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Abstract

We present a novel probabilistic framework for rigid
tracking and segmentation of shapes observed from multiple
cameras. Most existing methods have focused on solving
each of these problems individually, segmenting the shape
assuming surface registration is solved, or conversely per-
forming surface registration assuming shape segmentation
or kinematic structure is known. We assume no prior kine-
matic or registration knowledge except for an over-estimate
k of the number of rigidities in the scene, instead proposing
to simultaneously discover, adapt, and track its rigid struc-
ture on the fly. We simultaneously segment and infer poses
of rigid subcomponents of a single chosen reference mesh
acquired in the sequence. We show that this problem can
be rigorously cast as a likelihood maximization over rigid
component parameters. We solve this problem using an Ex-
pectation Maximization algorithm, with latent observation
assignments to reference vertices and rigid parts. Our ex-
periments on synthetic and real data show the validity of the
method, robustness to noise, and its promising applicability
to complex sequences.

1. Introduction
The problem of spatio-temporal modeling from multi-

ple images has gained a lot of attention from researchers in
recent years. The topic is becoming increasingly popular
for applications related to shape acquisition, shape analy-
sis, thanks to emerging technologies in the industry such
as 3D television, entertainment based on 3D and full-body
interaction. This is creating an ever increasing demand for
robust space-time shape acquisition methods, for offline and
real-time 3D content production.

The problem remains challenging for the vision com-
munity. Historically shape acquisition has first been ad-
dressed in a temporally independent manner, using sets of
images of a single instant. This however leaves out an im-
portant source of redundancy and improvement in the case
of temporal sequences. In recent years various surface de-
formation and tracking models have become very popular

Figure 1. Convergence of the method in fitting frame 30 of Lock
sequence (courtesy U. Surrey [15]), using frame 20 as reference
(left). Target observation points are shown in blue, color lines
show probabilistic associations from observations to reference ver-
tices. The method estimates rigid clusters coherent with both the
spatial and motion characteristics of the model, in particular re-
covering the correct partition and motion of arm and forearm.

to leverage temporal information of multi-video sequences.
A number of such approaches treat surface acquisition as
the fitting of a deformable surface model based on image
cues or 3D points obtained from stereo or visual hull tech-
niques [10, 12]. This gives positive results with little prior
knowledge of the surfaces, on the other hand it leaves out
important cues about the scene such as rigidity, as it usu-
ally uses only surface smoothness and continuity criteria
for space-time reconstruction, yielding generally undercon-
strained methods. On the other end of the spectrum, one
can constrain reconstructions by using specific prior models
such as a kinematic structure, through a reduced parameteri-
zation of surface movement. This however comes at the cost
of genericity, often yielding specific, overconstrained meth-
ods that hardly handle the variability of real surface data. To
lift this limitation and find a middle ground between gener-
icity and efficient priors, researchers have sought to auto-
matically identify rigid parts and kinematic structures in a
pre-processing step. The main trend in the computer vi-
sion community has been to deal with the problem in 2D
images, where occlusion discontinuity modeling is manda-
tory, or for the case of 3D point clouds, without a strong
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modeling of spatial coherence. Meanwhile the main trend
in the graphics community has been to focus on kinematic
segmentation of 3D surfaces from prominent spatial charac-
teristics of the surface in a static pose [13], with the intrinsic
limitations of not observing the actual rigidity in motion.

The method we propose has two contributions with re-
spect to these existing research trends. First we show
that segmentation and surface tracking stages need not be
separated and can be efficiently performed simultaneously,
through the online discovery, adaptation and alignment of
rigidities. Second we propose a principled model to take
advantage of both the spatial and temporal cues meaning-
fully for the segmentation (§3). We cast the problem as a
Bayesian estimation of spatial and temporal rigid cluster
parameters, over a given reference mesh of the observed
scene. We assume the surface is subsequently observed
through a set of unaligned sparse 3D points obtained from
vision systems. We solve the estimation problem using an
Expectation Maximization algorithm [7], while estimating
distributions over latent variables modeling both the proba-
bilistic segmentation of the surface into rigid parts, and the
noisy matching of observed points to the reference mesh
(§4). The model automatically estimates the position and
temporal transforms of each cluster (§4.1), while dealing
with noise and outliers among the 3D observations (§4.2).
The main benefits sought with this approach is to simul-
taneously increase genericity and robustness of methods
through common estimation of rigidity segmentation and
shape tracking. Implementation details, experimental vali-
dation, and future work are discussed in §5, §6 and §7.

2. Related Work
Deformable Surface Tracking Deformable surface
tracking is one of the most active trends to tackle the
spatio-temporal modeling problem [6, 5, 17, 4, 8]. The
topic has been addressed both in the computer vision and
graphics communities, either with weakly constrained
surfaces not taking advantage of rigidities [6, 8] or includ-
ing a strong rigidity prior [5, 17], such as an underlying
kinematic skeleton, which is not learned but imposed at
initialization. The most recent successful approaches opt
for a more flexible model of rigidity based on patches [4],
in fact casting the problem as an EM, but still leaving aside
the problem of rigidity learning. We propose to take this
family of approaches one step further, in simultaneously
addressing both mesh tracking and segmentation cast as a
single, cooperative learning problem.

Shape Segmentation and Matching Static shape seg-
mentation has received considerable attention in the com-
puter graphics community [13], only considering the spa-
tial aspect. They are fundamentally limited for the problem
of rigidity detection, as rigidity itself is a dynamic notion.

Some recent works in the graphics community have consid-
ered the rigid segmentation of dynamic meshes, but mainly
with the limitation that the meshes are pre-aligned, e.g [11].
There is a growing interest in both vision and graphics com-
munities for spectral clustering methods [9], sometimes ap-
plied to shape segmentation [14], but the emphasis in these
methods is more on the continuous matching problem be-
tween general static poses than the temporal evolution as-
pect. A goal of our method is to leverage both the spatial
and dynamic cues of spatio-temporal sequences for segmen-
tation and tracking.

Motion Segmentation and Factorization A large body
of work exists in the vision community for segmenting mo-
tion in 2D images using various cues such as color, and
optical flow [3]. This comes with intrinsic image-domain
problems, such as occlusions, light perception, with less
than ideal image domain specific solutions such as occlu-
sion boundary detection or image domain smoothing. The
latter is a way of using spatial coherence, but is best per-
formed in 3D as soon as 3D information or multiple views
are available. Indeed 3D rigid segmentation has been ad-
dressed in the vision community [16], including the analysis
of kinematic chains [18], but mainly for the case of sparse
set of 2D feature points, sometimes lifted in 3D through
matching, if multiple views are available. Again we see
benefit in taking this type of approach further, by using spa-
tial continuity together in surface matching and tracking.

3. Modeling
3.1. Model Overview

We assume an object of interest is observed moving
through a set of 3D point clouds, obtained from a vision
system. We wish to identify the rigid parts of the object, and
their motion over time. Given a reference mesh of the ob-
ject, these two goals translate to two association problems.
First, associate each reference vertex to a rigid part, deter-
mining a rigid segmentation of the reference mesh. Sec-
ond, associate each 3D observation at each time t to a ver-
tex of the reference mesh, thus determining the motion of
reference mesh vertices at time t. A key difficulty here is
that both problems are considered simultaneously and in-
tertwined, as shown in the proposed graphical model Fig. 2.

Let X = {Xv}v∈V be the set of 3D coordinates asso-
ciated to each vertex of reference mesh, with V the set of
vertices. Let O = {Oto}t∈T ,o∈Ot , be the sets of sparse 3D
surface points observed, where T is the time span consid-
ered and Ot the set of observations at time t.

The segmentation problem is governed by a set of pa-
rameters C = {Ck}k∈K describing the distribution of rigid
parts over the reference mesh, and a set kkkv of unobserved
rigidity selection variables per-vertex v of the reference
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Figure 2. “Naive” model

mesh, describing an association hypothesis of v to a rigid
cluster. As a modeling simplification, in this paper we con-
sider that the reference mesh points are to be classified ac-
cording to their 3D coordinates Xv using a Gaussian Mix-
ture Model, where C = {Ck}k∈K are the parameters (mean
and covariance matrices of the GMM), with mixing coef-
ficients πk. This simple model discriminates rigidities as
quasi-convex subvolumes, which is sufficient to validate the
method.

The motion problem is parameterized by a set of rigid
transforms T = {T tk}k∈K,t∈T , for each rigid cluster k ∈ K
and time t ∈ T , and a set of discrete vertex selection vari-
ables vvvto describing the reference vertex association hypoth-
esis for each observation o at time t. vvvto can take any value
in {V ∪ ∅}, including a garbage association ∅ for the case
where the o’th observation is an outlier. The prior propor-
tion of outliers at time t is noted αt, to be learned by our
model. Importantly, a given observed 3D pointOto is treated
as the noisy measurement of a reference vertex coordinate
Xv , once displaced by the transform T tkkkv associated to that
vertex’s cluster kkkv . kkkv is thus required to make this predic-
tion, inducing the bold causal link represented in the graph.

3.2. Resolution and Tractability

The full problem can be cast as a likelihood maximiza-
tion over Ck and T tk, given the knowledge of the reference
mesh X and all observations O. Because of the presence
of latent variables, the solution can be found using Expecta-
tion Maximization (EM) [7]. The segmentation and motion
association problems are interrelated through the variable
group kkkv: in other words, for a cluster k to have a high like-
lihood, it needs to cluster spatially consistent points on the
reference mesh, while simultaneously predicting a subset of
each t’s observations from these points with a single rigid
transform T tk. This problem is thus significantly harder to
solve than anyone of the association problems alone.

The difficulty materializes for the E-step of the full prob-
lem, which needs to compute a distribution over the selec-
tion possibilities kkk = {kkkv}v∈V and vvv = {vvvto}t∈T ,o∈Ot

given the current parameter estimates (i.e. the full posterior
p(kkkvvv|XOCTπ)). The current model implies that probabil-
ities over rigid associations kkk and vertex association vvv are
interdependent, because of the bold causal link in Fig. 2:
the posterior p(kkkvvv|XOCTπ) doesn’t factorize as a product
of simpler distributions, and thus yields an intractable E-
step. Favorable factorization is identified to occur when the
selection variables satisfy the D-separability criterion [2],
i.e. when a clearly separated subset of selection variables
is used to predict separate measurements, as is the case e.g.
for simple GMMs.

3.3. Tractable Model

To obtain a tractable EM algorithm, we assign each ob-
servation o with a local duplicate of the segmentation prob-
lem, as shown in Fig. 3. Thanks to this duplicate, the causal
links involving segmentation and motion associations in the
model will now be contained as per-observation terms, as
opposed to Fig. 2 where observation predictions needed po-
tentially arbitrary rigid segment selection variables kkkv .

In other words, each observation o is given its own in-
dependent set of rigidity selection variables {kkkto}t∈T ,o∈Ot ,
governed by the same rigidity mixing priors πk. The
method thus partitions not only static reference mesh ver-
tices among rigid GMM clusters, but also the 3D obser-
vations themselves through this set of redundant selection
variables. The set of reference mesh coordinates is also lo-
cally duplicated as Xt

o,v . We write the predictive distribu-
tions overXt

o,v so as to allow only the associated coordinate
Xt
o,vvvto

of the reference mesh vertex vvvto to be predicted by the
GMM’s kkkto’th component. This allows each observation o
to contribute an additional sample to the static segmentation
GMM, as selected by its selection variables kkkto and vvvto.

k ∈ K

v ∈ V

o ∈ Ot

t ∈ T

kkkv

Xv

Ck πk T t
k αt

kkkt
o vvvt

o

Ot
o Xt

o,v

v ∈ V

Figure 3. Complete model

For readability, we introduce Θ = {CTπα} the set of
method parameters to be estimated, Z = {vvvkkk} the set of la-
tent variables, and M = {OX} the set of known variables.
We can then write the model likelihood as follows:
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p(MZ|Θ) =
∏
v∈V

p(kkkv|π) p(Xv|C kkkv) (1)∏
o,t

p(vvvto|α) p(kkkto|π) p(Oto|Xv T
t vvvto kkk

t
o)

∏
v∈V

p(Xt
o,v|C kkkto vvvto)

Note that
∏
v∈V p(X

t
o,v|C kkkto [vvvto 6= ∅]) simplifies to

p(Xt
o,vvvto
|C kkkto [vvvto 6= ∅]) in this expression, by choosing ref-

erence coordinates for v 6= vvvto to be predicted uniformly
in space regardless of C, and thus discarded, which effec-
tively enables to select the vvvto’th coordinate as a rigid GMM
sample, as previously mentioned. To account for the outlier
selection case, we set p(Xt

o,v|vvvto = ∅) = U(Xt
o,v, S) = 1

V
regardless of other parameter values, that is, uniform spatial
prediction over the reference bounding volume.

3.4. Choosing parametric distributions

Selection distributions p(kkkv|π), p(kkkto|π) and p(vvvto|αt).
The rigidity selection variables are drawn from their corre-
sponding mixture prior : p(kkkv = k|π) = πk, resp. p(kkkto =
k|π) = πk. p(vvvto|αt) models the expected proportion of
outliers in the data governed by αt: p(vvvto = ∅|αt) = αt,
p(vvvto 6= ∅|αt) = 1−αt

|V| = ᾱt. Note that there is no out-
lier class in K: we assume the reference mesh is not noisy,
as such all of its vertices should be classified according to
static clusters C.

Observed vertex displacement term p(Oto|X T t vvvto kkk
t
o).

We assume that each T tk = {Rtk, σk}, with Rtk a rigid trans-
formation matrix from the canonical pose to the curent pose.
As in other similar methods [4], we assume that the pre-
dicted position is perturbed by Gaussian noise. The noise
in this case is better modelled as isotropic, as we expect no
dominant noise orientation in the way displaced vertices can
predict each observed datum. Thus, when vvvto 6= ∅:

p(Oto|X T t [vvvto 6= ∅]kkkto) = N (Oto|Rtkkkto(Xvvvto), σ2
kkkto
I). (2)

When vvvto = ∅, we use a spatial uniform distribution over R3

to model outliers predictions (they don’t depend on model
parameters T and C):

p(Oto|vvvto = ∅) = U(Oto, V ) =
1

V
, (3)

where V is the reference mesh bounding volume.

Mesh classification terms p(Xv|C kkkv) and
p(Xt

o,vvvto
|C kkkto). With the GMM parameterization we

note Ck = {µk,Σk} over R3:

p(Xv|C kkkv) = N (Xv|µkkkv ,Σkkkv ), (4)

p(Xt
o,vvvto
|C kkkto) = N (Xt

o,vvvto
|µkkkto ,Σkkkto), (5)

where µ and Σ are the centroid and covariances modeling
the cluster shape. Note that we keep the full covariance ma-
trix description in this case as we expect spatial clusters to
have a variety of shapes over the reference mesh, not nec-
essarily circular. Other more complex prediction models
could be explored in future work.

3.5. Final likelihood expression

By substituting the different terms, and using an indica-
tor variable δvvvto with value 1 if vvvto = ∅ and 0 otherwise, and
¯δvvvto = 1− δvvvto , we obtain:

p(MZ|Θ) =
∏
v∈V

πkkkv N (Xv|µkkkv ,Σkkkv ) (6)

∏
o,t

{ᾱt πkkkto N (Xt
o,vvvto
|µkkkto ,Σkkkto)N (Oto|Rtkkkto(Xvvvto), σ2

kkkto
I)}δ̄vvvt

o

{αt U(Xt
o,v, S) U(Oto, V )}δvvvt

o

4. Inference
Finding the optimal clustering and rigid parameters

translates to maximizing the following log likelihood:

Θ∗ = max
Θ

ln p(M |Θ) (7)

The following EM helper function Q(Θ|Θj) can be defined
to solve this goal with the latent variablesZ [2], by substitu-
tion of the different variable groups (state, latent, observed)
in the generic definition:

Q(Θ|Θj) = EZ|MΘj{ln p(MZ|Θ)}
=

∑
Z

p(Z|MΘj) ln p(MZ|Θ). (8)

The associated E- and M-steps are as follows:

E-Step: Compute p(Z|MΘj), (9)

M-Step: Θj+1 = max
Θ

Q(Θ|Θj). (10)

4.1. E-step updates

Let us analyse the expression of p(Z|MΘj). First let
us note that, by construction, the groups of selection vari-
ables {kkkv}v∈V and {kkkto, vvvto}o∈Ot,t∈T are now D-separable
according to the complete graphical model (Fig. 3) and thus
independent under this posterior distribution:

p(Z|MΘj) =
∏
v∈V

p(kkkv|MΘj)
∏

t∈T ,o∈Ot

p(kkktovvv
t
o|MΘj).

(11)

The E-step consists in tabularizing these two sets of dis-
tributions, seen as functions of kkkv , and (kkkto,vvv

t
o):
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β(kkkv) = p(kkkv|MΘj) =
πjkkkv N (Xv|µjkkkv ,Σ

j
kkkv

)∑
kkkv
πjkkkv N (Xv|µjkkkv ,Σ

j
kkkv

)
(12)

γ(kkkto, vvv
t
o 6= ∅) = p(kkktovvv

t
o|MΘj) (13)

=
1

w
πjkkkto

ᾱt,jvvvto
N (Xt

o,vvvto
|µjkkkto ,Σ

j
kkkto

)N (Oto|Rt,jkkkto (Xvvvto), σjkkkto
2
I),

γ(kkkto, vvv
t
o = ∅) =

1

w
αt,j U(Xt

o,v, S) U(Oto, V ), (14)

where w is a normalization constant ensuring γ is a distri-
bution over (kkkto, vvv

t
o). Note that the β-functions correspond

to the usual E-step for GMMs, as applied here to reference
mesh point clustering, while the γ-functions can be seen as
a variant accounting for the transformation coherence and
outlier rate, for each pair (kkkto, vvv

t
o). The state space for each

γ-function is quite large, thus we shall compute it sparsely,
with the most likely (kkkto, vvv

t
o) pairs. An algorithm to retrieve

the best pairs will be discussed in §5.

4.2. M-step Updates

Substituting the definitions of β(kkkv) and γ(kkkto, vvv
t
o), the

expression of Q(Θ|Θj) can be written as a sum of terms
each involving only one of the maximization variables:

Q(Θ|Θj) =
∑
Z

∏
v∈V

β(kkkv)
∏

t∈T ,o∈Ot

γ(kkkto, vvv
t
o) ln p(MZ|Θ)

=
∑
v

∑
kkkv

β(kkkv){lnπkkkv + lnN (Xv|µkkkv ,Σkkkv )} (15)

+
∑
o,t

∑
kkkto,vvv

t
o 6=∅

γ(kkkto, vvv
t
o){lnπkkkto + lnN (Xt

o,vvvto
|µkkkto ,Σkkkto)}

+
∑
o,t

∑
kkkto,vvv

t
o 6=∅

γ(kkkto, vvv
t
o){ln ᾱt + lnN (Oto|Rtkkkto(Xvvvto), σ2

kkkto
I)}

+
∑
o,t

∑
kkkto,vvv

t
o=∅

γ(kkkto, vvv
t
o) lnαt + const.(Θ).

Q(Θ|Θj) can be maximized by maximizing separately
the group of sum terms corresponding to each of the param-
eters in Θ = {CTπα}. Fortunately, most of the updates
can be computed in closed form, yielding a set of update
equations for the M-step presented below. For concision
and clarity, the complete derivations have been omitted in
this paper, but will be made available as technical report.

Updating πk, the mixing coefficients. Defining N and
Nk as follows, the πk update can be written:

N = |V|+
∑
t∈T
|Ot|, (16)

Nk =
∑
v∈V

βv(k) +
∑

o,t,v∈V
γto(k, v), (17)

πj+1
k =

Nk
N
. (18)

Updating (µk,Σk), the spatial cluster parameters. It
can be shown that the update equations maximizing
(µk,Σk) are as follows:

µj+1
k =

1

Nk

∑
v∈V

βv(k)Xv +
∑

o,t,v∈V
γto(k, v)Xt

o,v

 ,

(19)

Σj+1
k =

1

Nk

∑
v∈V

βv(k)(Xv − µj+1
k )(Xv − µj+1

k )> (20)

+
1

Nk

∑
o,t,v∈V

γto(k, v)(Xt
o,v − µj+1

k )(Xt
o,v − µj+1

k )>.

The form of these updates (including πk) make sense con-
sidering the form of the classical GMM Gaussian update
equations, by noting that in fact the samples of our Gaussian
updates are given by all reference mesh coordinates Xv on
one hand, and the coordinates Xt

o,v , as selected through the
various vertex and rigidity matching hypotheses for each
observation, on the other hand. This explains the form of
our mean and covariance updates, a weighted combination
of these terms in two summation groups.

Updating αt, the outlier rate for each time step. Setting
the partial derivative to 0 for each αt, we obtain:

αt,j+1 =
1

|Ot|
∑
o,k

γto(k, ∅), (21)

which corresponds quite naturally to summing the (already
normalized) weights of outlier observation assignments for
each time step considered.

Updating T tk, the transform parameters. Obtaining the
transform parameters for each instant and rigid part can
be obtained by maximizing the corresponding terms in
Q(Θ|Θj) with respect to Rtk :

Rt,j+1
k = max

Rt
k

∑
o,v∈V

γto(k, v) lnN (Oto|Rtk(Xv), σ
2
kI)

= max
Rt

k

∑
o,v∈V

γto(k, v)‖Oto −Rtk(Xv)‖2. (22)

The latter can be recognized as a weighted orthogonal Pro-
crustes problem. Only a subset of pairs (k, v) ∈ P yield
non-zero γto(k, v) values. We collect these values in a size-
|P| diagonal matrix W , and collect the Xv and Oto coordi-
nates appearing in the corresponding sum terms in (22) in
two 3 × |P| matrices x and o. The rotational and trans-
lational components (R t) of Rt,j+1

k can then be retrieved
using the SVD of a 3× 3 matrix defined as follows:

x̂ = xW − x̄, (23)
ô = oW − ō, (24)

R = V U> with the SVD of x̂ô> = UDV >, (25)
t = ō−Rx̄, (26)
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where x̂ and ô are reweighted, zero-centered versions of x
and o.

Updating the rigidity variances σk. To update σk, we
differentiate (22) w.r.t. σ2

k, obtaining:

σj+1
k

2
=

∑
o,v γ

t
o(k, v)‖Oto −Rt,j+1

k (Xv)‖2∑
o,v γ

t
o(k, v)

. (27)

5. Implementation

5.1. Computing sparse γ-tables

To compute each γ table sparsely for a given observa-
tion o, we need to identify the best set of hypotheses (k, v).
γ can be seen as a function attributing a matching weight
to each vertex-cluster pair. To retrieve the best candidate
matches, we solve a series of K-Nearest Neighbor prob-
lems, by constructing a search space with |K| × |V| can-
didates, corresponding to each (k, v) hypothesis, i.e. each
reference vertex transformed with each cluster transform.
Each candidate is normalized using the respective cluster
covariances to retrieve nearest neighbors in the sense of Ma-
halanobis distances. Then, for each observation in Ot, we
look for the K-nearest neighbors where K is a supplied pa-
rameter (in practice fixed to 5 or 10), to keep the K-best γ
values. Nearest Neighbor structures thus need to be built
only once per EM iteration. Note that as a result, every up-
date sum and expression involving (k, v) can be sparsely
evaluated.

5.2. Processing Time Sequences

The proposed framework can be used to process se-
quences of input observations with proper incremental ini-
tialization. Because EM converges to local minima and
is initialization dependent, the framework is best used in
sequence, starting from a position close to the reference
mesh. With such starting conditions, the algorithm easily
finds correct solutions, with a simple initialization strategy
for all experiments, e.g. Fig. 1. We initialize cluster param-
eters with centroids on a randomly selected reference mesh
vertex, with covariance matrices randomly generated with
the order of magnitude of the bounding box. Cluster trans-
forms are initialized to identity, and mixing coefficients to
uniform. Sequences can then be processed using a chosen
sliding window of size W , where each new observation set
entering the window is initialized with the transforms and
cluster parameters computed at the previous time step with
some random perturbation. We obtain promising results
with these simple strategies; arguably better initializations
could be explored in future work.

6. Experimental Results
We validate the approach using two synthetic datasets

and several real datasets, also shown in the supplemental
video1. Between datasets, only values of the sliding win-
dow size and expected number of rigidities |K| are to be
set manually, although strategies to infer |K| could be ap-
plied from existing EM literature in future work. Best and
more stable results were obtained by estimating identical
variances for all transforms T . The computed parameters
and E-step tables encode a continuous mesh deformation
defined by the spatial clusters C, the β-tables which encode
class probabilities with respect to C, and the transforms T .
This deformed position can be computed for each reference
vertex v as the expectancy of its transformed position un-
der β(kkkv), or

∑
kkkv
β(kkkv)Xv , where β-tables are analog to

skinning weights. Computation times on a single 2.53Ghz-
core range from 100msec per iteration for simple datasets
(CYLINDER) to a second per iteration (LOCK). The num-
ber of iterations before convergence is usually 10-40, with
occasionally higher numbers (80-100) for the larger config-
uration changes within a sequence.

6.1. Validation on synthetic datasets

We validate the approach on synthetic datasets to evalu-
ate performance of the method under controlled conditions.
The first dataset used is a deformable cylinder with 1300
vertices, comprised of three rigid subcomponents (Fig. 4)
folding over 22 frames. The first joint folds over frames
1 − 10, then both joints fold subsequently. We process the
dataset with a purely vertical reference position, so as to
test the ability of the method to retrieve rigid parts unbiased

1See http://hal.inria.fr/inria-00583131/en

(1) (3) (10) (11) (22)
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Figure 4. Various frames of the cylinder dataset. Mesh vertices
are colored according to the most likely rigidity according to its β
table. Color lines are drawn from each observation to most prob-
able matching reference positions and rigidity hypothesis (color)
according to its γ-table. Observation points are shown in blue.
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Figure 5. Frames 1,5,20 and 35 of the dancer synthetic dataset.

by the reference geometry. The sequence shown in Fig. 6
is processed with |K| = 3 clusters and a sliding window
of size W = 3, although similar results have been pro-
duced with W = 1 and W = 5. RMS errors between
observations and expected reference mesh positions given
the model, have been shown for various values of k. In
frame (1) the cylinder has barely deformed and the method
broadly uses 2 of the rigidities, RMS error is relatively high
at initialization. From frame (2)-(9), the method places the
red and blue clusters correctly and puts the third cluster in
the axis of the folding on frame (10), which is a plausi-
ble solution reducing error in the fold. From frame (11)
to (22), the method properly identifies the three rigid seg-
ments. Note how the RMS error drops from frame (11) on
as soon as the new joint is solicited, when setting k ≥ 3 :
this shows that the method did indeed detect the new rigid-
ity upon occurrence, reducing positional error with respect
to using only two rigidities. We use a second synthetic se-
quence with 200 frames, DANCER, to test the longer term
behavior of the method. The sequence is tracked and seg-
mented using 10 rigid parts. The human model in the se-
quence has 3000 vertices, only 1000 of which are samples
randomly at each frame to simulate missing data. Despite
the scarce number of parts, the method adapts the location
of rigidities to observed degrees of freedom being solicited
(e.g. a single rigid movement per leg often is sufficient to
model the deformation). The method was able to track the
model up to frame 120, despite large body motions and ro-
tations such as shown frame 35 in Fig. 5.

6.2. Real datasets

We have processed various real datasets, LOCK (Fig. 1),
BALL, DOG, and CRANE (Fig. 6). These mesh se-
quences were obtained from vision systems using visual
hulls (BALL, DOG) or silhouettes and photoconsistency
methods (CRANE, LOCK)[15]. All datasets use a sliding
window of sizeW = 2, keeping observations 5 frames apart
for better coverage of observations on different poses. In all
sequences the reference mesh used was the first model in the
sequence, reduced to 3000 vertices for faster computation.
Observations point clouds were constructed by extracting
1000 random unaligned points from sequence meshes, to

illustrate method resilience to sparser data. All sequences
were processed with k = 15 except for ball which was pro-
cessed with k = 10. It was observed during experiments
that the method performs better with lower rigidity counts:
the convergence is better constrained in those cases. The
method is able to process about 20 to 30 frames in motion
for each sequence before significant artifacts occur. It finds
rigid segmentations plausible with the shape and motion ob-
served in the sequences, including arms, legs, forearms and
forelegs for all sequences where they are observed moving.
For example in the BALL sequence in Fig. 6(a), the main
moving parts are the adult’s upper body, and both person’s
forearms, which is consistent with the segmentation found.
Results show that outliers are identified, such as the shadow
volume in the BALL sequence or the small ball tossed in the
DOG, which was not part of the reference mesh.

7. Limitations and Future Work

The method yields very encouraging results. Further im-
provement of the method is still possible. First the number
of rigidities could be themselves learned with various strate-
gies. The algorithm could easily monitor rigidity mixing
weights and assignments, and their contribution to the total
log-likelihood, to remove, split or merge rigidities. Second,
although the simple initialization strategy used works in
most cases, it doesn’t guarantee systematic escapes of local
maxima of the log-likelihood function, which sometimes
translates to suboptimal segmentations being transferred
from one frame to another. A hierarchical strategy could be
explored to improve convergence properties. Third, terms
related to surface regularization could be added. The fact
that clusters softly partition the reference mesh into rigidi-
ties, does yield a weak form of surface regularization; this
is not always enough to prevent folds and loss of tracking
on complex sequences. Specific additional terms related to
surface and inter-cluster regularization could be added to
improve long-term robustness of the method. Finally, our
proof-of-concept implementation is single-core, but virtu-
ally all update equations involve only individual variables
and could be massively parallelized (GPU), bringing this
method within reach for real-time applications.

8. Discussion

We have presented a novel learning technique to simul-
taneously address spatio-temporal mesh tracking and rigid
segmentation. The framework developed is based on a prin-
cipled graphical model and EM maximization algorithm,
which performs unsupervised matching of unaligned ob-
served point clouds sequences to a reference mesh, detects
outliers, while segmenting the reference mesh and comput-
ing its rigid parameters. Resolution is done with simple,
efficient and highly parallelizable EM updates. We are con-
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(a) (b) (c)

Figure 6. (a) BALL and (b) DOG sequence, courtesy 4drepository.inrialpes.fr. [1] (c) CRANE sequence, courtesy CSAIL-MIT [17]. Obser-
vation points are shown in blue if inlier, red if outlier (such as points on the ball’s shadow in (a) or the ball tossed by the person in (b)). The
method sometimes exhibits artifacts such as top (c) on the leg, due to an occasionally misfitted rigidity.

fident that the framework opens a new direction to cooper-
atively segment and track spatio-temporal mesh sequences.

9. Acknowledgements
This work has been partially funded by grant ANR-10-

BLAN-0206 of the French National Research Agency.

References
[1] J. Allard, J.-S. Franco, C. Ménier, E. Boyer, and B. Raffin.

The grimage platform: A mixed reality environment for in-
teractions. In ICVS, jan 2006.

[2] C. M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2006.

[3] T. Brox and J. Malik. Object segmentation by long term anal-
ysis of point trajectories. In K. Daniilidis, P. Maragos, and
N. Paragios, editors, ECCV, volume 6315 of Lecture Notes
in Computer Science, pages 282–295. Springer, 2010.

[4] C. Cagniart, E. Boyer, and S. Ilic. Probabilistic deformable
surface tracking from multiple videos. In ECCV, pages 326–
339, 2010.

[5] E. de Aguiar, C. Stoll, C. Theobalt, N. Ahmed, H.-P. Seidel,
and S. Thrun. Performance capture from sparse multi-view
video. In SIGGRAPH, 2008.

[6] E. de Aguiar, C. Theobalt, C. Stoll, and H.-P. Seidel. Marker-
less deformable mesh tracking for human shape and motion
capture. In CVPR, pages 1–8, 2007.

[7] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood
from incomplete data via the em algorithm. In Journal of the
Royal Statistical Society: Series B, 1977.

[8] Y. Furukawa and J. Ponce. Dense 3d motion capture from
synchronized video streams. In CVPR, 2008.

[9] V. Jain, H. Zhang, and O. van Kaick. Non-rigid spectral
correspondence of triangle meshes. International Journal
on Shape Modeling, 13(1):101–124, 2007.

[10] A. Laurentini. The visual hull concept for silhouette-based
image understanding. IEEE Trans. Pattern Anal. Mach. In-
tell., 16(2):150–162, 1994.

[11] T.-Y. Lee, Y.-S. Wang, and T.-G. Chen. Segmenting a de-
forming mesh into near-rigid components. Vis. Comput.,
22:729–739, September 2006.

[12] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and
R. Szeliski. A comparison and evaluation of multi-view
stereo reconstruction algorithms. In CVPR, pages 519–528,
2006.

[13] A. Shamir. A survey on mesh segmentation techniques.
Computer Graphics Forum, 27(6):1539–1556, 2008.

[14] A. Sharma, E. von Lavante, and R. Horaud. Learning shape
segmentation using constrained spectral clustering and prob-
abilistic label transfer. In ECCV, volume 6315, pages 743–
756, 2010.

[15] J. Starck and A. Hilton. Correspondence labelling for wide-
timeframe free-form surface matching. In ICCV, 2007.

[16] R. Tron and R. Vidal. A benchmark for the comparison of
3-d motion segmentation algorithms. Computer Vision and
Pattern Recognition, IEEE Computer Society Conference on,
0:1–8, 2007.

[17] D. Vlasic, I. Baran, W. Matusik, and J. Popović. Articulated
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