
HAL Id: inria-00583780
https://hal.inria.fr/inria-00583780

Submitted on 6 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mining Service Abstractions (NIER Track)
Dionysis Athanasopoulos, Apostolos Zarras, Panos Vassiliadis, Valérie Issarny

To cite this version:
Dionysis Athanasopoulos, Apostolos Zarras, Panos Vassiliadis, Valérie Issarny. Mining Service Ab-
stractions (NIER Track). 33rd International Conference on Software Engineering (ICSE), May 2011,
Hawaii, United States. pp.4. �inria-00583780�

https://hal.inria.fr/inria-00583780
https://hal.archives-ouvertes.fr


Mining Service Abstractions (NIER Track)

Dionysis Athanasopoulos
Dep. of Computer Science -

Univ. of Ioannina Greece
INRIA-Paris-Rocquencourt
dathanas@cs.uoi.gr

Apostolos V. Zarras
Dep. of Computer Science -

Univ. of Ioannina Greece
zarras@cs.uoi.gr

Panos Vassiliadis
Dep. of Computer Science -

Univ. of Ioannina Greece
pvassil@cs.uoi.gr

Valerie Issarny
INRIA-Paris-Rocquencourt, Domaine de Voluceau - France

Valerie.Issarny@inria.fr

ABSTRACT
Several lines of research rely on the concept of service ab-
stractions to enable the organization, the composition and
the adaptation of services. However, what is still missing,
is a systematic approach for extracting service abstractions
out of the vast amount of services that are available all over
the Web. To deal with this issue, we propose an approach for
mining service abstractions, based on an agglomerative clus-
tering algorithm. Our experimental findings suggest that the
approach is promising and can serve as a basis for future re-
search.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—methodologies,
representation

General Terms
Design

Keywords
Abstraction recovery, agglomerative clustering, services

1. INTRODUCTION
Background & State of the Art: In the early 70’s,

Parnas [12] introduced the fundamental principle of infor-
mation hiding and discussed the benefits from developing
software with respect to abstractions that hide the details
of various alternative design options.

Today, all over the Web we have a plentitude of alterna-
tive design options, provided in the form of reusable ser-
vices. The amount of these options is constantly growing.
Given the results reported in [1] the annual growth rate of
the number of services that become available through the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu , HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

Web is 130%. Today, we further have crawlers and Web ser-
vice search engines [7, 1] that allow the discovery of large
amounts of available design options.

In addition to all these, several lines of research rely on the
concept of service abstractions that represent semantically
compatible services (i.e., services which provide the same
functionality, possibly, through different interfaces). In par-
ticular, various semantic description languages have been
proposed for the specification of service abstractions (e.g.,
OWL-S1, WSMO2). Moreover, many service registries (e.g.,
[8, 13]) assume certain notions of abstraction, towards the
organization of information concerning available services.
Finally, a large variety of approaches for service composition
assume the existence of service abstractions (e.g., [14, 15, 6,
2, 4, 5]). Then, the proposed approaches provide means
for adapting compositions of service abstractions to meet
changes in functional and non-functional requirements. The
adaptation takes place, by substituting the concrete services
that are hidden behind the composed service abstractions.

Contribution: Although, several lines of research rely
on the concept of service abstractions to enable the orga-
nization, the composition and the adaptation of services,
what is still missing at this point is a systematic approach
for extracting service abstractions out of the vast amount
of services that are available all over the Web. To cover
this lack, in this paper we propose an approach for mining
service abstractions. The core idea is to mine a hierarchy
of service abstractions that represent alternative design op-
tions, via an agglomerative clustering algorithm that takes
as input Web service descriptions gathered by crawling the
Web.

Impact: In general, we view the proposed approach as a
stand-alone mechanism that may serve as a baseline for the
various lines of research that assume the existence of service
abstractions towards the organization, the composition and
the adaptation of services.

In the rest of the paper, we provide details regarding the
proposed approach (Section 2), we discuss our preliminary
results (Section 3) and finally we conclude with the future
directions of this work (Section 4).

2. MINING SERVICE ABSTRACTIONS
The overall process that mines service abstractions con-

sists of two phases. The first phase accepts as input a set

1http://www.w3.org/Submission/OWL-S/
2http://www.wsmo.org/



PortType = (n : string, O) (1)

O = {Opi : Operation}
Operation = (n : string, In : Message, Out : Message)

Message = {parti : Part}
Part = (n : string, type : BuildinType, lower : int, upper : int)

Abstraction = (I : PortType, D, M) (2)

D = {si : PortType}
M = {msi

: I.O → si.O}

Figure 1: Definitions of basic concepts.

of Web service descriptions and performs an initial prepro-
cessing that aims at dividing the Web service descriptions in
coarse-grained categories of relevant services (e.g., Email ser-
vices, SMS services, etc.). During the preprocessing phase,
the categorization relies on an existing keyword-based clus-
tering algorithm [7]. Then, during the second phase each
coarse-grained category of service descriptions is given as
input to the proposed agglomerative clustering algorithm
that produces as output a hierarchy of service abstractions.
Following, we provide basic definitions concerning the con-
cept of service abstractions and discuss the modus operandi
of the proposed algorithm.

2.1 Basic Concepts
We assume that a service may provide a set of interfaces.

An interface (i.e., a PortType - Figure 1(1)), is specified in
terms of a name and a set of operations, O. Each operation,
is characterized by a name, an input message, In, and an
output message, Out. In general, a message is hierarchically
structured, consisting of a number of parts, characterized by
their names, their XML data types and their upper/lower
multiplicity bounds; a message may also be empty. The data
type of a particular part could be either built-in or complex
(i.e., a hierarchically structured element, consisting of fur-
ther build-in or complex data types). In the proposed mining
process we consider only the leaf elements of the message’s
hierarchical structure. The reason for this choice is that the
particular structure of the input and output data of an op-
eration adds further complexity, while not providing much
useful information to the mining process. Indeed, in our
technical report [3] we give examples of services that offer
semantically compatible functionalities, while the structures
of their input and output messages are very different.

Ideally, a service abstraction should represent a set of
available services that have in common a certain set of se-
mantically compatible functionalities, realized by correspond-
ing sets of operations, which most possibly would be syn-
tactically different. Finding within a given set of services
that were gathered by crawling the Web, services that pro-
vide common semantically compatible functionalities is very
hard. However, we empirically observed that it is very fre-
quently encountered to have semantically compatible ser-
vices that provide syntactically similar interfaces. Our pre-
liminary experiments in Section 3 provide evidence for this
correlation.

Then, to assess the similarity between two service inter-
faces we rely on a distance metric DI , which is defined as
follows (Figure 2). Given two interfaces si, sj and a mapping

DI(si, sj) =
NED(si.n, sj .n)

2
+ (1)∑

∀(opi,opj)∈Mopij
Dop(opi, opj)

2 ∗ |Mopij
|

Dop(opi, opj) =
NED(opi.n, opj .n)

2
+

Dio(opi, opj)

2
(2)

Dio(opi, opj) =
Dm(opi.In, opj .In)

2
+ (3)

Dm(opi.Out, opj .Out)

2

Dm(mi, mj) =

∑
∀(pi,pj)∈Mmij

Dp(pi, pj)

|Mmij
|

(4)

Dp(pi, pj) =
NED(pi.n, pj .n)

2
+

NDT (pi.type, pj .type)

2
(5)

Figure 2: Distance between service interfaces.

Mopij ⊂ si.O× sj .O between the most similar operations of
the interfaces, the distance DI(si, sj) is defined as the av-
erage of the normalized edit distance between the names of
the interfaces3, and the average of the distances between
the mapped operations. The distance Dop(opi, opj) between
two operations opi, opj is defined as the average of the nor-
malized edit distance between the names of the operations
and the average of the distances of their input and output
messages. Given a mapping Mmij ⊂ mi ×mj between the
most similar parts of two messages mi, mj , we define the dis-
tance between the messages as the average of the distances
between the mapped parts. Finally, the distance between
two message parts is defined as the average of the normal-
ized edit distance between their names and the normalized
distance between their build-in types NDT (typei, typej); if
these types are in the same branch of the standard XML
type hierarchy, then NDT (typei, typej) is the absolute dif-
ference of their depths, divided by the maximum height of
the XML type hierarchy, otherwise we assume that the types
are incompatible and NDT (typei, typej) =∞.

Based on the previous concepts, we define a service ab-
straction as a tuple that consists of: an abstract interface I
and a set of represented service interfaces D (Figure 1(2)).
Each operation of the abstract interface I is mapped, through
a set of mappings M , to a set of operations, provided by the
represented interfaces. Specifically, for each service interface
si of D, M comprises a one-to-one function msi between
the operations of I and the operations of si. By construc-
tion, each mapping msi is such that the fundamental contra-
variance/covariance rules hold for the inputs/outputs of the
mapped operations [9].

Finally, it should be noted that, in general, the interface
a.I of a service abstraction a may be included in the set of
interfaces a′.I of another service abstraction a′. In other
words, it is possible to define a hierarchy that consists of
higher level service abstractions, which represent lower level
service abstractions.

3Typically, the edit distance between two strings s1, s2 with
lengths n, m can be defined as ED(s1, s2) = n + m − 2 ∗
lcs(s1, s2), where lcs(s1, s2) is the length of their longest
common substring; then, their normalized edit distance is

NED(s1, s2) = 2∗ED(s1,s2)
n+m+ED(s1,s2)

.



2.2 Agglomerative Clustering
The ultimate goal of the mining process is to construct the

interfaces of service abstractions, along with mappings be-
tween these interfaces and the interfaces of the represented
services. Consequently, the typical agglomerative clustering
algorithms (e.g., SLA, CLA, WLA, ULA [10]) are not di-
rectly applicable in our case. Following, we discuss the core
steps of the proposed algorithm, while the interested reader
may refer to our technical report [3] for further technical
details.

The mining algorithm accepts as input a set of interfaces
S = {si : PortType}, provided by services that belong in
a category of services that resulted from the preprocessing
phase. The output of the algorithm is a set of hierarchically
structured service abstractions A = {al : Abstraction}. To
this end, the algorithm iteratively performs the following
steps:

Step 1: For every pair of interfaces si ∈ S, sj ∈ S the al-
gorithm finds the distance DI(si, sj). To this end, the most
similar pairs of operations (opi, opj) ∈ si.O × sj .O (i.e., the
mapping Mopij - Section 2.1) are found by solving the max-
imum weighted matching problem in a bipartite graph [11].
The nodes of the graph correspond to the operations of si

and sj , while the edges correspond to the distances between
the operations. Finding the distances between two opera-
tions opi ∈ si.O and opj ∈ sj .O involves finding the most
similar pairs of elements for the input messages (respectively
the output messages) of the operations (i.e., the mapping
Mmij - Section 2.1). This problem is also solved by solv-
ing the maximum weighted matching problem in a bipartite
graph that represents the input messages (respectively the
output messages). Note that in this step it is possible to
calculate a distance between two interfaces that equals to
∞. This case may come up if the best possible matching
between messages results in at least one pair of incompati-
ble types. In such a case, we consider that it is not possible
to create an abstraction out of the two interfaces.

Step 2: Based on the calculated distances the most sim-
ilar pair of interfaces (si, sj) is selected and an abstraction
a is constructed as follows: By convention, the name of a.I
is the longest common substring of the names of si, sj . For
every pair of matched operations (opi, opj) found in the pre-
vious step, a.I comprises a corresponding operation opa,
named by following the same convention. The input (re-
spectively output) message of opa, contains a message part
pa for every matched pair (pi, pj) of elements of the input
(respectively output) messages of opi, opj . Concerning the
type of the input (respectively, output) element pa, we have
pa.type = pi.type if pi.type is higher (respectively lower)
than pj .type in the standard XML type hierarchy; other-
wise, pa.type = pj .type.

Step 3: The abstraction a is included in the result, i.e.,
A = A∪{a}. Moreover, the services that are represented by
a are removed from the input set, i.e., S = S−a.D. Finally,
a.I is included in S, i.e., S = S ∪ {a.I}, so as to serve for
the construction of higher level abstractions.

Step 4: The algorithm repeats steps (1) to (3), until
the input set comprises only one element, namely, the root
abstraction of the resulting abstraction hierarchy A, which
generalizes all the available service interfaces, or until no
further abstractions can be recovered.

Table 1: Example.

Table 2: Input sets descriptions.
Category #services/#interfaces Description

SMS 6/14 sending SMSs
Email 8/16 calendar services

WHOIS 6/14 find info for people
Content 26/41 weather, news services
Utilities 19/25 math, search engines, etc.

Taking a real-world example, assume that the input of the
algorithm S contains a simple service, SMS-TXT4, that pro-
vides a single operation, SendSms, for sending SMS messages.
Moreover, S contains a more complex service, GlobalSM-

SPro5, that provides an operation SendMessage for sending
SMS messages, along with further operations that serve for
various other purposes. Then, Table 1(a) highlights in grey
the best possible mapping between the most similar pairs of
input elements for the aforementioned two operations. The
distances between all the possible pairs of input elements
are given in the corresponding cells. Moreover, Table 1(b)
highlights in grey the most similar pair of operations for
the interfaces of the two services; in particular, SendSms is
matched with SendMessage. Based on this matching, the in-
terface I of the resulted abstraction would comprise a single
operation, named Send and a mapping M between Send and
the matched operations.

3. EMERGING RESULTS
To assess the proposed approach we used the mining algo-

rithm to extract service abstractions out of the woogle data
set [7]6. The goal of the evaluation was to investigate the
capability of the algorithm in finding useful service abstrac-
tions, where by the term useful we mean abstractions that
actually represent semantically compatible services. In our
experiments, we used as input to the algorithm 5 different
categories of services resulted from the preprocessing stage.
A brief description of each category is given in Table 2. For
each category, we manually inspected the abstractions hier-
archies produced by the algorithm and measured the per-
centages of useful and useless abstractions. The results are
summarized in Figure 3.

Overall, for all input sets the proposed approach produced
relatively high percentages of useful abstractions (ranging
from 70% to 100%). However, in certain cases there is also

4http://www.sms-txt.co.uk/sendSms.asmx
5http://www.strikeiron.com/Apps/runapp.aspx?appid=95
6The interested reader may find the input sets at
http://www.cs.uoi.gr/∼dathanas/links/Input Services Set.zip



a notable percentage of useless abstractions. This result was
expected because the initial design of the algorithm essen-
tially tries to maximize the amount of abstractions that can
be constructed from a given set of available services. In
particular, any set of services that are more similar to each
other, than to the rest of the available services is consid-
ered as a candidate for constructing a service abstraction,
independently from the degree of similarity of the services.
Hence, a straightforward way to reduce the percentage of
useless abstractions would be to further constrain the algo-
rithm by setting a threshold for the distance between in-
terfaces that are considered as candidates for extracting a
service abstraction. With a threshold value 0.5, the percent-
age of useless abstractions for the Content category drops to
10%, while for the Utilities category the percentage drops to
12%.

Figure 3: Experimental results.

4. CONCLUSION & FUTURE WORK
In this paper, we proposed an approach for mining service

abstractions out of sets of available service descriptions. Our
preliminary experimental results were encouraging. In par-
ticular, the proposed algorithm produced relatively high per-
centages of useful abstractions that represent semantically
compatible services. Nevertheless, there is certainly room
for improvements and further experimentation. As already
discussed, it is possible to reduce the percentage of useless
abstractions by using a customizable threshold for the dis-
tances between service interfaces. More advanced means can
be used to assess the similarity of Web service descriptions
(employ lexical thesaurus, semantic relations like synonyms,
hyponyms, etc.). Moreover, the mining algorithm currently
considers only the functional properties of the available ser-
vices, while it would be interesting to enhance it towards
taking into account information related to non-functional
properties (e.g., performance, reputation, cost, availability)
that may be provided along with the available service de-
scriptions. Another interesting issue would be to account
for certain developer preferences and/or business require-
ments during the mining process. Finally, at this point the
mined abstraction hierarchies can be exploited only through
browsing. In the near future, we plan to work towards the
development of an efficient query engine.

5. ACKNOWLEDGMENTS
This work received funding from the European Commu-

nity’s FP7/2007-2013 under grant agreement number 257178
(project CHOReOS). We would also like to acknowledge

the ”Equipes Associees” Program of INRIA, supporting the
ForeverSOA team.

6. REFERENCES
[1] E. Al-Masri and Q. H. Mahmoud. Discovering Web

Services in Search Engines. IEEE Internet Computing,
12(3):74–77, 2008.

[2] D. Ardagna and B. Pernici. Adaptive Service
Composition in Flexible Processes. IEEE Transactions
on Software Engineering, 33(6):369–384, 2007.

[3] D. Athanasopoulos, A. Zarras, V. Issarny, and
P. Vassiliadis. Hiding Design-Decisions in
Service-Oriented Software via Service Abstraction
Recovery. Technical Report inria-00491349 - version 2,
INRIA, 2010. avail. at http://hal.archives-ouvertes.fr/.

[4] G. Canfora, M. D. Penta, R. Esposito, and M.-L.
Villani. A Framework for QoS-Aware Binding and
Re-binding of Composite Web Services. Journal of
Systems and Software, 81:1754–1769, 2008.

[5] V. Cardellini, E. Casalicchio, V. Grassi, F. L. Presti,
and R. Mirandola. Qos-Driven Runtime Adaptation of
Service Oriented Architectures. In Proceedings of the
the 7th ACM SIGSOFT ESEC/FSE, pages 131–140,
2009.

[6] M. Colombo, E. D. Nitto, and M. Mauri. SCENE: A
Service Composition Execution Environment
Supporting Dynamic Changes Disciplined Through
Rules. In Proceedings of the 4th International
Conference on Service Oriented Computing (ICSOC),
pages 191–202, 2006.

[7] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and
J. Zhang. Similarity Search for Web Services. In
Proceedings of VLDB, 2004.

[8] S. Dustdar and M. Treiber. A View Based Analysis on
Web Service Registries. Distributed and Parallel
Databases, 18(2):147–171, 2005.

[9] B. Liskov and J. Wing. A Behavioral Notion of
Subtyping. ACM Transactions on Programming
Languages and Systems (ACM TOPLAS),
16(6):1811–1841, 1994.

[10] O. Maqbool and H. Babri. Hierarchical Clustering for
Software Architecture Recovery. IEEE Transactions
on Software Engineering, 33(11):759–780, 2007.

[11] J. Munkres. Algorithms for the Assignment and
Transportation Problems. Journal of the Society for
Industrial and Applied Mathematics, 5(1):32–38, 1957.

[12] D. Parnas. On the Criteria for Decomposing To Be
Used for Decomposing Systems into Modules.
Communications of the ACM, 15(12):1053–1058, 1972.

[13] M. Rambold, H. Kasinger, F. Lautenbacher, and
B. Bauer. Towards Autonomic Service Discovery - A
Survey and Comparison. In Proceedings of the IEEE
International Conference on Services Computing
(SCC), pages 192–201, 2009.

[14] J. Yang and M. Papazoglou. Service Components for
Managing the Lifecycle of Service Compositions.
Information Systems, 29(2):97–125, 2004.

[15] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnamam,
and H. Chang. QoS-Aware Middleware for Web
Services Composition. IEEE Transactions on Software
Engineering, 30(5):311–327, 2004.


