G. Korotaev, E. Huot, L. Dimet, F. X. Herlin, I. Stanichny et al., Retrieving Ocean Surface Current by 4D Variational Assimilation of Sea Surface Temperature Images, Remote Sensing of Environment, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00283896

B. Horn and B. Schunck, Determining optical flow, Artificial Intelligence, vol.17, issue.1-3, pp.185-203, 1981.
DOI : 10.1016/0004-3702(81)90024-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Béréziat, I. Herlin, and L. Younes, A generalized optical flow constraint and its physical interpretation, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662), pp.487-492, 2000.
DOI : 10.1109/CVPR.2000.854890

R. Wildes and M. Amabile, Physically based fluid flow recovery from image sequences, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.969-975, 1997.
DOI : 10.1109/CVPR.1997.609445

S. Gupta and J. Princ, Stochastic models for DIV-CURL optical flow methods, IEEE Signal Processing Letters, vol.3, issue.2, 1996.
DOI : 10.1109/97.484208

P. Ruhnau and C. Schnoerr, Optical Stokes flow estimation: an imaging-based control approach, Experiments in Fluids, vol.15, issue.3, pp.61-78, 2007.
DOI : 10.1007/s00348-006-0220-z

P. Anandan, A computational framework and an algorithm for the measurement of visual motion, International Journal of Computer Vision, vol.27, issue.4, pp.283-310, 1989.
DOI : 10.1007/BF00158167

J. Bergen, P. Anandan, K. J. , H. Hingorani, and R. , Hierarchical model-based motion estimation, ECCV '92, pp.237-252, 1992.
DOI : 10.1007/3-540-55426-2_27

W. Enkelmann, Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences, Computer Vision, Graphics, and Image Processing, vol.43, issue.2, pp.150-177, 1988.
DOI : 10.1016/0734-189X(88)90059-X

P. Moulin, R. Krishnamurthy, and J. Woods, Multiscale modeling and estimation of motion fields for video coding, IEEE Transactions on Image Processing, vol.6, issue.12, 1997.
DOI : 10.1109/83.650115

L. Amodei, A vector spline approximation, Journal of Approximation Theory, vol.67, issue.1, pp.51-79, 1991.
DOI : 10.1016/0021-9045(91)90025-6

URL : http://doi.org/10.1016/0021-9045(91)90025-6

D. Suter, Motion estimation and vector splines, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition CVPR-94, p.94, 1994.
DOI : 10.1109/CVPR.1994.323929

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Isambert, I. Herlin, J. Berroir, and E. Huot, Apparent motion estimation for turbulent flows with vector spline interpolation, In: XVII IMACS, Scientific Computation Applied Mathematics and Simulation, pp.11-15, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00527214

H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Advances in Computational Mathematics, vol.4, issue.1, pp.389-396, 1995.
DOI : 10.1007/BF02123482

T. Corpetti, E. Memin, and P. Perez, Dense estimation of fluid flows, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.3, pp.365-380, 2002.
DOI : 10.1109/34.990137

URL : https://hal.archives-ouvertes.fr/hal-00329724