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This contribution is focused on the numerical solution of the indefinite Helmholtz equation

Hu ≡ −(∆ + k2(x, y))u = f in Ω (1)

with a space a space dependent wave number k and exterior complex stretching as absorbing
boundary conditions. The solution method is based on a preconditioned Krylov subspace,
however, the preconditioner operator is the Helmholtz equation discretized on a grid with a
complex grid distance, which is approximately inverted with one multigrid cycle.

The failure of multigrid on the Helmholtz problem have been widely documented and is caused
by the indefinite spectrum of the operator H. Discretized on a grid with grid distance h, the
negative Laplacian, −∆, leads to a spectrum that is spread between 0 and O(1/h2) on the real
axis. However, the wave number will shift this spectrum in the negative direction. This leads
to an indefinite matrix for wave numbers k larger than a certain threshold. This means that the
spectrum is spread over both the positive real part as the negative real part of the complex plane,
not necessarily excluding zero as an eigenvalue. Realistic problems have absorbing boundary
conditions, that move the eigenvalues slightly below the real axis.

Two difficulties emerge when multigrid is applied. First, typical smoothers like weighted Jacobi
or Gauss-Seidel become unstable for indefinite problems. However, the unstable modes are the
smoothest modes and should be stabilized by the coarse grid correction, for problems that are
slightly indefinite. The second problem is the appearance of diverging coarse grid corrections
for certain wave numbers. This has been analyzed in detail by [1]. The peaks in the convergence
plots can be interpreted as resonances.

These difficulties are avoided when multigrid is applied to a complex shifted Laplacian [2, 3].
Then the wave number is complex valued which cannot cause resonances in the coarse grid
correction. In [4], we show that the complex shifting is equivalent with discretizing the Laplacian
with a complex valued grid distance.

It is important to stress that introducing the complex shift suppresses and broadens the res-
onances during the coarse grid correction, but it leaves the possibility that the smoother is
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unstable. In this contribution we report on our analysis of replacing the standard smoother
such as weighted Jacobi or Gauss-Seidel with a polynomial smoother.

In particular we have analysed the performance of polynomial smoothers [5] on Helmholtz
problems discretized with finite difference and an exterior complex scaling as an absorbing
boundary conditions. The spectrum of the operator is bounded by a triangle [4] where the first
corner lies in −k2 and the second in −k2 +4/h2 and a third corner lies in down in the complex
plane. This triangle lies entirely in the lower half of the complex plane. The eigenvalues of the
smooth modes lie near −k2, in the other corners the modes are rapidly oscillating.
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Figure 1: The measured convergence rate of different V-cycles applied to the preconditioner.

The smoothers we have studied have the form

f(t) = (1− ω1t)(1− ω2t)(1− ω3t), (2)

where the weights are choosen such that the error iteration, e(k+1) = f(A)e(k), fits the following
requirements. It satisfies the fixed point property since f(0) = 1. The smoothest modes near
−k2 are mapped close to the unit cirlcle since f is such that f(−k2) = eıϕ with ϕ ∈ [0, 2π[. The
two other corners are mapped to zero such that the oscillatory modes are smoothed. In [5] we
show that the coefficients ω1, ω2 en ω3 can be choosen such that the f is stable and behaves as
a smoother given certain conditions on the complex grid of the preconditioner operator.

In practice, however, this hand tuned particular polynomial can be replaced by GMRES(3),
which optimizes the coefficients ωi each iteration. Since the particular polynomial provides a
upper bound the GMRES(3) convergence, the GMRES(3) smoother inherits all the properties
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from the hand tuned polynomials. Note that since we use a complex grid, we only need a restart
of three, while [1] requires a complicated smoothing strategy.

We have extensively tested this solution strategy. In fig 1 we show the multigrid convergence of
the preconditioning problem. Note that this is Helmholtz problem discretized with a complex
valued grid distance as in [4]. The convergence rate is independent of the wave numbers and we
show results V(1,0), V(1,1) and V(2,1) cycli. The results show both the reduction in the first
iteration and the average convergence rate. However, the number of Krylov iteration depends
linearly on the wave number k, as shown in figure 2
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Figure 2: Left: the number of FGMRES and Bi-CGSTAB iterations as a function of the wave
number k for the homogeneous Helmholtz problems. Right: the CPU time of FGMRES and
Bi-CGSTAB as a function of the wave number k for the homogeneous Helmholtz problems.
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