J. Kennedy and R. Eberhart, Particle swarm optimization, Proceedings of ICNN'95, International Conference on Neural Networks, pp.1942-1948, 1995.
DOI : 10.1109/ICNN.1995.488968

Y. Shi and R. Eberhart, A modified particle swarm optimizer, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), pp.69-73, 1998.
DOI : 10.1109/ICEC.1998.699146

Y. Shi and R. Eberhart, Empirical study of particle swarm optimization, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), pp.1948-1950, 1999.
DOI : 10.1109/CEC.1999.785511

M. Clerc and J. Kennedy, The particle swarm-explosion, stability, and convergence in a multidimensional complex space, Evolutionary Computation, IEEE Transactions on, vol.6, issue.1, pp.58-73, 2002.

N. Hansen and A. Ostermeier, Completely Derandomized Self-Adaptation in Evolution Strategies, Evolutionary Computation, vol.9, issue.2, pp.159-195, 2001.
DOI : 10.1016/0004-3702(95)00124-7

N. Hansen, The CMA evolution strategy: a comparing review Towards a new evolutionary computation Advances on estimation of distribution algorithms, pp.75-102, 2006.

N. Hansen and A. Ostermeier, Adapting arbitrary normal mutation distributions in evolutionstrategies: the covariance matrix adaptation, Proceedings of the IEEE Congress on Evolutionary Computation, pp.312-317, 1996.

S. Gelly, S. Ruette, and O. Teytaud, Comparison-Based Algorithms Are Robust and Randomized Algorithms Are Anytime, Evolutionary Computation, vol.26, issue.3, pp.411-434, 2007.
DOI : 10.1137/0801010

URL : https://hal.archives-ouvertes.fr/inria-00173221

V. Miranda, Evolutionary Algorithms with Particle Swarm Movements, Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems, pp.6-21, 2005.
DOI : 10.1109/ISAP.2005.1599236

D. Wilke, S. Kok, and A. Groenwold, Comparison of linear and classical velocity update rules in particle swarm optimization: notes on scale and frame invariance, International Journal for Numerical Methods in Engineering, vol.1, issue.8, pp.985-1008, 2007.
DOI : 10.1002/nme.1914

S. Kok, D. Wilke, and A. Groenwold, Recent developments of the particle swarm optimization algorithm, Proc of International Conference on Computational Intelligence, pp.392-397, 2005.

D. Wilke, S. Kok, and A. Groenwold, Comparison of linear and classical velocity update rules in particle swarm optimization: notes on diversity, International Journal for Numerical Methods in Engineering, vol.38, issue.8, pp.962-984, 2007.
DOI : 10.1002/nme.1867

I. Rechenberg, Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution, Frommann-Holzboog, 1973.

H. Schwefel, Evolution and Optimum Seeking, Sixth-Generation Computer Technology Series, 1995.

H. Beyer and H. Schwefel, Evolution strategies, Scholarpedia, vol.2, issue.8, pp.3-52, 2002.
DOI : 10.4249/scholarpedia.1965

N. Hansen and S. Kern, Evaluating the CMA Evolution Strategy on Multimodal Test Functions, Parallel Problem Solving from Nature -PPSN VIII, pp.282-291, 2004.
DOI : 10.1007/978-3-540-30217-9_29

H. Beyer, Evolution strategies, Scholarpedia, vol.2, issue.8, 1965.
DOI : 10.4249/scholarpedia.1965

A. Auger and N. Hansen, A Restart CMA Evolution Strategy With Increasing Population Size, 2005 IEEE Congress on Evolutionary Computation, pp.1777-1784, 2005.
DOI : 10.1109/CEC.2005.1554902

Y. Shang and Y. Qiu, A Note on the Extended Rosenbrock Function, Evolutionary Computation, vol.14, issue.1, pp.119-126, 2006.
DOI : 10.1109/4235.771163

A. Auger and N. Hansen, Performance Evaluation of an Advanced Local Search Evolutionary Algorithm, 2005 IEEE Congress on Evolutionary Computation, pp.1769-1776, 2005.
DOI : 10.1109/CEC.2005.1554903

V. Feoktistov, Differential Evolution: In Search of Solutions, Optimization and Its Applications, 2006.

]. B. Efron and R. Tibshirani, An Introduction to the Bootstrap, 1993.
DOI : 10.1007/978-1-4899-4541-9

R. Ros and N. Hansen, A Simple Modification in CMA-ES Achieving Linear Time and Space Complexity, Parallel Problem Solving from Nature (PPSN'08), pp.296-305, 2008.
DOI : 10.1007/978-3-540-87700-4_30

URL : https://hal.archives-ouvertes.fr/inria-00287367

N. Radcliffe and P. Surry, Fundamental limitations on search algorithms: Evolutionary computing in perspective, Lecture Notes in Computer Science, vol.1000, pp.275-291, 1995.
DOI : 10.1007/BFb0015249

D. Wolpert and W. Macready, No free lunch theorems for optimization, Evolutionary Computation, IEEE Transactions on, vol.1, issue.1, pp.67-82, 1997.

C. Schumacher, M. Vose, and L. Whitley, The no free lunch and problem description length, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), pp.565-570, 2001.

C. Igel and M. Toussaint, A No-Free-Lunch theorem for non-uniform distributions of target functions, Journal of Mathematical Modelling and Algorithms, vol.1, issue.(1), pp.313-322, 2004.
DOI : 10.1007/s10852-005-2586-y

C. Igel and M. Toussaint, On classes of functions for which No Free Lunch results hold, Information Processing Letters, vol.86, issue.6, pp.317-321, 2003.
DOI : 10.1016/S0020-0190(03)00222-9

A. Auger and O. Teytaud, Continuous lunches are free!, Proceedings of the 9th annual conference on Genetic and evolutionary computation , GECCO '07, pp.916-922, 2007.
DOI : 10.1145/1276958.1277145

URL : https://hal.archives-ouvertes.fr/inria-00173209

N. Hansen, Adaptive Encoding: How to Render Search Coordinate System Invariant, Parallel Problem Solving from Nature (PPSN'08), pp.205-214, 2008.
DOI : 10.1007/978-3-540-87700-4_21

URL : https://hal.archives-ouvertes.fr/inria-00287351