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A Novel Approach for Object Extraction from Video Sequences Bsed
on Continuous Background/Foreground Classification

Thiago C. Bellardi, Jorge Rios-Martinez, Dizan Vasquez ahddfian Laugier

Abstract— In many computer vision related applications itis ~ respect to the number of pixels in the bitmap [6], [7]. A
necessary to distinguish between the background of an image problem with this approach is that it usually produces many

and the objects that are contai_ned .in it. This is a diffi_cult small regions which may correspond to noise or to larger
problem because of the constraints imposed by the available . . .
regions which failed to merge.

time and the computational cost of robust object extraction
algorithms. _ _ One approach to dealing with this situation is to filter out
This report describes a new method that benefits from state regions composed of less than a given number of pixels [8].

of the art background/foreground classification combined with ; . .
the strong theoretical foundations of clustering. The pixels on Although this approach is fast, it has the drawback of

the scene background are modeled as Mixtures of Gaussians a;sur‘_ning Fhat all small regions are noise, which, in many
and the output of the classification process are continuous Situations, is clearly not the case. A second approach stsnsi

values representing the |i|(F_}|ih0_Od that each pixel belongs_ to of relaxing the neighborhood criterion by assuming, for
the foreground. The clustering is based on a Self Organizing example, that regions separated by one background pixel

Network (SON) which has a robust initialization schema and il ted. Th | f doing this is b
is able to find the number of objects in an image or grid. The &€ SUll connected. The usual way of doing this IS by pre-

algorithm’s complexity is linear with respect to the number of ~ Processing the bitmap image using morphological operators
pixels or cells. (eg dilation, closing), which have the effect of “thickening”

the pixels and “filling in” the holes [9]. Two problems with
this approach are the difficulty of finding the appropriate

Detection of moving objects is a fundamental task in videparameters for the operators and the lack of clear physieal i
surveillance applications like tracking, traffic monitagi terpretation of the operators’ parameters. A third apgrdac
and activity recognition. One common approach to performbject extraction is the use of clustering techniques tagro
moving object detection from static cameras is resumegixels. This opens up the possibility of choosing between a
in two steps: (1)background subtractiorthen (2) object plethora [10] of different algorithms having well understo
extraction theoretical properties. On the other hand, most of the tobus

The background subtractiostep aims to label pixels as clustering algorithms €g [11], [12]) have three problems
belonging to one of two classes - background and forewhen applied to object extraction: a) the number of objects
ground [1], and constitutes an active research domain. The be found should be known beforehand, b) the algorithms’
interested reader is referred to [2] for an overview of th@erformance is strongly dependent on the initializatioth &én
field’s state of the art. Usually, the output of most backgibu most algorithms are just too complex to be used in systems
segmentation techniques consists of a binary bitmap imagajbject to demanding real-time constraints.

where values of 0 and 1 correspond to background and |, o, approach to thdackground subtractioriask we

foreground, respectivelyeg [3], [4], [5]). _ use Mixture of Gaussians (MoG) to model the background

Having such a bitmap thebject extractionstep consists a5 on the scene. The output of the classification process
of grouping together foreground plxells to obtaln candidat® 5 continuous gray scale image, where the pixel intensity,
objects. One common approach to object extraction proceegfich varies between 0 and 1, reflects the likelihood that the

by finding 4 or 8-connected components. This is done us"}ﬂxel belongs to the foreground (fig.1(e)).
efficient algorithms whose time complexity is linear with

I. INTRODUCTION

After that, object extraction is done by means of a clus-
This work has been partially supported by the european BAGfeét  tering algorithm based on Self Organizing Networks (SON)

and CONACYT 250140/308006. ‘ , which, in previous works, has been applied to images [13]
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Rhone-Alpes, France and occupancy gri s_[ 1, showing that it is able to produce
Dizan Vasquez is with ITESM, Mexico good results in real time. This paper improves the clusgerin
tbel lardi @mil.com algorithm by enabling it to process continuous input pixel
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(a) Original Image (b) Absolute difference out- (c) MoG binary output (d) Single Gaussian continue) MoG continuous output
put ous output

Fig. 1. Examples of output from the different classificatiagifp algorithms compared. Ellipses correspond to the outpthe clustering algorithm.

Il. BACKGROUND SUBTRACTION defined as a pixel value withih = 2.5 standard deviations
A. Modeling the background with MoG of a distribution. The weight of distributions is updated as

The Mixture of Gaussians (MoG) method was first pro-
posed in [15] and has been implemented, reviewed and Wyt = Wxt-1+ 0 (Mice — 0e-1) )
improved in many approaches presented in the literature.\where o is the learning rate andy; is one for the
This method has the capacity to represent multimodal anflatching model and zero for the remaining models. In [15]
time-varying backgrounds which are common in outdoorghe Gaussians in the mixture must be ordered according to
scenarios. weight divided by standard deviationy/ok;, but we use

The values for a particular pixel in the image are repregnly ¢y, to order the Gaussians, as proposed by [18].
sented as a Mixture of Gaussians. Based on the mean valugynce a match is found, the parametgrand o for the

and the variance of each Gaussian of the mixture it's passibtorresponding distribution are updated as follows:

to determine which Gaussian may correspond to background

colors. Pixel values that don’t match any of the Gaussians b = 1+ P(O% — 1) (5)
in the mixture are considered to belong to the foreground

but, if they continue to be observed, the algorithm is able

to include them in the background model by creating a new 0f =02 1 +p((% — 1) (% — ) — 02 1) (6)
Gaussian in the mixture. Our implementation of this model

mainly follows the adaptation suggested by [16], which give

us fast parameter stabilization. We have introduced as well P = aN(X, K, Ok) (7)
some alternatives proposed in [17] in order to get a faster the parameters for unmatched distributions remain the
learning rate adaption. same. If none of the K distributions match the current

_We begin by describing the basic approach as presentggle| yajue, the least probable distribution is replacethwi
in [15]. The method models the pixels as a mixturekof 5 gisyripytion with the current value as its mean value, an
Gaussian distributions where the probability of observdng initially high variance and low prior weight, in our case 900

current pixelX, is and 0.05 respectively.
K
TABLE |
P(X) = .Z\Q’IN(XI’ it i) @) PARAMETERS OF THEMOG
=
whereK is the number of distributionsy;; is an estimate of [Parameter [ Value [ Assumption
the weight of thei'" Gaussian in the mixture at tinte Zit No. of Gaussian Models) 3 -

is the covariance matrix of th#" Gaussian in the mixture [No. of standar deviations away 2.5 | -
at timet, andN is a Gaussian probability density function: |_()

Learning rate @) 0.005 | -
1 Loy Ts-1(x Background thresholdT() 0.7 K=3
N(X,pWZ) = ﬁe’?( W (X=H) (2) Weight of created gaussians 0.05 | K=3
(2mz|%|z (winit)
. _ Il — I ol
K is typlcally a value between 3 and 5. nitial standard deviationd(p;t) 30 Ont;r:\dsnzysglxe is between|

Taking in account the RGB color space and assuming an
axis aligned covariance, we can write the covariance matrix

S e The MoG parameters for our implementation were chosen
for Gaussiark in an specific instant as

according to [17] and are shown on table I, in practice the
parameterp could be approximated dividing the learning
rate, a, by the weight as suggested in the same work, but
Every new pixel valueX; is checked against the existingwe chose the definition of [16] because it yields a better
K Gaussian distributions, until a match is found. A match isdaptation of the model when foreground objects appear

% =diagofr Ofc Okl ©)



in the first computed frames. For this reason, in the next |1ll. CLUSTERING-BASED OBJECT EXTRACTION
fquat|ons|p() dissappears and depends on the number of |, yhis haper we use an object extraction approach which
rames taken as a window. combines a Self-organizing Network inspired by the Growing

In the next section we present the alternative equatiorp@eurm Gas [19] combined with a graph theoretic algorithm
used to update the MoG model. The complete approach igeq 1o cut edges in the network's graph. The network is

listed in Algorithm 1. built from M =W x H nodes connected with undirected
) edges, arranged in a grid witH rows andW columns.
B. Updating the model This means that, with the exception of nodes located in the

As mentioned above, we use the modified update equati®@rders, every nodewill be connected to four other nodes or
proposed by [16]. First we choose a numheof frames neighbors feigh(i)), individually denoted byu(i), d(i), (i)
to be sampled with a faster learning rate and the followingndl (i) for up, down, right and left, respectively. Every node

expressions are used uritilframes have been processed: i has two associated variables: its mean value- (x,Yi)
and an accumulatag;. In a similar manner, for every edge

connecting nodes and j there will be an accumulatas ;.
BesideswW andH, the algorithm has two other parameters:
0 < & < &y < 1 which are the learning rates for node mean
Mkn = Micn-1+S(%n — Micn-1) 9) adaption.
- The following subsections describe the steps that our
Zin = Zkn-1+((Xn — Hen-1) (Xn —Mn-1)" —Zkn-1) (10) algorithm performgor every video frameusing the grayscale
image produced by Algorithm 1.
- M (11) 1) Initialization: The network is initialized by assigning
Sit1 P(Gk[X%) values to all they node centers in order to form a regular
grid. Also, the values of all the weights are set to zero:

n=n 1+ (RGP ~ 1) )

wheren is the frame number. When more thiaframes have
been processed we update the parameters as follows:

{ci < 0,8« 0Vi,j|ie[1,M],jeneighi)} a7

1
Win = Gn-1+ [(p(Gk‘X”) ~On-1) (12) 2) Learning: The learning stage takes as input a contin-
uous valued bitmap, where the pixel intensity reflects how
Hicn = Men1 + P(Gk[Xn) (X — Pen-1) (13) likely is that it belongs to the foreground image(fig.1(e)).
’ ’ L ’ Pixels from the input image, are processed starting from the
D(Gi[Xe) upper-left corner and then sweeping every row from left to
Zkn=Zkn-1+ ————((Xn— Men) (Kn — pk’n)T —2kn-1) right. For every pixel, its coordinateg; and valud (p;) are
L (14) used to update the SON in four steps:
In the precedent equations the functiprs defined as: a. Find the node whose mean value is closestpito
referenced as winnew(). The search is restricted to a
. . subset of nodes surrounding the previous winmer
p(Gk|Xn) = {é It Xn ma(t)::ﬁ;s,WiSGeaussmn G (eg the one corresponding to the previous processed
(15) pixel). This subset, that we call the search boundary,
is represented bgboundi — 1) (see fig. 2).
C. Foreground classification _
. ” . - w; = argmin |[p—p; —1f (18)
Instead of using the traditional binary classification to jesboundi—1)

decide if a pixel is part of the foreground, we calculate

the Mahalanobis distance (MAH) between the pixel current
value obtained from the input image and its correspondent
background model. This way, the output of the classification
process is a continuous value that represents how likely is

@ neigh(i)
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that the pixel belongs to the foreground. 7 sbound(i)
Having a given pixel represented By; = (r,g,b)T, the
MAH distance ofl;; to the k Gaussian in the mixture is O o .
1) i r(i)
]

computed as:

MAH(Imk):\/('ij — M) T (i — ) (16)

o
]

whereZy andy are the covariance matrix and the mean for

the k-th gaussian, respectively. Fig. 2. Neighborhood and search boundary relative to iode




Algorithm 1. Summary of the background classification algorithm
Input: color frame RGB from video sequencky(n)
Output: gray frame(IGwu«n) Where every pixeli, j) represents distance from the background estimated in

MOG ;
11 MOG;j: Mixture of k gaussians for every pixél, j);
1.2 The first r gaussians are background
1.3 if Numberframe = Gthen
1.4 \ Initialize everyMOG;; with the first frame
15 else
1.6 foreach ljj do
1.7 if I;; match any Gaussian in MQGthen
18 \ update Gaussian matched according section 1I-B;
1.9 else
1.10 \ create new Gaussian and addM®G;; replacing the last one;
1.11 end
1.12 update the othek— 1 Gaussians according section II-B;
1.13 orderk Gaussians iMOG;j;
1.14 end
1.15 foreach ljj do
1.16 weight= weight + ... +weight ;

. __ weight *MAH(lij,1)+...+weight «MAH(lij ,r) .
117 IGj; = Weight ;
1.18 end
1.19 end

b. Look inneighiw;) for the second nearest node o highlight the fact that the labels are just identifiers used t
distinguish one regionig¢ object) from the other and that
new labels are obtained by incrementing a counter.

4) Computing cluster representationktaving labeled the
c. Increment the accumulatoey, s andcy, by the pixel nodes, the probability that a pixel, given by its image

§ = argmin [|p; — ;| (19)

jeneighw;)

valuel (pi): coordinatesp belongs to a clustem may be represented
as a mixture of gaussians, corresponding to individual sode
Qu.s < Bw.s +1(Pi) (20) in the cluster:
and
P* =Y Pn(p; 24
d. Adapt the mean ofy; and all his neighbors: In order to compute the covariance matriGsthe points
located halfway betweenand its neighbors can be used:
(pi),
M <= Hw + 8w (P — Hhwy) (22)
Cu 2
) P (L;N) (Xj+Xi)£§yj+Yj)
I (pi . . _ o
b e g vienegw) @3 ST Y ¥l s (2 (25)
Cj jeneighi) i ( > )

3) Relabeling nodesAs a result of the learning step, the  \wherek — S jeneigry Pj S @ normalization constant.
network adapts its form to represent the objects in the input |, cases where the algorithm is required to produce interest
The last step of the algorithm, identifies individual obfeloy  egions it is often convenient to produce bounding boxes
assigning a discrete value to every node in the SON, so thghich are slightly larger than the contained object. We have
nodes having the same label belong to the same node. Att&?mputed the size of these regions using the difference
end the algorithm finds groups of nodes by merging nodgssyween the maximum and the minimum mean values of
according to the weight of their common edges The idea e cluster nodes as they webefore learningthis may be

is that a higher value @ ; corresponds to a higher likelihood regarded as finding the area bounded by nodes which have
that nodesi and j belong to the same object. Under this, ot peen adapted.

assumption, it is possible to compute a maximum likelihood . )

estimation of the probability, denoted IByj, that two nodes A- Complexity Analysis

“belong together” by using the Laplace law of succession, The local search, shown on the equations 18 and 19
see [20] for a more detailed explanation. It is important tgives a complexity ofO(N), while a global search would
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Fig. 3. Detections over the foreground methods. Yellow s#iprepresenting the resulting detections with the reispesbunding boxes in blue.

give O(NfM), whereN corresponds to the total number of (d) MoG with 3 Gaussians and the proposed foreground
pixels in the imageN; the number of foreground pixels classification (MoGC).
and M the size of the SON. Noting that now it takes into The SON size and learning factors are the same for the
account all the pixels in the image, instead of just the onehree cases: 30x30 nodes, = 0.1 ande, = 0.01. The tests
marked as being part of the foreground, and its complexitywere conducted using the CAVIAR test case scenarios [21],
is independent of the SON grid size. This allows us tavhich consist of a number of video sequences of people
weight the pixels background/foreground contribution in anoving in the INRIA Lab’s entry hall. The videos come with
continuous fashion, instead of using a hard threshold, whiaata files containing the ground truth of the sequences,hwhic
makes the approach much more robust. The key idea fhas been obtained by hand-labeling the images. Typical
complexity independence on the SON size is to exploit thienages of our detector running on one of these videos is
fact that the network is processed in a top-bottom, lefttrig shown in fig. 3.
sequence, and to limit the set of nodes in the SON which For each frame processed the result of the extraction is
need to be compared with each pixel by looking in theompared with the ground truth and the following parameters
neighborhood of the last processed pixel. are computed:

Thgnk; to the existence of efficient algorithms, the cost of 1) Detection ratio rfq:)
labeling is linear with respect to the number of nodes in the
SON, moreover, the computation of the cluster represemtati Nt = :
(i.e. gaussian parameters, mixture of gaussian parameters and number of labeled objects
bounding boxes) may be performed at the same time asp) Matching ratio Gmatcr)
labeling. For Algorithm 1, updating every MoG model for
each pixel has a constant cost and, since the number of MoG Nmatch=
models is fixed, its complexity is also linear with respee th ground truth area

number of detections

(26)

detection and ground truth matching area

number of pixels in the image. Thus, the algorithm’s overall 3) False positive ration(sy) (27)
complexity isO(N). ) False p fp
IV. EXPERIMENTAL RESULTS Nip= detected false p;osmve area 28)
To evaluate the proposed method we are combining the ground truth area
clustering algorithm with 4 different background/foregnal 4) False negative ratiai¢n)
classmca'tlon te(_:hnlques: . . detected false negative area
(a) A binary bitmap obtained by thresholding the absolute Ntn = (29)
difference (AD) between the intensity level of the current ground truth area
and previous video frames; The mean values for these parameters, obtained from 1042
(b) Traditional MoG classification, with 3 Gaussians andeffective frames processed from the CAVIAR [21] 'Browsel’
binary output (MoGB); dataset is shown in table II.

(c) Background as a single Gaussian (SGC); foreground We can see on table Il that the proposed approach produces
classification similar to the proposed approach. considerably better results than the other ones.



TABLE Il
MEAN RESULTS FORL042EFFECTIVE FRAMES PROCESSED FROM THE
CAVIAR "B ROWSEL” DATASET

input  nge Nmatch ~ Nfp Nfn
ideal 1 1 0 0
(a) 2.52 0.62 1.28 0.38
() 873 088 59 012
(c) 0.96 0.73 7.08 0.27
(d) 1.72 0.93 1.06 0.07

Itis important to notice that traditional MoG, with a binary

(2]

K]

(4]

(5]

output, may in some cases produce better results if combineg

with post processing techniques to filter the noisy detastio

On the other hand, this post processing step is unnecessary i
our approach, since the noise tends to have lower significanc
during the foreground classification phase and the clusgeri [7]

algorithm can naturally filter out noisy input. In [20] we leav

shown as well that for a single-Gaussian background modelg;

the application of the continuous input yielded slightlytbe
detections than the thresholded foreground.

9
With respect to processing time, under the describecE]
experiment, the detection was performed at 15fps, runrning o

Ubuntu 10.04 32-bit with an Int&¥ Core 2 Duo Processor |

P7450 at 2.13 GHz.

V. CONCLUSIONS AND FUTURE WORK

10]
[11]

In this work we have discussed object extraction fronp2]
continuous valued bitmaps emphasizing the advantages, but

also the three big problems of cluster based algorith

beforehand, sensibility to initialization and compleXignd

time,” in Proceedings of the Int.Conf. on Pattern Recognititzmael,
November 1994.

M. Piccardi, “Background subtraction techniques: aieey’ in Pro-
ceedings of the IEEE Int. Conf. on Systems, Man and Cybesneti
The Hague, NL, October 2004, pp. 3099-3103.

N. Friedman and S. Rusell, “lmage segmentation in video secgs:
A probabilistic approach,” inProceedings of the 13th Conf. on
Uncertainty in Artificial IntelligenceProvidence, USA, August 1997.
C. Stauffer and E. L. Grimson, “Learning patterns of atyiwsing
real-time tracking,”IEEE Transactions on Pattern Analysis and Ma-
chine Intelligencevol. 22, no. 8, pp. 747-757, August 2000.

R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, “Déteg moving
objects, ghosts, and shadows in video strearBEE Transactions
on Pattern Analysis and Machine Intelligenceol. 25, no. 10, pp.
1337-1442, 2003.

K. Suzuki, I. Horiba, and N. Sugie, “Fast connected-conmgrd
labeling based on sequential local operations in the cafrémward-
raster scan followed by backward-raster scan,Pmceedings of the
15th Int. Conf. on Pattern Recognitipwol. 2, Barcelona, September
2000, pp. 434-437.

F. Chang, C.-J. Chen, and C.-J. Lu, “A linear-time compaddabeling
algorithm using contour tracing techniqueComputer Vision and
Image Understandingvol. 93, no. 2, pp. 206—220, 2004.

L.-H. Chen and J.-R. Chen, “Object segmentation for videding,” in
Proc. of the 15th Int. Conf. on Pattern Recognitiool. 3, Barcelona,
Spain, September 2000, pp. 383-386.

F. Meyer and S. Beucher, “Morphological segmentatialgtirnal of
Visual Communication and Image Representatieni. 1, no. 1, pp.
21-46, 1990.

A. Jain, M. Murty, and P. Flynn, “Data clustering: A rew,” ACM
Computing Surveysrol. 31, pp. 265-322, September 1999.

J. MacQueen, “Some methods for classification and arsalysmul-
tivariate observations,” ifProceedings of the 5th Berkeley Symposium
on Mathematical Statistics and Probability. L. Cam and J. Neyman,
Eds., vol. 1. University of California Press, 1967, pp. 289%

N. Dempster, A.and Laird, , and D. Rubin, “Maximum likedibd from
incomplete data via the EM algorithmJdurnal of the Royal Statistical
Society vol. 9, no. 1, pp. 1-38, 1977, series B.

; . §3] D. Vasquez and T. Fraichard, “A novel self organizingtwark
(ie need to know the number of objects to be detected

extended previous work on a Self Organizing Network based
on the Growing Neural Gas algorithm which solves thegi4
above mentioned problems and keeps the strong theoretical
properties of clustering algorithms. Our extension pesmit
makes the complexity of the algorithm independent of the
size of the underlying SON, and eliminates the need d#d]

obtaining a binary image through a threshold.

We have explained the details of our algorithm, and showns)
how it may be used to find clusters and represent them using

gaussians, mixtures of gaussians or bounding boxes.

Finally, we have discussed the experimental results we7)
have obtained by comparing our approach to a ground truth
consisting of hand-labeled data. Our results seem to confir[%]

that our approach is fast, robust and general.

Is still important to notice the path to simplicity, redugin
the number of parameters and post processing steps, that Y

solution promotes.

Future work includes continuing our experimental work[20]
specially in a way to improve the metrics to compare the
methods. We plan also extend the detection task to detection
and tracking. Finally, we would like to explore the use of21]
our SON to perform data fusion on a multicamera system.
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