ReachT∆\∆i

(〈`0,1, . . . , `0,n, ε, . . . , ε〉).

Algorithm 1: initialization(T )
input : T = T1|| . . . ||Tn .
output: The initial state estimate Ei of the estimator Ei (∀i ∈ [1, n]).
begin1

for i← 1 to n do for j ← 1 to n do Vi[j]← 02

for i← 1 to n do Ei ← ReachT∆\∆i
(〈`0,1, . . . , `0,n, ε, . . . , ε〉)3

return (E1, . . . , En)4

end5

OUTPUT Algorithm: Let Ei be the current state estimate of Ei. When Ti wants to execute
a transition δ = 〈`1, Qi,j !m, `2〉 ∈ ∆i corresponding to an output on the queue Qi,j , the
following instructions are computed to update the state estimate Ei:

• according to the Mattern’s algorithm [17], Vi[i] is incremented (i.e., Vi[i] ← Vi[i] + 1)
to indicate that a new event has occurred in Ti.
• Ti tags message m with 〈Ei, Vi, δ〉 and writes this information on the queue Qi,j . The

state estimate Ei tagging m contains the set of states in which T can be before the



Algorithm 2: outputTransition(T , Vi, Ei, δ)
input : T = T1|| . . . ||Tn, the vector clock Vi of Ei, the current state estimate Ei of Ei, and a

transition δ = 〈`1, Qi,j !m, `2〉 ∈ ∆i.
output: The state estimate Ei after the output transition δ.
begin1

Vi[i]← Vi[i] + 12
Ti tags message m with 〈Ei, Vi, δ〉 and it writes this tagged message on Qi,j3

Ei ← ReachT∆\∆i
(PostTδ (Ei))4

return (Ei)5

end6

execution of δ. The additional information 〈Ei, Vi, δ〉 will be used by Tj to refine its
state estimate.
• the state estimate Ei is updated as follows, to contain the current state of T and any

future state that can be reached from this current state by firing actions that do not
belong to Ti: Ei ← ReachT∆\∆i

(PostTδ (Ei)). More precisely, PostTδ (Ei) gives the set
of states in which T can be after the execution of δ. After the execution of this transition,
Tj (∀j 6= i ∈ [1, n]) could however read and write on their queues. Therefore, we define
the state estimate Ei by ReachT∆\∆i

(PostTδ (Ei)).

Algorithm 3: inputTransition(T , Vi, Ei, δ)
input : T = T1|| . . . ||Tn , the vector clock Vi of Ei, the current state estimate Ei of Ei and a

transition δ = 〈`1, Qj,i?m, `2〉 ∈ ∆i. Message m is tagged with the triple
〈Ej , Vj , δ′〉 where (i) Ej is the state estimate of Ej before the execution of δ′ by Tj ,
(ii) Vj is the vector clock of Ej after the execution of δ′ by Tj , and (iii) δ′ =
〈`′1, Qj,i!m, `′2〉 ∈ ∆j is the output corresponding to δ.

output: The state estimate Ei after the input transition δ.
begin1
\\We consider three cases to update Ej2

if Vj [i] = Vi[i] then Temp1 ← PostTδ (Reach
T
∆\∆i

(PostTδ′(Ej)))3

else if Vj [j] > Vi[j] then Temp1 ← PostTδ (Reach
T
∆\∆i

(ReachT∆\∆j
(PostTδ′(Ej))))4

else Temp1 ← PostTδ (Reach
T
∆(Post

T
δ′(Ej)))5

Ei ← PostTδ (Ei) \\We update Ei6
Ei ← Ei ∩ Temp1 \\ Ei = updates of Ei ∩ update of Ej (i.e., Temp1)7
Vi[i]← Vi[i] + 18
for k ← 1 to n do Vi[k]←max(Vi[k], Vj [k])9
return (Ei)10

end11

INPUT Algorithm: Let Ei be the current state estimate of Ei. When Ti executes a tran-
sition δ = 〈`1, Qj,i?m, `2〉 ∈ ∆i, corresponding to an input on the queue Qj,i, it also
reads the information 〈Ej , Vj , δ′〉 (where Ej is the state estimate of Ej before the ex-
ecution of δ′ by Tj , Vj is the vector clock of Ej after the execution of δ′ by Tj , and



δ′ = 〈`′1, Qj,i!m, `′2〉 ∈ ∆j is the output corresponding to δ) tagging m, and the following
operations are performed to update Ei:

• we update the state estimate Ej of Ej (this update is denoted by Temp1) by using
the vector clocks to guess the possible behaviors of T between the execution of the
transition δ′ and the execution of δ. We consider three cases :
− if Vj [i] = Vi[i] : Temp1 ← PostTδ (Reach

T
∆\∆i

(PostTδ′(Ej))). In this case, thanks
to the vector clocks, we know that Ti has executed no transition between the
execution of δ′ by Tj and the execution of δ by Ti. Thus, only transitions in
∆ \ ∆i could have occurred during this period. We then update Ej as follows.
We compute (i) PostTδ′(Ej) to take into account the execution of δ′ by Tj , (ii)
ReachT∆\∆i

(PostTδ′(Ej)) to take into account the transitions that could occur between
the execution of δ′ and the execution of δ, and (iii) PostTδ (Reach

T
∆\∆i

(PostTδ′(Ej)))
to take into account the execution of δ.

− else if Vj [j] > Vi[j] : Temp1 ← PostTδ (Reach
T
∆\∆i

(ReachT∆\∆j
(PostTδ′(Ej)))). Indeed,

in this case, we can prove (see the proof of Theorem 1) that if we reorder the tran-
sitions executed between the occurrence of δ′ and the occurrence of δ in order to
execute the transitions of∆i before the ones of∆j , we obtain a correct update ofEi.
Intuitively, this reordering is possible, because there is no causal relation between
the events of Ti and the events of Tj , that have occurred between δ′ and δ. So, in this
reordered sequence, we know that, after the execution of δ, only transitions in∆\∆j

could occur followed by transitions in ∆ \∆i.
− else5 Temp1 ← PostTδ (Reach

T
∆(Post

T
δ′(Ej))). Indeed, in this case, the vector clocks

do not allow us to deduce information regarding the behavior of T between the
execution of δ′ and the execution of δ. Therefore, to have a correct state estimate,
we update Ej by taking into account all the possible behaviors of T between the
execution of δ′ and the execution of δ.

• we update the state estimate Ei to take into account the execution of the input transition
δ: Ei ← PostTδ (Ei).
• we have two different state estimates: Temp1 and Ei. Thus, we intersect them to obtain

a better state estimate: Ei ← Ei ∩ Temp1.
• according to the Mattern’s algorithm [17], the vector clock Vi is incremented to take into

account the execution of δ and subsequently is set to the component-wise maximum of
Vi and Vj . This last operation allows us to take into account the fact that any event that
precedes the sending of m should also precede the occurrence of δ.

Q1,2!cT1

T2

T3

[1, 0, 0]

[1, 1, 0] [1, 2, 0] [1, 3, 0]

[1, 3, 1] [1, 3, 2]

[2, 3, 2] [4, 3, 2][3, 3, 2]

Q1,2?c Q2,1!a Q2,3!d

Q2,3?d Q3,1!d

Q3,1?d Q1,2!dQ2,1?a

Fig. 1. An execution of the running example.

Example 2. We illustrate SE-algorithm with a sequence of actions of our running ex-
ample depicted in Figure 1 (the vector clocks are given in the figure). A state of the

5 It can be shown that the set Temp1 computed in the second case is better that the one computed
in the third case.



global system is denoted by 〈`1, `2, `3, w1,2, w2,1, w2,3, w3,1〉 where `i is the location of
Ti (for i = 1, 2, 3) and w1,2, w2,1, w2,3 and w3,1 denote the content of the queues Q1,2,
Q2,1, Q2,3 and Q3,1.At the beginning of the execution, the state estimates of the three
subsystems are (i) E1 = {〈A0, B0, C0, ε, ε, ε, ε〉}, (ii) E2 = {〈A0, B0, C0, ε, ε, ε, ε〉,
〈A1, B0, C0, c, ε, ε, ε〉}, and (iii) E3 = {〈A0, B0, C0, ε, ε, ε, ε〉, 〈A1, B0, C0, c, ε, ε, ε〉,
〈A1, B1, C0, ε, b

∗, ε, ε〉, 〈A1, B2, C0, ε, b
∗(a+ε), ε, ε〉, 〈A1, B3, C0, ε, b

∗(a+ε), d, ε〉}. Af-
ter the first transition 〈A0, Q1,2!c, A1〉, the state estimate of the estimator E1 is not really
precise, because a lot of events may have happened without the estimator E1 being in-
formed: E1 = {〈A1, B0, C0, c, ε, ε, ε〉, 〈A1, B1, C0, ε, b

∗, ε, ε〉, 〈A1, B2, C0, ε, b
∗a, ε, ε〉,

〈A1, B3, C0, ε, b
∗(a + ε), d, ε〉, 〈A1, B3, C1, ε, b

∗(a + ε), ε, ε〉, 〈A1, B3, C0, ε, b
∗(a +

ε), ε, d〉}. However, after the second transition 〈B0, Q1,2?c,B1〉, the estimator E2 has an
accurate state estimate: E2 = {〈A1, B1, C0, ε, ε, ε, ε〉}. We skip a few steps and consider
the state estimates before the sixth transition 〈C1, Q3,1!d,C0〉:E1 is still the same, because
the subsystem T1 did not perform any action, E3 = {〈A1, B3, C1, ε, b

∗(a+ ε), ε, ε〉}, and
we do not indicate E2, because T2 is no longer involved. When T3 sends the message d
to T1 (the transition 〈C1, Q3,1!d,C0〉), it attaches E3 to this message. When T1 reads this
message, it computes E1 = {〈A2, B3, C0, ε, b

∗(a + ε), ε, ε〉} and when it reads the mes-
sage a, it updates E1 : E1 = {〈A2, B3, C0, ε, b

∗, ε, ε〉}. Thus, E1 knows, after this action,
that there is no message a in Q2,1, and that after writing d on Q1,2, it cannot reach Aer
from A0. This example shows the importance of knowing the content of the queues as
without this knowledge, E1 may think that there is an a in the queue, so an error might
occur if the transition 〈A2, Q1,2!d,A0〉 is enabled. �

Properties. As explained above, we assume that we can compute an approximation of the
reachable states. In this part, we present the properties of our state estimate algorithm w.r.t.
the kind of approximations that we use.

Theorem 1. SE-algorithm is complete, if the Reach operator computes an overapproxi-
mation of the reachable states.

The proof is given in Appendix A. If we compute an underapproximation of the reachable
states, our state estimate algorithm is not complete.

Theorem 2. SE-algorithm is sound, if the Reach operator computes an underapproxima-
tion of the reachable states.

The proof is given in Appendix A. If we compute an overapproximation of the reachable
states, our state estimate algorithm is not sound.

Depending on the used approximations, our algorithm is either complete or sound.
Completeness is a more important property, because it ensures that the computed state
estimates always contains the current global state. Therefore, in section 5, we define an
effective algorithm for the state estimate problem by computing overapproximations of
the reachable states. Finally, note that our method proposes that we only add information
to existing transmitted messages. We can show that increasing the information exchanged
between the estimators (for example, each time an estimator computes a new state esti-
mate, this estimate is sent to all the other estimators) improves their state estimate. This
can be done only if the channels and the subsystems can handle this extra load.



5 Effective Computation of State Estimates by Means of Abstract
Interpretation

The algorithm described in the previous section requires the computation of reachability
operators. But they cannot always be computed for undecidability (or complexity) reasons.
In this section, we explain how to overcome this obstacle by using abstract interpretation
techniques (see e.g. [7, 14]). In our case, abstract interpretation allows us to compute, in a
finite number of steps, an overapproximation of the reachability operators and thus of the
state estimates Ei.

Computation of Reachability Sets by the Means of Abstract Interpretation. For a
given set of global states X ′ ⊆ X and a given set of transitions ∆′ ⊆ ∆, the reacha-
bility set from X ′ can be characterized by the least fixpoint: ReachT∆′(X

′) = µY.X ′ ∪
PostT∆′(Y ). Abstract interpretation provides a theoretical framework to compute efficient
overapproximation of such fixpoints. The concrete domain (i.e., the sets of states 2X ), is
substituted by a simpler abstract domain Λ, linked by a Galois Connection 2X −−→←−−α

γ
Λ [7],

where α (resp. γ) is the abstraction (resp. concretization) function. The fixpoint equation
is transposed into the abstract domain. So, the equation to solve has the form: λ = F ]∆′(λ),
with λ ∈ Λ and F ]∆′ w α ◦ F∆′ ◦ γ. In this setting, a standard way to ensures that the fix-
point computation converges after a finite number of steps to some overapproximation λ∞,
is to use a widening operator∇. The concretization c∞ = γ(λ∞) is an overapproximation
of the least fixpoint of the function F∆′ .

Choice of the Abstract Domain. In abstract interpretation based techniques, the quality
of the approximation we obtain depends on the choice of the abstract domain Λ. In our
case, the main issue is to abstract the content of the FIFO channels. Since the CFSM
model is Turing-powerful, the language that represents all the possible contents of the
FIFO channels may be recursively enumerable. As discussed in [14], a good candidate,
that abstracts the contents of the queues, to use is the class of regular languages, which can
be represented by finite automata. Let us recall the main ideas of this abstraction.

Finite Automata as an Abstract Domain. We first assume that there is only one queue in
the distributed system T ; we explain later how to handle a distributed system with several
queues.

With one queue, the concrete domain of the system T is defined by X = 2L×M
∗
. A

set of states Y ∈ 2L×M
∗

can be viewed as a map Y : L 7→ 2M
∗

that associates a language
Y (`) with each location ` ∈ L; Y (`) therefore represents the possible contents of the queue
in the location `. To simplify the computation, we substitute the concrete domain 〈L 7→
2M
∗
,⊆,∪,∩, L ×M∗, ∅〉 by the abstract domain 〈L 7→ Reg(M),⊆,∪,∩, L ×M∗, ∅〉,

where Reg(M) is the set of regular languages over the alphabetM . This substitution con-
sists in abstracting, for each location, the possible contents of the queue by a regular lan-
guage. Since regular languages have a canonical representation given by finite automata,
each operation (union, intersection, left concatenation,...) in the abstract domain can be
performed on finite automata.

Widening Operator. With our abstraction, the widening operator we use to ensure the
convergence of the computation, is also performed on a finite automaton, and consists



in quotienting the nodes6 of the automaton by the k-bounded bisimulation relation ≡k;
k ∈ N is a parameter which allows us to tune the precision, since increasing k improves
the quality of the abstractions in general. Two nodes are equivalent w.r.t. ≡k if they have
the same outgoing path (sequence of labeled transitions) up to length k. While we merge
the equivalent nodes, we keep all transitions and we obtain an automaton recognizing a
larger language. Note that for a fixed k, the class of automata which results from such a
quotient operation from any original automaton, is finite and its cardinality is bounded by
a number which is only function of k. This is the reason why when we apply this widening
operator regularly, the fixpoint computation terminates (see [14] for more details).

0 1 2 3 4
b b b a

a

aa
{0, 1, 2} {3} {4}b

b

a

a

Fig. 2. Illustration of the 1-bounded bisimulation relation ≡1 for A.

Example 3. We consider the automaton A depicted in Figure 2, whose recognized lan-
guage is a + ba + bba + bbba. We consider the 1-bounded bisimulation relation i.e., two
nodes of the automaton are equivalent if they have the same outgoing transitions. So, nodes
0, 1, 2 are equivalent, since they all have two transitions labeled by a and b. Nodes 3 and
4 are equivalent to no other node since 4 has no outgoing transition whereas only a is en-
abled in node 3. When we quotient A by this equivalent relation, we obtain the automaton
on the right side of Figure 2, whose recognized language is b∗a. �
When the system contains several queues Q = {Q1, . . . , Qr}, their content can be rep-
resented by a concatenated word w1] . . . ]wr with one wi for each queue Qi and ], a
delimiter. With this encoding, we represent a set of queue contents by a finite automaton
of a special kind, namely a QDD [2]. Since QDDs are finite automata, classical operations
(union, intersection, left concatenation,...) in the abstract domain are performed as was
done previously. We must only use a slightly different widening operator not to merge the
different queue contents [14].

Effective SE-algorithm. The Reach operator is computed using those abstract interpreta-
tion techniques: we proceed to an iterative computation in the abstract domain of regular
languages and the widening operator ensures that this computation terminates after a fi-
nite number of steps [7]. So the Reach operator always gives an overapproximation of the
reachable states regardless the distributed system. The efficiency of these approximations
is measured in the experiments of section 6. Because of Theorem 1, our SE-algorithm is
complete.

6 Experiments
We have implemented the SE-algorithm as a new feature of the McScM tool [18], a model
checker for distributed systems modeled by CFSM. Since it represents queue contents by
QDDs, this software provides most of the functionalities needed by our algorithm, like
effective computation of reachable states. We have also added a mechanism to manage
vector clocks, and an interactive simulator. This simulator first computes and displays
the initial state estimates. At each step, it asks the user to choose a possible transition.

6 The states of an automaton representing the queue contents are called nodes to avoid the confusion
with the states of a CFSM.



If the chosen transition is an output, it attaches the current state estimate of the active
subsystem and its vector clock to the message sent, and updates the local state estimate. If
the transition is an input, the local estimator reads the information attached to the received
message and updates its state estimate.

We proceeded to an evaluation of our algorithm measuring the size of the state esti-
mates. Note that this size is not the number of global states of the state estimate (which
may be infinite) but the number of nodes of its QDD representation. We generated random
sequences of transitions for our running example and some other examples of [12]. Table 1
shows the average execution time for a random sequence of 100 transitions, the memory
required (heap size), the average and maximal size of the state estimates. Default value
of the widening parameter is k = 1. Experiments were done on a standard MacBook Pro
with a 2.4 GHz Intel core 2 duo CPU.

example # subsystems # channels time [s] memory [MB] maximal size average size
running example 3 4 7.13 5.09 143 73.0
c/d protocol 2 2 5.32 8.00 183 83.2
non-regular protocol 2 1 0.99 2.19 172 47.4
ABP 2 3 1.19 2.19 49 24.8
sliding window 2 2 3.26 4.12 21 10.1
POP3 2 2 3.08 4.12 22 8.5

Table 1. Experiments

These results show that the computation of state estimates takes about 50ms per transition
and that the symbolic representation of state estimates we add to messages are automata
with a few dozen nodes. A sensitive element in the method is the size of the computed
and transmitted information. It can be improved by the use of compression techniques to
reduce the size of this information. A more evolved technique would consist in the offline
computation of the set of possible estimates. Estimates are indexed in a table, available
at execution time to each local estimator. If we want to keep an online algorithm, we
can use the memoization technique. When a state estimate is computed for the first time,
it is associated with an index that is transmitted to the subsystem which records both
values. If the same estimate must be transmitted, only its index can be transmitted and the
receiver can find from its table the corresponding estimate. Those techniques are not yet
implemented.

We also highlight that our method works better on the real-life communication proto-
cols we have tested (alternating bit protocol, sliding window, POP3) than on the examples
we introduced to test our tool. More details about the tool and experiments are given in
Appendix B.

7 Conclusion and Future Work

We have proposed an effective algorithm to compute online, locally to each subsystem, an
estimate of the global state of a running distributed system, modeled as communicating
finite state machines with reliable unbounded FIFO queues. With such a system, a global
state is composed of the current location of each subsystem together with the channel
contents. The principle is to add a local estimator to each subsystem such that most of
the system is preserved; each local estimator is only able to compute information and



in particular symbolic representations of state estimates and to piggyback some of this
computed information to the transmitted messages. Since these estimates may be infinite,
a crucial point of our work has been to propose and evaluate the use of regular languages
to abstract sets of FIFO queues. In practice, we have used k-bisimilarity relations, which
allows us to represent each (possibly infinite) set of queue contents by the minimal and
canonical k-bisimilar finite automaton which gives an overapproximation of this set. Our
algorithm transmits state estimates and vector clocks between subsystems to allow them to
refine and preserve consistent state estimates. More elaborate examples must be taken to
analyze the precision of our algorithm and see, in practice, if the estimates are sufficient to
solve diagnosis or control problems. Anyway, it appears important to study the possibility
of reducing the size of the added communication while preserving or even increasing the
precision in the transmitted state estimates.
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A Proofs of Theorems 1 and 2

In this section, we prove Theorems 1 and 2. These proofs use the lemmas given in sec-
tion A.1 and the following notations.

Let s = x0
e1−→ x1

e2−→ . . .
em−−→ xm be an execution of the global system T . When the

subsystem Ti executes an event ek (with k ∈ [1,m]) of this sequence, the state estimate,
computed by Ei at this step, is denoted by Eti , where t is the number of events executed
by Ti in the subsequence x0

e1−→ x1
e2−→ . . .

ek−→ xk. However, to be more concise in our
presentation, we use an abuse of notation: when an event ek is executed in the sequence
s, the state estimate of each state estimator Ei is denoted by7 Eki . This state estimate is

defined in the following way: if ek has not been executed by Ti, then Eki
def
= Ek−1i .

Otherwise, the value of Eki is computed by the state estimator from Ek−1i , the observed
event, and the information that possibly tags this event.

The vector clock Vi, computed after the occurrence of an event e in the subsystem Ti,
is denoted by Vi(e).

A.1 Lemmas

The following lemma proves the correctness of the vector clock mapping computed by the
Mattern’s algorithm for the relation ≺c:
Lemma 1 ([17]). Given n subsystems Ti (∀i ∈ [1, n]) and two events e1 6= e2 occurring
respectively in Ti and Tj (i can be equal to j), we have the following equivalence: e1 ≺c
e2 if and only if Vi(e1) ≤ Vj(e2).

Lemma 2. Given n subsystems Ti (∀i ∈ [1, n]) and three events ei 6= ej 6= ek occurring
respectively in Ti, Tj and Tk , if ek 6≺c ej and ei ≺c ej , then ek 6≺c ei.

Proof. Let us assume that ek ≺c ei. Since ek 6≺c ej , there exists ` ∈ [1, n] such that
Vk(ek)[`] > Vj(ej)[`]. Moreover, Vk(ek)[`] > Vi(ei)[`], because Vi(ei)[m] ≤ Vj(ej)[m]
for each m ∈ [1, n] (due to ei ≺c ej). But it is a contradiction with ek ≺c ei, because this
relation implies that Vk(ek)[m] ≤ Vi(ei)[m] for each m ∈ [1, n]. �

7 In this way, we do not need to introduce, for each subsystem, a parameter giving the number of
events that has been executed so far by each subsystem



Lemma 3. Given a distributed system T = T1|| . . . ||Tn , and a sequence se1 = x0
e1−→

x1
e2−→ . . .

ei−1−−−→ xi−1
ei−→ xi

ei+1−−−→ xi+1
ei+2−−−→ . . .

em−−→ xm executed by T , if ei 6≺c ei+1,
then the sequence se2 = x0

e1−→ x1
e2−→ . . .

ei−1−−−→ xi−1
ei+1−−−→ x′i

ei−→ xi+1
ei+2−−−→ . . .

em−−→
xm can also occur in the system T .

Proof. We suppose that δei = 〈`ei , σei , `′ei〉 ∈ ∆i and δei+1 = 〈`ej , σej , `′ej 〉 ∈ ∆j . Note
that i 6= j; otherwise, we would have ei ≺c ei+1 (by definition of ≺c). We can prove
this property by showing that PostTδei+1

(PostTδei
(xi−1)) = PostTδei

(PostTδei+1
(xi−1)). For

that, we consider two cases:
1) δei and δei+1

act on different queues: we suppose that δei and δei+1
respectively

act on the queues Qki and Qkj . We also suppose that xi−1 = 〈`1, . . . , `ei ,. . . , `ej ,
. . . , `n, w1, . . . , wki , . . . , wkj , . . . , w|Q|〉 (where wki and wkj respectively denote the
content of the queues Qki and Qkj ), and that the action σei (resp. σej ), which acts
on the content wki (resp. wkj ), modifies it to give w′ki (resp. w′kj ). In consequence,
PostTδei

(xi−1) = 〈`1, . . . , `′ei ,. . . , `ej , . . . , `n, w1, . . . , w
′
ki
, . . . , wkj , . . . , w|Q|〉

and PostTδei+1
(PostTδei

(xi−1)) = 〈`1, . . . , `′ei ,. . . , `′ej , . . . , `n, w1, . . . , w
′
ki
, . . . ,

w′kj , . . . , w|Q|〉. Since ei 6≺c ei+1, we have that PostTδei+1
(xi−1) = 〈`1, . . . , `ei ,. . . ,

`′ej , . . . , `n, w1, . . . , wki , . . . , w
′
kj
, . . . , w|Q|〉 and PostTδei

(PostTδei+1
(xi−1)) =

〈`1, . . . , `′ei ,. . . , `′ej , . . . , `n, w1, . . . , w
′
ki
, . . . , w′kj , . . . , w|Q|〉, which implies that

PostTδei+1
(PostTδei

(xi−1)) = PostTδei
(PostTδei+1

(xi−1)).

2) δei and δei+1 act on the same queue Qk: we consider two cases:
a) σi = Qk!mi is an output and σi+1 = Qk?mj is an input: the message written

by δei cannot be read by the transition δei+1 , because, in this case, we would have
ei ≺c ei+1. Thus, PostTδei+1

(PostTδei
(xi−1)) = 〈`1, . . . , `′ei ,. . . , `′ej , . . . , `n, w1,

. . . , w.mi, . . . , w|Q|〉 where w.mi is the content of the queue Qk. Therefore, the
state PostTδei

(xi−1) = 〈`1, . . . , `′ei ,. . . , `ej , . . . , `n, w1, . . . , mj .w.mi, . . . , w|Q|〉
and the state xi−1 = 〈`1, . . . , `ei ,. . . , `ej , . . . , `n, w1, . . . , mj .w, . . . , w|Q|〉.
Next, we compute the state PostTδei+1

(xi−1) = 〈`1, . . . , `ei ,. . . , `′ej , . . . , `n, w1,

. . . , w, . . . , w|Q|〉 and the state PostTδei
(PostTδei+1

(xi−1)) = 〈`1, . . . , `′ei ,. . . , `′ej ,
. . . , `n, w1, . . . , w.mi, . . . , w|Q|〉. In consequence, PostTδei+1

(PostTδei
(xi−1)) =

PostTδei
(PostTδei+1

(xi−1)).

b) σi = Qk?mi is an input and σi+1 = Qk!mj is an output: the state
PostTδei+1

(PostTδei
(xi−1)) = 〈`1, . . . , `′ei ,. . . , `′ej , . . . , `n, w1, . . . , w.mj , . . . , w|Q|〉

where w.mj is the content of the queue Qk. Next, similarly to the previous case, we
can prove that PostTδei+1

(PostTδei
(xi−1)) = PostTδei

(PostTδei+1
(xi−1)).

The cases, where δei and δei+1
are both an input or an output, are not possible, because

these transitions would then be executed by the same process and hence we would have
ei ≺c ei+1. �

This property means that if two consecutive events ei and ei+1 are such that ei 6≺c ei+1,
then these events can be swapped without modifying the reachability of xm. We finally
prove the following lemma.



Lemma 4. Given a distributed system T = T1|| . . . ||Tn , a transition δi =
〈`i, Qt,i?mi, `

′
i〉 ∈ ∆i (with t 6= i), and a set of states B ⊆ X , then

ReachT∆\∆i
(PostTδei

(ReachT∆\∆i
(B))) = PostTδei

(ReachT∆\∆i
(B)).

Proof. First, the inequality PostTδei
(ReachT∆\∆i

(B)) ⊆
ReachT∆\∆i

(PostTδei
(ReachT∆\∆i

(B))) holds trivially.
To prove the other inclusion, we have to show that if a state xm ∈

ReachT∆\∆i
(PostTδei

(ReachT∆\∆i
(B))), then xm ∈ PostTδei

(ReachT∆\∆i
(B)). We actually

prove a more general result. We show that each sequence x1
e2−→ x2

e3−→ . . .
ek−1−−−→

xk−1
ek−→ xk

ek+1−−−→ xk+1
ek+2−−−→ . . .

em−−→ xm (where (i) x1 ∈ B, (ii) the event ek cor-
responds to the transition δek = δi ∈ ∆i, and (iii) the event eb, for each b 6= k ∈ [2,m],
corresponds to a transition δeb ∈ ∆ \∆i) can be reordered to execute ek at the end of the
sequence without modifying the reachability of xm i.e., the following sequence can occur:
x1

e2−→ x2
e3−→ . . .

ek−1−−−→ xk−1
ek+1−−−→ x′k+1

ek+2−−−→ . . .
em−−→ x′m

ek−→ xm. This reordered
sequence can be obtained thanks to Lemma 3, but to use this lemma, we must prove that
ek 6≺c eb (∀b ∈ [k + 1,m]). The proof is by induction on the length of the sequence of
events that begins from xk:

• Base case: we must prove that ek 6≺c ek+1. By definition of ≺c, since ek and ek+1

occur in different subsystems and are consecutive events, there is one possibility to have
ek ≺c ek+1: it is when ek is an output and ek+1 is the corresponding input. But ek is an
input and hence ek 6≺c ek+1.

• Induction step: we suppose that ek 6≺c ek+r (∀r ∈ [1, j]) and we prove that ek 6≺c
ek+j+1. By definition of ≺c, since ek and ek+1 occur in different subsystems, there are
two possibilities to have ek ≺c ek+j+1:

1) ek is an output and ek+j+1 is the corresponding input. However, ek is an input and
thus this case is impossible.

2) ek ≺c ek+r (with r ∈ [1, j]) and ek+r ≺c ek+j+1. But by induction hypothesis,
ek 6≺c ek+r (∀r ∈ [1, j]) and thus this case is impossible.

Therefore, ek 6≺c ek+j+1. �

A.2 Proof of Theorem 1

To show that this theorem holds, we prove by induction on the length m of an execution
x0

e1−→ x1
e2−→ . . .

em−−→ xm of the system T that ∀i ∈ [1, n] : ReachT∆\∆i
(xm) ⊆ Emi .

Since xm ∈ ReachT∆\∆i
(xm), we have then that xm ∈ Emi . In this proof, when ei ≺c ej ,

we say that ej causally depends on ei (or ei happened-before ej).

• Base case (m = 0): For each i ∈ [1, n], the set E0
i =

ReachT∆\∆i
(〈`0,1, . . . , `0,n, ε, . . . , ε〉) (see Algorithm 1). Therefore, we have that

ReachT∆\∆i
(x0) = E0

i (∀i ∈ [1, n]), because x0 = 〈`0,1, . . . , `0,n, ε, . . . , ε〉.
• Induction step: We suppose that the property holds for the executions of length k ≤ m

(i.e., ∀ 0 ≤ k ≤ m,∀i ∈ [1, n] : ReachT∆\∆i
(xk) ⊆ Eki ) and we prove that the property

also holds for the executions of length m+ 1. For that, we suppose that the event em+1

has been executed by Ti. We must consider two cases:



1) δem+1
is an output on the queue Qi,k (with k 6= i ∈ [1, n]): We must prove that

∀j ∈ [1, n] : ReachT∆\∆j
(xm+1) ⊆ Em+1

j and we consider again two cases to prove
this property:
a) j 6= i: By induction hypothesis, we know that ReachT∆\∆j

(xm) ⊆ Emj . Moreover,
we have that:

xm ⊆ ReachT∆\∆j
(xm), by definition of Reach

⇒ PostTδem+1
(xm) ⊆ PostTδem+1

(ReachT∆\∆j
(xm)), as Post is monotonic

⇒ xm+1 ⊆ ReachT∆\∆j
(xm), because δem+1

∈ ∆ \∆j (as δem+1
∈ ∆i) and

PostTδem+1
(xm) = xm+1

⇒ ReachT∆\∆j
(xm+1) ⊆ ReachT∆\∆j

(ReachT∆\∆j
(xm)), as Reach is monotonic

⇒ ReachT∆\∆j
(xm+1) ⊆ ReachT∆\∆j

(xm)

⇒ ReachT∆\∆j
(xm+1) ⊆ Emj

⇒ ReachT∆\∆j
(xm+1) ⊆ Em+1

j , because Emj = Em+1
j (due to the fact that

em+1 has not been executed by Tj)

b) j = i: By induction hypothesis, we know that ReachT∆\∆i
(xm) ⊆ Emi . The set

Em+1
i = ReachT∆\∆i

(PostTδem+1
(Emi )) (see Algorithm 2). Moreover, we have that:

xm ⊆ ReachT∆\∆i
(xm)

⇒ PostTδem+1
(xm) ⊆ PostTδem+1

(ReachT∆\∆i
(xm))

⇒ xm+1 ⊆ PostTδem+1
(ReachT∆\∆i

(xm)), as PostTδem+1
(xm) = xm+1

⇒ ReachT∆\∆i
(xm+1) ⊆ ReachT∆\∆i

(PostTδem+1
(ReachT∆\∆i

(xm)))

⇒ ReachT∆\∆i
(xm+1) ⊆ ReachT∆\∆i

(PostTδem+1
(Emi )), by induction hypothesis

⇒ ReachT∆\∆i
(xm+1) ⊆ Em+1

i , by definition of Em+1
i

Thus, for each j ∈ [1, n], we have that ReachT∆\∆j
(xm+1) ⊆ Em+1

j . Moreover, since
we compute an overapproximation ofEm+1

j (∀j ∈ [1, n]), this inclusion remains true8.

2) δem+1 is an input on the queue Qk,i (with k 6= i ∈ [1, n]): We must prove that ∀j ∈
[1, n] : ReachT∆\∆j

(xm+1) ⊆ Em+1
j and we consider again two cases:

a) j 6= i: The proof is similar to the one given in the case where δem+1 in an output.

b) j = i: By induction hypothesis, we know that ReachT∆\∆i
(xm) ⊆ Emi . By Al-

gorithm 3, the set Em+1
i = Temp1 ∩ PostTδem+1

(Emi ) (in our algorithm, the

set Temp1 can have three possible values). To prove that ReachT∆\∆i
(xm+1) ⊆

Em+1
i , we first prove that ReachT∆\∆i

(xm+1) ⊆ PostTδem+1
(Emi ) and next we

show that ReachT∆\∆i
(xm+1) ⊆ Temp1. The first inclusion is proved as follows:

8 Note that if we compute an underapproximation of Em+1
j , the inclusion does not always hold.



xm ⊆ ReachT∆\∆i
(xm)

⇒ PostTδem+1
(xm) ⊆ PostTδem+1

(ReachT∆\∆i
(xm))

⇒ xm+1 ⊆ PostTδem+1
(ReachT∆\∆i

(xm)), because PostTδem+1
(xm) = xm+1

⇒ ReachT∆\∆i
(xm+1) ⊆ ReachT∆\∆i

(PostTδem+1
(ReachT∆\∆i

(xm)))

⇒ ReachT∆\∆i
(xm+1) ⊆ PostTδem+1

(ReachT∆\∆i
(xm)), by Lemma 4

⇒ ReachT∆\∆i
(xm+1) ⊆ PostTδem+1

(Emi ), by induction hypothesis

To prove the second inclusion, we must consider three cases which depend on the
definition of Temp1. Let et (with t ≤ m) be the output (executed by Tk with
k 6= i ∈ [1, n]) corresponding to the input em+1:

A) Temp1 = PostTδem+1
(ReachT∆\∆i

(PostTδet (E
t−1
k ))) and Vk[i] = Vi[i] (as a

reminder, Vk represents the vector clock of Tk after the occurrence of the event
et and Vi represents the vector clock of Ti before the occurrence of the event
em+1): By induction hypothesis, we know that ReachT∆\∆k

(xt−1) ⊆ Et−1k .
Moreover, we have that:

xt−1 ⊆ ReachT∆\∆k
(xt−1)

⇒ xt−1 ⊆ Et−1k , by induction hypothesis

⇒ PostTδet (xt−1) ⊆ PostTδet (E
t−1
k )

⇒ xt ⊆ PostTδet (E
t−1
k ), as PostTδet (xt−1) = xt

⇒ ReachT∆\∆i
(xt) ⊆ ReachT∆\∆i

(PostTδet (E
t−1
k )) (β)

However, since Vk[i] = Vi[i], we know that, between the moment where et has
been executed and the moment where em has been executed, the vector clock
Vi[i] has not been modified. Thus, during this period no transition of Ti has
been executed. In consequence, we have that xm ⊆ ReachT∆\∆i

(xt) and hence
xm ⊆ ReachT∆\∆i

(PostTδet (E
t−1
k )) by (β). From this inclusion, we deduce

that:

PostTδem+1
(xm) ⊆ PostTδem+1

(ReachT∆\∆i
(PostTδet (E

t−1
k )))

⇒ xm+1 ⊆ PostTδem+1
(ReachT∆\∆i

(PostTδet (E
t−1
k ))),

because xm+1 = PostTδem+1
(xm)

⇒ ReachT∆\∆i
(xm+1) ⊆ ReachT∆\∆i

(PostTδem+1
(ReachT∆\∆i

(PostTδet (E
t−1
k ))))

⇒ ReachT∆\∆i
(xm+1) ⊆ PostTδem+1

(ReachT∆\∆i
(PostTδet (E

t−1
k ))),

by Lemma 4
⇒ ReachT∆\∆i

(xm+1) ⊆ Temp1, by definition of Temp1



B) Temp1 = PostTδem+1
(ReachT∆\∆i

(ReachT∆\∆k
(PostTδet (E

t−1
k )))) and Vk[k] >

Vi[k] (as a reminder, Vk represents the vector clock of Tk after the occurrence
of the event et and Vi represents the vector clock of Ti before the occurrence of
the event em+1): By induction hypothesis, we know that ReachT∆\∆k

(xt−1) ⊆
Et−1k . Moreover, we have that:

xt−1 ⊆ ReachT∆\∆k
(xt−1)⇒ xt−1 ⊆ Et−1k , by induction hypothesis

⇒ PostTδet (xt−1) ⊆ PostTδet (E
t−1
k )

⇒ xt ⊆ PostTδet (E
t−1
k ), because PostTδet (xt−1) = xt (γ)

This inclusion is used further in the proof. Now, we prove that xm ⊆
ReachT∆\∆i

(ReachT∆\∆k
(xt)). For that, let us consider the subsequence se =

xt
et+1−−−→ xt+1

et+2−−−→ . . .
em−−→ xm of the execution x0

e1−→ x1
e2−→ . . .

em−−→ xm.
Let eK1 be the first event of the sequence se executed9 by Tk and sI =
eI1 , . . . , eI` (with I1 < . . . < I`) be the events of the sequence se exe-
cuted10 by Ti. If I` < K1 (i.e., eI` has been executed before eK1

), then
xm ⊆ ReachT∆\∆i

(ReachT∆\∆k
(xt)), because all the events of the sequence

se executed by Ti have been executed before the first event eK1
of Tk. Other-

wise, let sI′ = eId , . . . , eI` be the events of sI executed after eK1
. We must

reorder the sequence se to obtain a new sequence where all the actions of Ti are
executed before the ones of Tk and xm remains reachable. Lemma 3 allows us
to swap two consecutive events without modifying the reachability when these
events are not causally dependent. To use this lemma, we must prove that the
events eId , . . . , eI` do not causally depend on eK1

. For that, we first prove that
eK1

6≺c eI` . By assumption, we know that Vk[k] > Vi[k]. Vk represents the
vector clock of Tk after the execution of et and Vi represents the vector clock
of Ti before the execution of em+1, which gives Vk(et)[k] > Vi(em)[k]. More-
over, Vi(em)[k] ≥ Vi(eI`)[k] (because eI` has been executed before11 em) and
Vk(eK1

)[k] ≥ Vk(et)[k] + 1 (because eK1
is the event which follows et in

the execution of the subsystem Tk). Thus, Vk(eK1
)[k] > Vi(eI`)[k], and hence

eK1 6≺c eI` . Next, since eIc ≺c eI` (∀eIc 6= eI` ∈ sI′ ) and since eK1 6≺c eI` ,
we have by Lemma 2 that eK1

6≺c eIc . Now, in the sequence se, we will move
the events eId , . . . , eI` to execute them before eK1

without modifying the reach-
ability of xm. We start by moving the element eId . To obtain a sequence where
eId precedes eK1

, we swap eId with the events which precede it and we repeat
this operation until the event eK1

. Lemma 3 ensures that xm remains reachable
if eId is swapped with an element e′ such that e′ 6≺c eId . However, between
eK1

and eId there can be some events, that happened-before eId . We must thus
move these events before moving eId . More precisely, let sb = eb1 , . . . , ebp

9 If this element does not exist, then the transitions executed in this sequence do not belong to ∆k;
thus, xm ⊆ ReachT∆\∆k

(xt) and hence xm ⊆ ReachT∆\∆i
(ReachT∆\∆k

(xt))
10 If the sequence sI is empty, then the transitions executed in the sequence se do not belong to
∆i; thus, xm ⊆ ReachT∆\∆i

(xt) and hence xm ⊆ ReachT∆\∆i
(ReachT∆\∆k

(xt)), because
xt ⊆ ReachT∆\∆k

(xt)
11 Note that eI` may be equal to em.



(with b1 < . . . < bp) be the greatest sequence of events such that (i) these
events are executed between the occurrence of eK1

and the occurrence of eId
and (ii) ∀ebc ∈ sb : ebc ≺c eId (note that the events of the sequence sb are not
executed by Tk; otherwise, we would have eK1

≺c eId ). The sequence of events
s = eK1

, eK1+1, eK1+2, . . . , eb1−1 executed between eK1
and eb1 is such that

∀et′ ∈ s : et′ 6≺c eb1 . Indeed, if et′ ≺c eb1 , then by transitivity we would
have et′ ≺c eId , but this is not possible, because et′ 6∈ s. Thus, by Lemma 3,
in the sequence xt

et+1−−−→ . . .
eK1−−→ xK1

eK1+1−−−−→ xK1+1

eK1+2−−−−→ . . .
eb1−1−−−→

xb1−1
eb1−−→ xb1

eb1+1−−−→ . . .
em−−→ xm, we can safely swap the events eb1−1 and

eb1 . We then obtain a reordered sequence where xm remains reachable i.e., we
obtain xt

et+1−−−→ . . .
eK1−−→ xK1

eK1+1−−−−→ xK1+1

eK1+2−−−−→ . . .
eb1−2−−−→ xb1−2

eb1−−→
x′b1

eb1−1−−−→ xb1
eb1+1−−−→ . . .

em−−→ xm. By repeating this swap with the events
eb1−2, eb1−3, . . . , eK1+1, eK1 , we obtain a reordered sequence where (i) eb1 is
executed before eK1

and (ii) xm remains reachable (by Lemma 3). We repeat
the operations performed for eb1 with the events eb2 , . . . , ebp and eId to ob-
tain a reordered sequence where (i) eId is executed before eK1 and (ii) xm is
reachable. Finally, we repeat the operations performed for eId with the other
elements of the sequence sI′ to obtain a reordered sequence where (i) xm is
reachable from xt and (ii) the events of Ti are executed before the ones of
Tk, which implies that xm ⊆ ReachT∆\∆i

(ReachT∆\∆k
(xt)). Next, from this

inclusion, we deduce that:

PostTδem+1
(xm) ⊆ PostTδem+1

(ReachT∆\∆i
(ReachT∆\∆k

(xt)))

⇒ xm+1 ⊆ PostTδem+1
(ReachT∆\∆i

(ReachT∆\∆k
(xt))),

because xm+1 = PostTδem+1
(xm)

⇒ ReachT∆\∆i
(xm+1) ⊆ ReachT∆\∆i

(PostTδem+1
(ReachT∆\∆i

(ReachT∆\∆k
(xt))))

⇒ ReachT∆\∆i
(xm+1) ⊆ PostTδem+1

(ReachT∆\∆i
(ReachT∆\∆k

(xt))),

by Lemma 4
⇒ ReachT∆\∆i

(xm+1) ⊆ PostTδem+1
(ReachT∆\∆i

(ReachT∆\∆k
(PostTδet (E

t−1
k )))),

by (γ)

⇒ ReachT∆\∆i
(xm+1) ⊆ Temp1, by definition of Temp1

C) Temp1 = PostTδem+1
(ReachT∆(Post

T
δet

(Et−1k ))): By induction hypothesis, we

know that ReachT∆\∆k
(xt−1) ⊆ Et−1k . Moreover, we have that:

xt−1 ⊆ ReachT∆\∆k
(xt−1)⇒ xt−1 ⊆ Et−1k , by induction hypothesis

⇒ PostTδet (xt−1) ⊆ PostTδet (E
t−1
k )

⇒ xt ⊆ PostTδet (E
t−1
k ), as PostTδet (xt−1) = xt

⇒ ReachT∆(xt) ⊆ ReachT∆(Post
T
δet

(Et−1k )) (α)



However, the events et+1, . . . , em leading to xm from the state xt correspond
to transitions which belong to ∆. Thus, xm ⊆ ReachT∆(xt) and hence xm ⊆
ReachT∆(Post

T
δet

(Et−1k )) by (α). From this inclusion, we deduce that:

PostTδem+1
(xm) ⊆ PostTδem+1

(ReachT∆(Post
T
δet

(Et−1k )))

⇒ xm+1 ⊆ PostTδem+1
(ReachT∆(Post

T
δet

(Et−1k ))), as xm+1 =PostTδem+1
(xm)

⇒ xm+1 ⊆ ReachT∆(Post
T
δet

(Et−1k )), because δem+1 ∈ ∆
⇒ ReachT∆\∆i

(xm+1) ⊆ ReachT∆\∆i
(ReachT∆(Post

T
δet

(Et−1k )))

⇒ ReachT∆\∆i
(xm+1) ⊆ ReachT∆(Post

T
δet

(Et−1k )), because ∆ \∆i ⊆ ∆
⇒ ReachT∆\∆i

(xm+1) ⊆ PostTδem+1
(ReachT∆(Post

T
δet

(Et−1k ))),

because δem+1
∈ ∆

⇒ ReachT∆\∆i
(xm+1) ⊆ Temp1, by definition of Temp1

In conclusion, we have proven, for each definition of Temp1, that
ReachT∆\∆i

(xm+1) ⊆ Temp1 and hence ReachT∆\∆i
(xm+1) ⊆ Em+1

i .
Thus, for each j ∈ [1, n], we have that ReachT∆\∆j

(xm+1) ⊆ Em+1
j . Moreover, since

we compute an overapproximation of Em+1
j (∀j ∈ [1, n]), this inclusion remains true.

A.3 Proof of Theorem 2
To show that this theorem holds, we prove by induction on the length m of the sequences
of events e1, . . . , em (let δek = 〈`ek , σek , `′ek〉 be the transition corresponding to ek, for
each k ∈ [1,m]) executed by the system that ∀i ∈ [1, n] : Emi ⊆ {xr ∈ X|∃σ ∈
P−1i (Pi(σe1 .σe2 . . . σem)) : x0

σ→ xr}:
• Base case (m = 0): The initial state x0 = 〈`0,1, . . . , `0,n, ε, . . . , ε〉 and we must

prove that ∀i ∈ [1, n] : E0
i ⊆ {xr ∈ X|∃σ ∈ P−1i (Pi(ε)) : x0

σ→ xr}. The set E0
i =

ReachT∆\∆i
(x0) (see Algorithm 1) and ReachT∆\∆i

(x0) = {xr ∈ X|∃σ ∈ P−1i (Pi(ε)) :

x0
σ→ xr}, which implies that E0

i = {xr ∈ X|∃σ ∈ P−1i (Pi(ε)) : x0
σ→ xr}.

Moreover, since we compute an underapproximation of E0
i (∀j ∈ [1, n]), this inclusion

remains true12.
• Induction step: We suppose that the property holds for the sequences of events of length
k ≤ m and we prove that the property remains true for the sequences of length m + 1.
We suppose that em+1 has been executed by Ti. We consider two cases:

1) δem+1
is an output: We must prove that ∀j ∈ [1, n] : Em+1

j ⊆ {xr ∈ X|∃σ ∈
P−1j (Pj(σe1 .σe2 . . . σem+1)) : x0

σ→ xr} and we consider again two cases:
a) i 6= j: By induction hypothesis, we know that Emj ⊆ {xr ∈ X|∃σ ∈
P−1j (Pj(σe1 .σe2 . . . σem)) : x0

σ→ xr}. Since Em+1
j = Emj (by definition), we

have that Em+1
j ⊆ {xr ∈ X|∃σ ∈ P−1j (Pj(σe1 .σe2 . . . σem)) : x0

σ→ xr}.
12 Note that if we compute an overapproximation of the reachable states, the inclusion does not

always hold.



Moreover, {xr ∈ X|∃σ ∈ P−1j (Pj(σe1 .σe2 . . . σem)) : x0
σ→ xr} = {xr ∈

X|∃σ ∈ P−1j (Pj(σe1 .σe2 . . . σem+1
)) : x0

σ→ xr}, as Pj(σe1 .σe2 . . . σem) =

Pj(σe1 .σe2 . . . σem+1
) (because σem+1

6∈ Σj). Therefore, we have that Em+1
j ⊆

{xr ∈ X|∃σ ∈ P−1j (Pj(σe1 .σe2 . . . σem+1)) : x0
σ→ xr}. Moreover, since we

compute an underapproximation of Em+1
j , this inclusion remains true.

b) i = j: the set Em+1
j = ReachT∆\∆j

(PostTδem+1
(Emj )) and

Pj(σe1 .σe2 . . . σem+1
) = Pj(σe1 .σe2 . . . σem).σem+1

, because σem+1
∈ Σj . We

prove that if x ∈ Em+1
j , then x ∈ {xr ∈ X|∃σ ∈ P−1j (Pj(σe1 .σe2 . . . σem+1)) :

x0
σ→ xr}. If x ∈ Em+1

j , then there exists a state x′ ∈ Emj
such that x ∈ ReachT∆\∆j

(PostTδem+1
(x′)). Let 〈`em+1

, σem+1
, `′em+1

〉,
〈`t1 , σt1 , `′t1〉, . . . , 〈`tk , σtk , `′tk〉 be the sequence of transitions which leads to x

from x′ i.e., x′
σem+1

.σt1
...σtk−−−−−−−−−−→ x. The transition 〈`tb , σtb , `′tb〉 ∈ ∆\∆j (for each

b ∈ [1, k]), which implies that σem+1
.σt1 . . . σtk ∈ P−1j (σem+1

). Moreover, by
induction hypothesis, the state x′ ∈ {xr ∈ X|∃σ ∈ P−1j (Pj(σe1 .σe2 . . . σem)) :

x0
σ→ xr}, which implies that ∃σ′ ∈ P−1j (Pj(σe1 .σe2 . . . σem)) : x0

σ′→ x′.
Since P−1j (Pj(σe1 .σe2 . . . σem+1

)) = [P−1j (Pj(σe1 .σe2 . . . σem)).P−1j (σem+1
)],

the sequence σ′′ = σ′.σem+1
.σt1 . . . σtk belongs to P−1j (Pj(σe1 .σe2 . . . σem+1

)).

Moreover, x0
σ′′→ x (because x0

σ′→ x′ and x′
σem+1

.σt1
...σtk−−−−−−−−−−→ x) which implies

that x ∈ {xr ∈ X|∃σ ∈ P−1j (Pj(σe1 .σe2 . . . σem+1
)) : x0

σ→ xr}. Hence,

Em+1
j ⊆ {xr ∈ X|∃σ ∈ P−1j (Pj(σe1 .σe2 . . . σem+1

)) : x0
σ→ xr}. Again, since

we compute an underapproximation of Em+1
j , this inclusion remains true.

2) δem+1
is an input: We must prove that ∀i ∈ [1, n] : Em+1

j ⊆ {xr ∈ X|∃σ ∈
P−1j (Pj(σe1 .σe2 . . . σem+1

)) : x0
σ→ xr} and we consider again two cases:

a) i 6= j: the proof is similar the one given in the case where δem+1
is an output.

b) i = j: The set Em+1
j = PostTδem+1

(Emj ) ∩ Temp1 (see Algorithm 3). Thus,

we have that Em+1
j ⊆ PostTδem+1

(Emj ) and it then suffices to prove that

PostTδem+1
(Emj ) ⊆ {xr ∈ X|∃σ ∈ P−1j (Pj(σe1 .σe2 . . . σem+1)) : x0

σ→ xr}.
For that, we show that if x ∈ PostTδem+1

(Emj ), then x ∈ {xr ∈ X|∃σ ∈
P−1j (Pj(σe1 .σe2 . . . σem+1

)) : x0
σ→ xr}. If x ∈ PostTδem+1

(Emj ), then there

exists a state x′ ∈ Emj such that x = PostTδem+1
(x′). By induction hypoth-

esis, the state x′ ∈ {xr ∈ X|∃σ ∈ P−1j (Pj(σe1 .σe2 . . . σem)) : x0
σ→

xr}, which implies that ∃σ′ ∈ P−1j (Pj(σe1 .σe2 . . . σem)) : x0
σ′→ x′. Since

P−1j (Pj(σe1 .σe2 . . . σem+1)) = [P−1j (Pj(σe1 .σe2 . . . σem)).P−1j (σem+1)], the se-

quence σ′′ = σ′.σem+1
belongs to P−1j (Pj(σe1 .σe2 . . . σem+1

)). Moreover, x0
σ′′→



x (because x0
σ′→ x′ and x = PostTδem+1

(x′)) which implies that x ∈ {xr ∈
X|∃σ ∈ P−1j (Pj(σe1 .σe2 . . . σem+1)) : x0

σ→ xr}. Therefore, we have that

Em+1
j ⊆ {xr ∈ X|∃σ ∈ P−1j (Pj(σe1 .σe2 . . . σem+1

)) : x0
σ→ xr}. Again, since

we compute an underapproximation of Em+1
j , this inclusion remains true. �

B Experiments
This appendix presents some additional details about the current implementation of our
algorithm. The source code is available: [18] version “0.02 Control”. Note that this tool is
still under development.

B.1 McScM tool - control version
McScM [18] is a model checker for distributed systems modeled by CFSMs. It has been
developed by Alexander Heussner, Gregoire Sutre and Tristan Le Gall, and is distributed
under the LGPL license. We added, to this tool, an implementation of the state estimate
algorithm presented in this paper. McScM offers several model checking engines. The
module we implemented is considered as a “new” engine. We call it by the command line:

mcscm.native -mc-engine control -simulation-only [other
options] <input>

The input is the model of the distributed system. The engine is called “control” because we
aim at the control of distributed systems. By default, it starts with an interactive simulation
of the model. At each step, the current state and the possible transitions are displayed. The
user chooses one of these transitions and the tool updates the state of the system and the
state estimates according to our algorithm. By default, the state estimates are not displayed,
but their size is displayed.

B.2 Experiment on the running example
Here are some of the state estimates computed while the system executes the sequence of
actions of Example 2. The widening parameter is k = 1. Each estimate is a map from
a global location to a queue content. We first give the initial estimate of each process.
With the option -display-estimate, the tool displays, for each estimate and each location,
the internal representation of the queue content - a QDD. We give here a more readable
representation as regular expression. We also give here the queue names as they appear in
the paper - the implementation uses numbers instead of names.

E1
Location Q1,2 Q2,1 Q2,3 Q3,1

A0 ×B0 × C0 ε ε ε ε
E2

Location Q1,2 Q2,1 Q2,3 Q3,1

A0 ×B0 × C0 ε ε ε ε
A1 ×B0 × C0 c ε ε ε

E3
Location Q1,2 Q2,1 Q2,3 Q3,1

A0 ×B0 × C0 ε ε ε ε
A1 ×B0 × C0 c ε ε ε
A1 ×B1 × C0 ε b∗ ε ε
A1 ×B2 × C0 ε b∗a+ ε ε ε
A1 ×B3 × C0 ε b∗a+ ε d ε



Location Q1,2 Q2,1 Q2,3 Q3,1

A1 ×B0 × C0 c ε ε ε
A1 ×B1 × C0 ε b∗ ε ε
A1 ×B2 × C0 ε b∗a ε ε
A1 ×B3 × C0 ε b∗a d ε
A1 ×B3 × C0 ε b∗a ε d
A1 ×B3 × C1 ε b∗a ε ε

At the beginning, E1 knows exactly the current state,
because nothing can happen if T1 does not send
message c to T2. E2 is almost as precise. However
E3 is less precise, because many events could occur
before T3 receives its first message. After the first
transition 〈A0, Q1,2!c, A1〉, the state estimate of the
estimator E1 is similar to E3, but:

1. E1 does not know if T3 received d and sent another message d in channel Q3,1.
2. the content of channel Q2,1 is a bit more precise, b∗a instead of b∗a + ε, because E1

knows that T1 did not receive any message.

Note that location A1×B3×C0 appears two times. The actual regular expression associ-
ated to this location is ε#b∗a#(d#ε+ ε#d) where # is a special symbol to separate the
different queues. So we write it as ε#b∗a#d#ε+ ε#b∗a#ε#d in this state estimate.

If we continue, the tool calculates and displays the estimate as in Example 2. We only
give, in the table below, the size of the estimates.

Subsystem Event E1 E2 E3
− start 4 9 35
T1 Q1,2!c 42 − −
T2 Q1,2?c − 4 −
T2 Q2,1!a − 9 −
T2 Q2,3!d − 46 −
T3 Q2,3?d − − 7
T3 Q3,1!d − − 132
T1 Q2,1?a 14 − −
T1 Q3,1?d 4 − −


