
HAL Id: inria-00582506
https://inria.hal.science/inria-00582506

Submitted on 15 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An MDE-based approach for solving configuration
problems: An application to the Eclipse platform

Guillaume Doux, Patrick Albert, Gabriel Barbier, Jordi Cabot, Marcos
Didonet del Fabro, Scott Lee

To cite this version:
Guillaume Doux, Patrick Albert, Gabriel Barbier, Jordi Cabot, Marcos Didonet del Fabro, et al..
An MDE-based approach for solving configuration problems: An application to the Eclipse platform.
ECMFA 2011 - Seventh European Conference on Modelling Foundations and Applications, Jun 2011,
Birmingham, United Kingdom. �inria-00582506�

https://inria.hal.science/inria-00582506
https://hal.archives-ouvertes.fr

An MDE-based approach for solving configuration
problems: An application to the Eclipse platform

Guillaume Doux 1, Patrick Albert 2, Gabriel Barbier 3, Jordi Cabot 1, Marcos Didonet
Del Fabro 4, Scott Uk-Jin Lee 5

1 AtlanMod, INRIA & EMN, Nantes
2 IBM France, Paris

3 Mia-software, Nantes
4 Universidade Federal do Paraná

5 CEA, LIST, Gif-sur-Yvette

{Guillaume.Doux , Jordi.Cabot}@inria.fr, AlbertPa@fr.ibm.com,
gbarbier@mia-software.com, marcos.ddf@inf.ufpr.br,

Scott.Lee@cea.fr

Abstract. – Most of us have experienced configuration issues when installing
new software applications. Finding the right configuration is often a
challenging task since we need to deal with many dependencies between plug-
ins, components, libraries, packages, etc; sometimes even regarding specific
versions of the involved artefacts. Right now, most configuration engines are
adhoc tools designed for specific configuration scenarios. This makes their
reuse in different contexts very difficult. In this paper we report on our
experience in following a MDE-based approach to solve configuration
problems. In our approach, the configuration problem is represented as a model
that abstracts all irrelevant technological details and facilitates the use of
generic (constraint) solvers to find optimal solutions. This approach has been
applied by an industrial partner to the management of plug-ins in the Eclipse
framework, a big issue for all the technology providers that distribute Eclipse-
based tools.
Keywords: Configuration, MDE, Eclipse, Plug-in, Cartography

1 Introduction

Complex software systems are built by assembling components (components in a
broad sense, i.e. COTS, libraries, plug-ins,…) coming from different repositories.
This simplifies the development of the system but inevitably introduces an additional
complexity dimension due to the need of managing these components. Each
component can evolve independently and new releases can introduce/break
dependencies with other components.
 In particular, this is becoming a huge problem in the Eclipse community where new
tools are built on top of several other plug-ins already available in the platform, many
times requiring a specific version of the plug-ins. Therefore, releasing a new Eclipse
tool implies a precise build definition for the tool that must be continuously evolved.

Therefore, technology providers commercializing Eclipse tools are looking for
solutions that help them to automate and optimize the build definitions for their tools
so that end-users do not need to suffer all these configuration problems. Right now,
this very costly and time-consuming task requires a dedicated engineer in the provider
company. This engineer needs to manually provide all the information regarding the
tool dependencies, the plug-ins that can satisfy those dependencies and also the
repositories where the plug-ins are available. Moreover, once everything is defined,
the generated build definition needs to be empirically tested. Clearly, for non-trivial
projects, this process does not scale.

In this paper, we propose to overcome this situation by means of using Model
Driven Engineering and Constraint Programming techniques to automate the
generation of build definitions. This work has been done in collaboration with two
industrial partners: Mia-Software1

This paper is structured as follows. Section

, a well-known technology provider in the Eclipse
community that leads several Eclipse projects and IBM that has contributed its
expertise in commercial constraint programming tools.

2 discusses the motivations of our
solution in an industrial environment. Section 3 presents the overall approach used to
manage our Eclipse plug-ins configuration problem. Section 4 is focused on the
management of the configuration as a Constraint Satisfaction Problem (CSP) whereas
Section 5 describes the decision tree approach for finding configurations, and Section
6 illustrates the tool used to visualize the configurations. Section 7 presents the
implementation, a comparison between the resolution approach described and the
lessons learnt. Section 8 focuses on the related works and Section 9 concludes this
study.

2 Motivation: Industrial Challenge

This work has been motivated by the need of Mia-Software to configure and control
build definitions for its tools and to be able to update such definitions during the tool
lifecycle.

A second (and more complex) requirement is to be able to tailor build definitions
to different scenarios, such as targeting the minimal subset of elements to run the
application in a headless mode (using scripts on a server), or selecting only non-GPL
component to allow integration in proprietary applications.

The results of this work are being integrated in the MoDisco2 and EMF Facet3

As an example, the MoDisco Eclipse project alone contains 94 plug-ins (without
the 30 test plug-ins) and depends directly or indirectly on around 920 additional plug-
ins. For the time being, the MoDisco project has a dedicated plug-in to configure the
build definition. This plug-in contains more than ten types of files to do so (ant files,
xml files, properties files, cspec files, cquery files, mspec files, rmap files, xsl files, sh

Eclipse projects and in the custom developments the company builds internally for its
clients.

1 Mia-Software: http://www.mia-software.com/
2 The MoDisco project: http://www.eclipse.org/MoDisco/
3 The EMF Facet project: http://www.eclipse.org/modeling/emft/facet/

files and txt files). To be able to maintain all of these artifacts and to reproduce in a
server environment the behavior of a development environment, a dedicated engineer
is now assigned to the task. To initially configure the build definition one full month
of the engineer was required. Unfortunately, due the continuous evolution of the
Eclipse platform this is not just a one-time effort. Every time there are new relevant
plug-in versions or a new release of the Eclipse platform available, two or three
additional days are spent in adapting the configuration (e.g. to update the locations of
update sites for dependencies). Furthermore, the correctness of the process cannot be
detected until the application is rebuilt again.

 Therefore, MoDisco is clearly a tool that could benefit from the results of our
work. It is worth to note that this kind of complex dependencies scenario is not the
exception but the norm and thus, any tool that improves the current state of the art
could have a real impact on current industrial practices of Mia-Software and similar
technology providers.

3 Overall approach

This section gives an overview of our Model Driven approach for solving Eclipse
plug-ins configuration problems. Adopting an MDE approach has several advantages.
First, it provides a homogeneous representation for all the technologies involved in
the solution. Secondly, it allows designers to deal with the problem at a higher-
abstraction level where some irrelevant details are omitted. And finally, the own
Eclipse platform is moving more and more towards the adoption of model-based
solutions (as the b3 Eclipse models used to define build generations) so an MDE
approach perfectly fits in this scenario.

Our approach follows a three step process (see Fig. 1).

Figure 1 - Overview of the Eclipse plug-ins build generation process

In the first step, a discovery phase allows the designer to express the requirements
for the tool/component/plug-in she wants to build and the possible locations (i.e.
repositories) where to find plug-ins that satisfy those requirements. The information
concerning these plug-ins such as the dependencies they need, the name, the version
or every other useful information is stored in a plug-in model conforming to the

metamodel presented in Figure 2. This metamodel allows the representation of the
different elements needed for the plug-ins configuration representation. The main
entity of this metamodel is the Plugin class whereas the main relationship between
plug-ins is represented by the PluginDependency class. This class allows linking the
plug-ins according to their dependencies. A second set of entities and relations is
expressed with the JavaPackage and the JavaPackageDependencies classes. A
JavaPackageDependency element allows the representation of the relation between a
Plugin element and the imported JavaPackage elements. At this stage, we just have
the “raw data”, i.e. we have the candidate plug-ins but not yet the selected
configuration.

This is done in the second step: a possible combination of the candidate plug-ins
(i.e. respecting all their dependencies) is created either manually (visualization
option), interactively (decision tree option) or automatically (constraint programming
option). When several configurations are possible, the final selection can be driven
by additional search criteria like newest versions of the plug-ins (default option),
license or cost. We propose these three different ways to obtain a configuration since
each one offers a different trade-off as explained later on. As a result of this step we
get a refined plug-in model with information from the selected configuration for the
build generation.

Figure 2 - Metamodel to represent the plug-ins

The last step is the generation of the final configuration file from the refined plug-
in model. In our case the configuration will be expressed as a b3 model but it could
easily be expressed as a Maven4 file or Ant5

4 The Maven project, http://maven.apache.org/

 script. The b3 Eclipse project focuses on

the development of a new generation of Eclipse technology to help building and
assembling software. It proposes an approach using model driven engineering to
represent the different artifacts that are relevant for building applications. More
specifically, b3 proposes a metamodel to represent all of artifacts needed for the build,
and execution support for these build models. Therefore in our approach the
generation of the final configuration file is realized using model to model (or model to
text in the case of Maven and ANT) transformations.

4 Configuration as a CSP

Constraint Programming [8] is a declarative problem solving paradigm where the
programming process is limited to the definition of the set of requirements
(constraints). A constraint solver is in charge of finding a solution that satisfies the
requirements. Problems addressed by Constraint Programming are called constraint
satisfaction problems (CSPs). A CSP is represented by the tuple CSP = <V,D,C>
where V denotes the finite set of variables of the CSP, D the set of domains, one for
each variable, and C the set of constraints over the variables. A solution to a CSP is an
assignment of values to variables that satisfies all constraints, with each value within
the domain of the corresponding variable.

We can represent the problem of configuration of Eclipse plug-ins as a CSP. This
solution is a practical instantiation of the approach called Model Search [4].

The problem can be stated as follows: given a set of partially-connected Eclipse-
plug-ins and a set of constraints that must be satisfied, find one (or the optimal,
according to a given property) valid and executable build distribution. The constraints
may be of different nature. For instance, defining version dependencies between the
plug-ins, or specifying one desired vendor.

The constraints are written using OCL++. OCL++ is an adaptation of OCL (Object
Constraint Language) [6]. OCL++ simplifies OCL for writing CSP problems. For
instance, it enables writing multi-class invariants, which is a common construct in
CSP problems. It also enables writing optimization functions.

More specifically, the re-expression of a configuration Eclipse problem in terms of
a CSP is implemented as a chain of transformation operations over the initial plug-in
model. Since Existing CSP solvers cannot directly read EMF models and OCL++
constraints as input, we need to translate the input artifacts into the CP language
supported by the constraint solver of the ILOG OPL-CPLEX development bundle [7]
engine, which is OPL (Optimization Programming Language). The OPL engine
enables adding optimization functions, i.e., to find the best solution given an
optimization criterion. The main steps of the process are:

1. Transformation of the Eclipse plug-in metamodel and the constraints into the
OPL language.

2. Transformation of the input model into the OPL data format. The separation of
the input model and metamodels into two transformations enables having

5 The ANT project, http://ant.apache.org/

independence between the problem specification (metamodels + constraints) and the
input models with the initial data to start the CP process.

3. Execution of the CSP engine. This operation is called model search. During
this phase the input model is extended with the solutions found by the engine.
However, the result produced by the CP engine is expressed as sets of integers, String
and floats (the OPL output format).

4. Transformation of the output into a model conforming to the Eclipse plug-ins
metamodel.

To facilitate the execution of these different steps a predefined script in charge of
chaining the transformations is provided.

This approach combines the benefits of CSP with the advantages of expressing the
problem at the model level (e.g. writing the constraints in OCL++). Moreover, the
transformation chain makes the CP solver transparent to the user who provides and
receives models as input/output of the process. Clearly, it would be even better that
the transformation from the models to the CSP included an additional intermediate
step where the CSP is expressed as instance of a solver-independent CSP metamodel.
This would facilitate the utilization of different CSP solvers.

5 Decision Tree

Decision Trees is a strategy used in the field of Software Product Line (SPL) to
illustrate all possible product configurations in terms of decisions on variations. It
enables interactive configurations where user selects an appropriate decision for each
variation to configure a particular product. The main benefits of utilizing decision tree
in configuration are the clear presentation of all possible configurations and the ability
to customize the configuration by allowing each decision made on variation to be
based on different criteria. As only valid configurations are proposed in the decision
tree, the build engineer work becomes simpler and safer using this approach. On the
other hand, the strategy main limitation, compared to the CSP one, appears when
there are a large number of choice criteria involving an important number of choices
for the engineer. In that case, it can become difficult to manage efficiently a big
configuration.

In order to take advantage of these benefits, we adapt the concept of decision tree
and Sequoia, a UML based SPL tool embedded in Papyrus, to our configuration
challenge. The main difference with the CSP implementation is in the generation of
several build configurations instead of only one. This characteristic involves some
user interactions for the final configuration choice. The process of Eclipse plug-ins
configuration with Sequoia consists of different steps as described below:

1. Construction of the initial bundle model in UML – The initial bundle model
obtained from the discovery phase must be transformed into a UML model since
Sequoia is a UML specific tool. As in the Eclipse plug-ins problem, several
versions of the same plug-in can exist, and thus, a way to identify plug-ins
conforming to the same unique plug-in definition is needed. The plug-in definition
can be seen as a “formal” plug-in having several “instance” plug-ins,
corresponding to the different available version of this plug-in. In the

transformation, formal plug-ins are defined as classes to type all the instance plug-
ins of the model. Then, plug-in locations are defined as packages to group all plug-
ins in the same location. Plug-in classes include useful metadata such as version,
price and license. Each possible instantiation of the plug-in (i.e. different versions
or vendors for the plug-in) instantiate these classes with the appropriate
information to be considered during the configuration. Dependencies for a plug-in
are represented as a dependency relationship from the depender plug-in to the
dependee plug-in class.

2. Extraction of dependency constraints – Once the initial bundle model is
constructed in UML, the dependency constraints are extracted following the
specific profile defined in Sequoia. In addition, the extraction process can also
accommodate the dependencies with constraints on criteria by allocating all the
instances of the class that meet the constraints. For example, a dependency from
the plug-in instance 'a' to a plug-in class 'B' with the constraint limiting the version
of 'B' to be less than 3.0 will be converted into the set of dependencies from 'a' to
'b' with version 1.0 and 'b' with version 2.0.

3. Computation of dependency constraints – Once all dependencies are expressed
as constraints, Sequoia uses the formal verification tool Alloy Analyzer [8] to
produce all feasible configurations. The result of the calculation represents all
possible configuration of the plug-ins computed based on their dependencies and
represented in a textual format.

4. Decision tree creation – After the computation, the extracted dependency
constraints are analyzed against the textual result of the calculation to construct a
decision tree with decision nodes representing dependency constraints and its
resolution edges representing all the configuration decisions that satisfy that
dependency. In addition, values of various plug-in criteria are calculated and
indicated for each resolution edge. Users can use these values to make more
informed choices when interacting with the tree.

5. Transformation of decision tree into final bundle model – Finally, an Eclipse
plug-in configuration interactively generated from the decision tree is transformed
into a final bundle model.

6 Visualization

The visualization mechanism allows quickly checking if the obtained configuration
fits the user needs and, if several possible configurations have been produced, the user
can choose the one he prefers from the visualizations. For simple configuration
problems, the visualization of the plug-ins suffices to manually define the optimal
configuration. Nevertheless, this kind of approach cannot be used to manage
configurations involving an important number of elements, as the generated graph
becomes too complex to be understandable. As an example, a visualization of an
initial bundle model is shown Figure 3.

This visualization component relies on the cartography plug-in Portolan6

To visualize plug-in data we just need to link the plug-in metamodel with the
generic cartography metamodel provided with Portolan and, optionally, configure the
view definitions that filter the input data and specify how this data will be visualized.
The relationship between the plug-in and the cartography metamodels is done by
defining the plug-in metaclasses as subclasses of the two main cartography
metaclasses (entity and relationship). Once this is done, transforming data conforming
to the plug-in metamodel to data conforming to the cartography metamodel is trivial
(it is mainly a simple copy transformation).

.
Integration with Portolan is easy since Portolan uses a model driven approach for the
cartography analysis and visualization.

Figure 3 - Screenshot of the visualization tool

7 Implementation and preliminary results

The MDE-based approach presented here for solving Eclipse configuration problems
has been implemented as an Eclipse set of plug-ins that provide the discovery of
available plug-ins, the computation of possible dependencies, their visualization and
the final build generation services. These functionalities are briefly presented in this
section.

The discovery functionality is implemented as an Eclipse file creation wizard. This
wizard proposes the creation of a model which is conforming to our metamodel
dedicated to the Eclipse bundles representation (presented in Figure 2). To this aim, it
allows selecting several plug-ins present in the workspace and then choosing the
update sites that have to be considered when discovering candidate plug-ins for the
bundle model.

The connection with the configuration engines (both the CSP and the decision tree
versions) has been implemented as described in their respective sections. Also, as
indicated, the visualization service is implemented using a model driven cartography

6 Portolan website: http://code.google.com/a/eclipselabs.org/p/portolan/

tool called Portolan. A specific extension of Portolan has been designed for this study
to be able to visualize configuration models.

The build generation functionality takes the feedback from the previous
configuration plug-ins and generates a b3 model representing the selected
configuration. This is mainly done by executing an ATL transformation between the
internal model conforming to the plug-in metamodel (presented in Figure 2) and the
final b3 model conforming to the b3 metamodel. This b3 model will be processed by
the b3 engine to drive the build generation (by retrieving the needed plug-ins and
launching the different steps of the application build). An excerpt of the b3
metamodel (Figure 4) presents the main elements used for the build generation. The
BeeModel class represents the build model root; this class contains references to the
BuildUnit and Repository elements used. In the model, a BuildUnit represents
something to build with b3, in our case it will be a bundle (in the general case, it can
also be a library or any other kind of component). The repositories reference of
BuildUnit allows knowing which repositories can be used for the build unit’s
resolution. The BuildUnitRepository class allows the declaration of a build unit
repository location in b3. A specific type of it is represented by the
BeeModelRepository class; this repository declaration refers to the BeeModel to use
for building the components contained in the repository.

Figure 4 - Representative Excerpt of the b3 Metamodel

Of course, other alternative implementations (e.g. Maven, ANT) of this service
could easily be provided using the own Eclipse extension mechanisms.

After the initial set of experiments we have been able to validate that all three
strategies (CSP, decision tress and purely visualization) can be used to solve the
configuration problem. Each one has its own trade-offs and is best suited to address a
specific kind of configuration problem. This is exactly the reason why we decided to
keep the three of them in the framework without clearly favoring any of them.

The CSP-based approach is the best option when looking for a completely
automatic solution. It is also recommended when looking for a single solution
according to a specific criteria and when dealing with very complex problems (on
which human interaction is not feasible).

Decision trees is an intermediate solution. It does most part of the job
automatically (calculating all possible solutions) but still gives some flexibility to the
designer to influence the final choice.

Visualization per se is only useful for simple solutions as an aid for the designer
but it is a good complement to the other two as a visualization tool for the computer-
generated solutions.

Besides this, the realization of this project has also shown the benefits of MDE
when used as a tool for the unification of heterogeneous domain, such as the Eclipse
plug-ins and the constraint programming domains. By expressing both domains (i.e.
technical spaces) as models, we obtain a homogeneous representation that facilitates
the transformation/communication between them.

Nevertheless, these first experiments have also pointed out some challenges that
need to be addressed in the future. Reasoning tools usually suffer from scalability
problems and our scenario is not an exception. Sometimes user interaction is required
just because the search space is too big to get an answer from the solver in a
reasonable time and the designer must help to reduce it by providing additional
constraints to limit the search.

Also, our approach suffers from the lack of standards in the constraint
programming domain. Even if part of the transformation chain is generic, the last
steps are solver-dependent and need to be reimplemented if the development team
decides to use a different solver in the future.

We are now working in both aspects. For instance, regarding the second one we are
adopting the idea of a CSP solver-independent metamodel that abstracts until the last
step the specificities of the solver to use. The translation of the configuration
information present in a solver independent model into solver specific models
becomes easy to specify using model transformations and should permit to choose the
most appropriated solver for the configuration resolution.

8 Related Work

An alternative solution for plug-in management in Eclipse is called p2 [2]. This
solution proposes to use the metadata of the plug-ins to create a set of constraints that
are solved with the SAT solver SAT4j7

7 Sat4j website:

. In this approach there is no explicit modeling

http://www.sat4j.org/

http://www.sat4j.org/�

of the problem so designers cannot define additional constraints about the desired
characteristics of the solution (e.g. to get an optimal configuration). Moreover, since
the translation is adhoc cannot be reused. Besides this, this approach only focuses on
one of the alternative strategies we have explored.

Another interesting proposal is [1]. It proposes to use a model driven approach to
represent the configuration and available packages for FOSS distributions. These
models are then used to predict the effect of changes on the installed package base
(e.g. upgrades) on the system configuration. As our own work, this approach brings
the advantages of working at a higher abstraction level when compared with
approaches that rely on a direct manipulation of the available metadata. Nevertheless,
our approach is able to deal with a more general problem since we are able to create
the entire configuration and not only simulate/predict what would happen if
something changes.

The topic of translating models into other formalisms for an automatic analysis has
been explored in several previous approaches (e.g. [10-13]) but they mostly focus on
specific kinds of UML diagrams. Some of these techniques could be adapted to our
configuration models and integrated in our framework to provide additional analysis
capabilities.

9 Conclusions

This paper reports a collaboration between industrial and research partners to solve
configuration problems faced by technology providers using a combination of model-
driven engineering and constraint programming techniques.

We have focused on the specific configuration problems for tools developed on top
of the Eclipse platform that need to manage and solve a lot of plug-in dependencies.
This use case has been provided by Mia-software, a software editor specialized in the
application Model Driven approaches for the software lifecycle industrialization with
plenty of experience in the development of Eclipse projects.

As further work, we plan to generalize our framework to deal with configuration
problems in other domains. The core of the approach can be easily reused but specific
metamodels (e.g. Linux packages metamodel for Linux distributions configuration)
need to be developed for each specific application domain.

Acknowledgement: This work has been partially funded by ANR IdM++ project.

References

1. A. Cicchetti, D. Di Ruscio, P. Pelliccione, A. Pierantonio and S. Zacchiroli. Towards a
model driven approach to upgrade complex software systems. In Proceedings of ENASE
2009 (4th international conference on Evaluation of Novel Aspects to Software
Engineering) (2009).

2. D. Le Berre and P. Rapicault. Dependency management for the eclipse ecosystem. In
Proceedings of IWOCE2009 (International workshop on Open Component Ecosystems)
(2009).

3. O. Gruber, B.J. Hargrave, J. McAffer, P. Rappicault, T. Watson. The eclipse 3.0 platform:
Adopting osgi technology. IBM Systems Journal, 44(2) (2005).

4. M. Kleiner, M.Didonet Del Fabro, P.Albert: Model Search: Formalizing and Automating
Constraint Solving in MDE Platforms. In proceedings of ECMFA 2010: 173-188 (6th
European conference on Modelling Foundations and Applications) (2010)

5. EMF. Eclipse Modeling Project. Reference site; http://www.eclipse.org/emf

6. OCL 2.0 specification: http://www.omg.org/spec/OCL/2.0/, 2008

7. ILOG OPL-CPLEX development bundle.
http://www-01.ibm.com/software/integration/optimization/cplex-dev-bundles/, Jan 2010.

8. D. Jackson. Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology, 11(2):256–290, 2002

9. Apt, Kristoph R.: Principle of Constraint Programming. Cambridge University Press
(2003)

10. A. D. Brucker and B.Wolff. The HOL-OCL book. Technical Report 525, ETH Zurich,
2006

11. J. Cabot, R. Clarisó, D. Riera: UMLtoCSP: a tool for the formal verification of UML/OCL
models using constraint programming.ASE 2007:547-548

12. R. V. D. Straeten, T. Mens, J. Simmonds, and V. Jonckers. Using description logic to
maintain consistency between. UML models. In Proc. of UML’03., volume 2863 of
LNCS, pages 326–340. Springer, 2003.

13. K. Anastasakis, B. Bordbar, G. Georg, and I. Ray.Uml2alloy: A challenging model
transformation. In ACM/IEEE 10th International Conference on Model Driven
Engineering Languages and Systems, pages 436–450, 2007

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Cabot:Jordi.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Claris=oacute=:Robert.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Riera:Daniel.html�
http://www.informatik.uni-trier.de/~ley/db/conf/kbse/ase2007.html#CabotCR07�

